Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 349
Filtrar
1.
Anaerobe ; 89: 102893, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39122139

RESUMEN

OBJECTIVES: Feeding winery by-products (WBP) could affect the bovine microbiome because of their phenol compounds and a transfer of WBP-associated microbiota. This work examined changes in the underexplored solid-associated rumen microbiome following the inclusion of WBP. METHODS: Using the rumen simulation technique, fermenters were inoculated with the inoculum of donor cows and were fed one of six dietary treatments including a control diet of 70 % hay +30 % concentrate (CON), control diet + 3.7 % commercial grapeseed extract (EXT), 65 % hay + 25 % concentrate + 10 % grape pomace (GP-low), 56 % hay + 24 % concentrate + 20 % grape pomace (GP-high), 70 % hay + 25 % concentrate + 5 % grapeseed meal (GS-low), and 65 % hay + 25 % concentrate + 10 % grapeseed meal (GS-high) (dry matter basis). The compositional changes of bacteria, archaea and fungi in the solid fractions were based on 16S and ITS2 rRNA sequencing. RESULTS: The alpha- and beta-diversity of the microbiota were unaffected. However, treatment modified the bacterial composition at low taxonomic levels. Butyrivibrio fibrisolvens, Treponema bryantii, and bacterium MC2010 decreased in EXT, while Treponema berlinense was increased in GP-high and GP-low compared to CON. Concerning fungi, GS-high increased Candida spp., Lachancea spp., Microdochium spp., Mucor spp., Pichia spp., Saturnispora spp., and Zygosaccharomyces spp. compared to CON. Many non-Saccharomyces yeasts were detected in WBP samples but absent in donor cows and CON samples. The genera affected by treatment were not the major contributors to the ruminal degradation of nutrients. CONCLUSIONS: The results indicate a sensitivity of rumen solid bacteria to grape phenols when delivered as an extract and a transfer of WBP-associated microbiota into the rumen.


Asunto(s)
Alimentación Animal , Bacterias , Fermentación , Hongos , Rumen , Animales , Rumen/microbiología , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Alimentación Animal/análisis , Bovinos , Microbioma Gastrointestinal/efectos de los fármacos , Vino/análisis , Vino/microbiología , Microbiota/efectos de los fármacos
2.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38255977

RESUMEN

Peripheral nerve injuries lead to severe functional impairments and long recovery times, with limited effectiveness and accessibility of current treatments. This has increased interest in natural bioactive compounds, such as ursolic acid (UA). Our study evaluated the effect of an oleolyte rich in UA from white grape pomace (WGPO) on neuronal regeneration in mice with induced sciatic nerve resection, administered concurrently with the induced damage (the WGPO group) and 10 days prior (the PRE-WGPO group). The experiment was monitored at two-time points (4 and 10 days) after injury. After 10 days, the WGPO group demonstrated a reduction in muscle atrophy, evidenced by an increased number and diameter of muscle fibers and a decreased Atrogin-1 and Murf-1 expression relative to the denervated control. It was also observed that 85.7% of neuromuscular junctions (NMJs) were fully innervated, as indicated by the colocalization of α-bungarotoxin and synaptophysin, along with the significant modulation of Oct-6 and S-100. The PRE-WGPO group showed a more beneficial effect on nerve fiber reformation, with a significant increase in myelin protein zero and 95.2% fully innervated NMJs, and a pro-hypertrophic effect in resting non-denervated muscles. Our findings suggest WGPO as a potential treatment for various conditions that require the repair of nerve and muscle injuries.


Asunto(s)
Traumatismos de los Nervios Periféricos , Animales , Ratones , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Ácido Ursólico , Nervio Ciático , Suplementos Dietéticos , Fibras Musculares Esqueléticas
3.
Molecules ; 29(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338308

RESUMEN

The purpose of this investigation was (i) the development of a novel, green tertiary solvent system, composed of water, ethanol and glycerol, and (ii) the implementation of an organosolv treatment of red grape pomace (RGP) for the efficient production of polyphenol-containing extracts with enhanced antioxidant properties. The treatment developed was performed under mild acidic conditions, imparted by the addition of citric acid, and it was first evaluated on the basis of severity, establishing linear models that described the correlation between treatment performance and combined severity factors. To solicit treatment optimization, response surface methodology was implemented, considering solvent acidity and residence time as the treatment variables. The optimized treatment afforded maximum total polyphenol (166 ± 6 mg GAE g-1 DM), total pigment (4.4 ± 0.2 mg MvE g-1 DM) and total flavanol (31.5 mg CtE g-1 DM) yields and extracts with particularly enhanced antioxidant activity. This might be attributed to specific constituents with high antioxidant potency, such as catechin, determined in the extract using high-performance liquid chromatography. Thus, the treatment developed is proposed as a highly efficient process to generate RGP extracts enriched in polyphenolic compounds, with enhanced antioxidant activity. Such extracts might then be valorized as food additives, to provide antioxidant protection and/or pigmentation.


Asunto(s)
Polifenoles , Vitis , Polifenoles/química , Antioxidantes/química , Vitis/química , Glicerol , Etanol/química , Agua , Solventes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
4.
Molecules ; 29(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38893553

RESUMEN

Grape pomace is the main by-product obtained from wine production that is still enriched in bioactive compounds. Within a framework of waste/by-product reuse through a sustainable approach, various green methods were utilized in this work to recover anthocyanins from the pomace resulting from "Sangiovese" grape vinification. Ultrasound- and Microwave-Assisted Extractions (UAE and MAE) were coupled with the use of green solvents, such as acidified water, an ethanol/water mixture, and Natural Deep Eutectic Solvents (NaDES), and their efficacy was compared with that of a conventional method based on a methanol/acidified water mixture. The Total Anthocyanin Index ranged from 36.9 to 75.2 mg/g DW for UAE, and from 54.4 to 99.6 mg/g DW for MAE, while resulting in 47.1 mg/g DW for conventional extraction. A Design of Experiments (DoE) approach was applied to MAE, the most efficient technique. Temperature, time, and the solid-to-liquid ratio were set as X variables, while malvidin-3-O-glucoside content and antioxidant activity were used as response variables, measured by High-Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay, respectively. The correlation between temperature and time and the antioxidant activity of the extract was positive, while it was found to be negative when considering malvidin-3-O-glucoside concentration as a response variable. Thus, the optimal conditions in temperature, time and solid-to-liquid ratio were different depending on the chosen variable. The results underline the importance of selecting an accurate response when using the response surface methodology approach.


Asunto(s)
Antocianinas , Antioxidantes , Tecnología Química Verde , Microondas , Vitis , Antocianinas/química , Antocianinas/análisis , Antocianinas/aislamiento & purificación , Vitis/química , Tecnología Química Verde/métodos , Cromatografía Líquida de Alta Presión/métodos , Antioxidantes/química , Antioxidantes/análisis , Extractos Vegetales/química , Solventes/química , Vino/análisis
5.
Appl Microbiol Biotechnol ; 107(4): 1205-1216, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36680585

RESUMEN

Agro-industrial by-products are a sustainable source of natural additives that can replace the synthetic ones in the food industry. Grape pomace is an abundant by-product that contains about 70% of the grape's polyphenols. Polyphenols are natural antioxidants with multiple health-promoting properties. They are secondary plant metabolites with a wide range of solubilities. Here, a novel extraction process of these compounds was developed using enzymes that specifically liberates target polyphenols in the appropriate hydroalcoholic mixture. Tannase, cellulase, and pectinase retained 22, 60, and 52% of their activity, respectively, in ethanol 30% v/v. Therefore, extractions were tested in ethanol concentrations between 0 and 30% v/v. Some of these enzymes presented synergistic effects in the extraction of specific polyphenols. Maximum yield of gallic acid was obtained using tannase and pectinase enzymes in ethanol 10% v/v (49.56 ± 0.01 mg L-1 h-1); in the case of p-coumaric acid, by cellulase and pectinase treatment in ethanol 30% v/v (7.72 ± 0.26 mg L-1 h-1), and in the case of trans-resveratrol, by pectinase treatment in ethanol 30% v/v (0.98 ± 0.04 mg L-1 h-1). Also, the effect of enzymes and solvent polarity was analysed for the extraction of malvidin-3-O-glucoside, syringic acid, and quercetin. Previous studies were mainly focused on the maximization of total polyphenols extraction yields, being the polyphenolic profile the consequence but not the driving force of the optimization. In the present study, the basis of a platform for a precise extraction of the desire polyphenols is provided. KEY POINTS: • Enzymes can be used up to ethanol 30% v/v. • The specific enzymes' action determines the polyphenolic profile of the extracts. • The yields obtained of target polyphenols are competitive.


Asunto(s)
Celulasas , Polifenoles , Poligalacturonasa , Solventes , Etanol , Extractos Vegetales , Antioxidantes
6.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37511218

RESUMEN

Water-resistant and environmentally friendly sodium-alginate-based films have been investigated to develop functional materials to extend the food's shelf-life. A water-stable alginate-based film was prepared, employing both the internal and external gelation approach in the presence of CaCl2. To apply this film to food packaging and thus preserve food quality, the aim of this work is to perform a chemical and physical characterization of the proposed materials, evidencing the main features and stability under different work conditions. Water contact angle measurements showed a value of 65°, suggesting an important reduced hydrophilic character of the obtained alginate films due to the novel CaCl2-induced compacted polymer network. The film's stability was thus checked through swelling measurements in water after varying pH, temperature, and ionic strength. The film was stable at high temperatures and not pH-responsive. Only highly concentrated salt-based solutions negatively affected the proposed packaging, causing a large swelling. Furthermore, a water-based polyphenolic extract from grape (Vitis vinifera L.) pomace waste was embedded inside the films in different amounts in order to confer additional properties. The extract's polyphenolic content (evaluated from HPLC/MS-MS measurements) endowed the films' UV-light screening and enhanced antioxidant properties. These important findings suggest the additional potential role of these films in protecting food from light deterioration. The stability of these hybrid films was also checked by observation, as the polyphenols' presence did not largely alter the alginate network that occurred yet was water-resistant under the described work conditions.


Asunto(s)
Alginatos , Vitis , Alginatos/química , Embalaje de Alimentos , Agua , Extractos Vegetales/farmacología , Cloruro de Calcio , Sodio
7.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37958941

RESUMEN

The development of food packaging materials that reduce the production of plastic, preserving at the same time the quality of food, is a topic of great interest today for the scientific community. Therefore, this article aims to report the effectiveness of an eco-friendly packaging material based on alginic acid and grape pomace extract from Vitis vinifera L. (winemaking by-products) for storing red meat in a domestic refrigerator. Specifically, biogenic amines are considered "sentinels" of the putrefactive processes, and their presence was thus monitored. For this purpose, an experimental analytical protocol based on the use of solid-phase microextraction coupled with gas chromatography-mass spectrometry was developed during this work for the determination of six biogenic amines (butylamine, cadaverine, isobutylamine, isopentylamine, putrescine, and tyramine). Moreover, by combining the analytical results with those of pH and weight loss measurements, differential scanning calorimetry, and microbiological analysis, it was proved that the studied materials could be proposed as an alternative packaging material for storing foods of animal origin, thus lowering the environmental impact according to sustainability principles.


Asunto(s)
Vitis , Animales , Vitis/química , Alginatos , Aminas Biogénicas , Carne/análisis , Extractos Vegetales
8.
Molecules ; 28(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37836612

RESUMEN

Grape pomace is one of the main by-products in the wine industry and contains some high-added-value compounds, such as polysaccharides. Considering the wide application possibilities of polysaccharides in wine and in the food industry, the revalorization of grape pomace to extract polysaccharides presents itself as an opportunity for by-product management. Therefore, the aim of this study was to characterize polysaccharide extracts obtained from pomace by-products of different white grape varieties. The type and content of polysaccharides, proteins and phenols were analyzed. Statistically significant differences were found between the varietal extracts in the types and concentrations of polysaccharides. The extracts obtained from the Verdejo and Puesta en Cruz varieties showed the highest polysaccharide purity and contents, but the type of polysaccharides was different in each case. The Verdejo provided extracts richer in non-pectic polysaccharides, while the Puesta en Cruz provided extracts richer in pectic polysaccharides. The protein and polyphenol contents were low in all extracts, below 2.5% and 3.7%, respectively. These results open up a new possibility for the revalorization of grape pomace by-products to obtain polysaccharide-rich extracts, although it would be interesting to improve both the yield and the purity of the extracts obtained by studying other extraction techniques or processes.


Asunto(s)
Vitis , Vino , Vitis/química , Vino/análisis , Polifenoles , Extractos Vegetales/química , Polisacáridos , Pectinas
9.
Molecules ; 28(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38005259

RESUMEN

With the increase in the world population, the overexploitation of the planet's natural resources is becoming a worldwide concern. Changes in the way humankind thinks about production and consumption must be undertaken to protect our planet and our way of living. For this change to occur, sustainable development together with a circular economic approach and responsible consumption are key points. Agriculture activities are responsible for more than 10% of the greenhouse gas emissions; moreover, by 2050, it is expected that food production will increase by 60%. The valorization of food waste is therefore of high importance to decrease the environmental footprint of agricultural activities. Fruits and vegetables are wildly consumed worldwide, and grapes are one of the main producers of greenhouse gases. Grape biomass is rich in bioactive compounds that can be used for the food, pharmaceutical and cosmetic industries, and their extraction from this food residue has been the target of several studies. Among the extraction techniques used for the recovery of bioactive compounds from food waste, subcritical water extraction (SWE) has been the least explored. SWE has several advantages over other extraction techniques such as microwave and ultrasound extraction, allowing high yields with the use of only water as the solvent. Therefore, it can be considered a green extraction method following two of the principles of green chemistry: the use of less hazardous synthesis (principle number 3) and the use of safer solvents and auxiliaries (principle number 5). In addition, two of the green extraction principles for natural products are also followed: the use of alternative solvents or water (principle number 2) and the use of a reduced, robust, controlled and safe unit operation (principle number 5). This review is an overview of the extraction process using the SWE of grape biomass in a perspective of the circular economy through valorization of the bioactive compounds extracted. Future perspectives applied to the SWE are also discussed, as well as its ability to be a green extraction technique.


Asunto(s)
Eliminación de Residuos , Vitis , Vitis/química , Agua , Biomasa , Solventes/química , Frutas
10.
Molecules ; 28(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36985687

RESUMEN

The optimization of extraction by using solvents of phenolic compounds (TPh) of grape pomace (GP) based on a central composite design was investigated. The GP was characterized, and preliminary assays were conducted with five different solvents (water, ethanol, acetone, methanol, and butanol) and the aqueous mixtures thereof. Ethanol and acetone were revealed to be the best solvents for TPh extraction. The main extraction parameters (temperature-T, time-t, solvent concentration, and liquid-solid ratio-L/S) were optimized by using a central composite design. The optimized conditions for the ethanol extraction (T = 60 °C, t = 1.5 h, L/S = 25 mL/gdryGP) and for acetone (T = 50 °C, t = 1.5 h, L/S = 25 mL/gdryGP) were determined. Single-stage extraction revealed a TPh of 45.18 ± 9.51 mgGAE/gdryGP for acetone and a TPh of 38.70 ± 3.64 mgGAE/gdryGP for ethanol. The characterization of the extracts revealed the presence of gallic acid, caffeic acid, syringic acid, vanillic acid, chlorogenic acid, and p-coumaric acid, where the concentration of the first three compounds stands out in all extracts. A three-stage extraction increased the yield of ethanol to 63.3 mg GAE/gdryGP and the yield of acetone to 59.2 mg GAE/gdryGP. Overall, both solvents allow the extraction of phenolic compounds of grape pomace, but ethanol is commonly considered a greener solvent for this purpose.

11.
Molecules ; 28(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36903327

RESUMEN

The by-products of grapes (Vitis vinifera L.) in the winemaking process present a diverse phytochemical profile of (poly)phenols, essentially represented by phenolic acids, flavonoids, and stilbenes, which have health benefits. In winemaking, solid (grape stems and pomace) and semisolid (wine lees) by-products are generated, negatively impacting the sustainability of the agro-food activity and the local environment. Although information on the phytochemical profile of grape stems and pomace has been reported, especially information concerning (poly)phenols, research on wine lees is necessary to take advantage of the compositional traits of this residue. So, in the present work, an updated, in-depth comparison of the (poly)phenolic profiles of these three resulting matrices in the agro-food industry has been carried out to provide new knowledge and interesting data on the action of yeast and lactic acid bacteria (LAB) metabolism in the diversification of phenolic composition; additionally, we extract complementarities for the possible joint application of the three residues. The phytochemical analysis of the extracts was carried out using HPLC-PDA-ESI-MSn. The (poly)phenolic profiles of the residues showed significant discrepancies. The results obtained showed that the greatest diversity of (poly)phenols was found in the stems of the grapes, followed closely by the lees. Through technological insights, it has been suggested that yeasts and LAB, responsible for the fermentation of must, might play a key role in the transformation of phenolic compounds. This would provide new molecules with specific bioavailability and bioactivity features, which might interact with different molecular targets and, consequently, improve the biological potential of these underexploited residues.


Asunto(s)
Vitis , Vino , Antioxidantes/análisis , Fenoles/análisis , Vitis/química , Vino/análisis , Frutas/química
12.
Molecules ; 28(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446946

RESUMEN

Grape pomace is a by-product of winemaking characterized by a rich chemical composition from which phenolics stand out. Phenolics are health-promoting agents, and their beneficial effects depend on their bioaccessibility, which is influenced by gastrointestinal digestion. The effect of encapsulating phenol-rich grape pomace extract (PRE) with sodium alginate (SA), a mixture of SA with gelatin (SA-GEL), and SA with chitosan (SA-CHIT) on the bioaccessibility index (BI) of phenolics during simulated digestion in vitro was studied. A total of 27 individual phenolic compounds (IPCs) were quantified by UHPLC. The addition of a second coating to SA improved the encapsulation efficiency (EE), and the highest EE was obtained for SA-CHIT microbeads (56.25%). Encapsulation affected the physicochemical properties (size, shape and texture, morphology, crystallinity) of the produced microbeads, which influenced the delivery of phenolics to the intestine and their BI. Thus, SA-GEL microbeads had the largest size parameters, as confirmed by scanning electron microscopy (SEM), and the highest BI for total phenolic compounds and IPCs (gallic acid, 3,4-dihydroxybenzoic acid and o-coumaric acid, epicatechin, and gallocatechin gallate) ranged from 96.20 to 1011.3%. The results suggest that encapsulated PRE has great potential to be used as a functional ingredient in products for oral administration.


Asunto(s)
Fenoles , Extractos Vegetales , Vitis , Alginatos/química , Disponibilidad Biológica , Cápsulas , Cromatografía Líquida de Alta Presión , Digestión , Gelatina/química , Microscopía Electrónica de Rastreo , Microesferas , Tamaño de la Partícula , Fenoles/química , Fenoles/farmacocinética , Extractos Vegetales/química , Extractos Vegetales/farmacocinética , Vitis/química , Técnicas In Vitro
13.
Molecules ; 28(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175319

RESUMEN

Grape pomaces have a wide and diverse antioxidant phenolics composition. Six Uruguayan red grape pomaces were evaluated in their phenolics composition, antioxidant capacity, and anti-inflammatory properties. Not only radical scavenging methods as DPPH· and ABTS·+ were employed but also ORAC and FRAP analyses were applied to assess the antioxidant potency of the extracts. The antioxidant reactivity of all extracts against hydroxyl radicals was assessed with ESR. The phenol profile of the most bioactive extract was analyzed by HPLC-MS, and a set of 57 structures were determined. To investigate the potential anti-inflammatory activity of the extracts, Nuclear Factor kappa-B (NF-κB) modulation was evaluated in the human colon cancer reporter cell line (HT-29-NF-κB-hrGFP). Our results suggest that Tannat grapes pomaces have higher phenolic content and antioxidant capacity compared to Cabernet Franc. These extracts inhibited TNF-alpha mediated NF-κB activation and IL-8 production when added to reporter cells. A molecular docking study was carried out to rationalize the experimental results allowing us to propose the proactive interaction between the NF-κB, the grape extracts phenols, and their putative anti-inflammatory bioactivity. The present findings show that red grape pomace constitutes a sustainable source of phenolic compounds, which may be valuable for pharmaceutical, cosmetic, and food industry applications.


Asunto(s)
Vitis , Humanos , Vitis/química , Antioxidantes/química , FN-kappa B , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fenoles/química , Antiinflamatorios/farmacología
14.
Food Technol Biotechnol ; 61(4): 430-438, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38205048

RESUMEN

Research background: Wine production, which is considered a major sector in food industry, often involves the use of a large amount of resources. Moreover, wine making generates a large amount of grape pomace, which is generally used for low-value applications such as fertiliser and animal feed. The aim of the present research is to explore the possibility of improving the overall sustainability of traditional winemaking. Experimental approach: A zero-waste process was developed. It includes the production of white wine and the substantial valorisation of grape pomace, which is converted into solid biofuel, tartaric acid and concentrated grape extract as feedstock for industrial baker's yeast production. Results and conclusions: We estimate that a significant surplus of renewable energy of approx. 3 MJ/kg processed grapes can be obtained during this conversion. The suitability of grape extract as a potential substrate for industrial baker's yeast production was evaluated and the feasibility of a partial replacement of molasses (up to 30 %) was demonstrated. Novelty and scientific contribution: We present a circular economy approach for the conversion of winery biowaste into high-value resources such as feedstock and solid biofuel.

15.
Crit Rev Food Sci Nutr ; : 1-17, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36398354

RESUMEN

Grape pomace is the most important residual after wine making, and it is considered to be a very abundant source for the extraction of a wide range of polyphenols. These polyphenols exhibit a variety of bioactivities, such as antioxidant, anti-inflammatory, and anti-cancer. They are also beneficial in alleviating metabolic syndrome and regulating intestinal flora, etc. These health effects are most likely contributed by polyphenol metabolite, which are formed by the grape pomace phenolics after a complex metabolic process in vivo. Therefore, understanding the phenolic composition of grape pomace and its metabolism is the basis for an in-depth study of the biological activity of grape pomace polyphenols. In this paper, we first summarize the composition of phenolics in grape pomace, then review the recent studies on the metabolism of grape pomace phenolics, including changes in phenolics in the gastrointestinal tract, their pharmacokinetics in the systemic circulation, the tissue distribution of phenolic metabolites, and the beneficial effects of metabolites on intestinal health, and finally summarize the effects of human health status and dietary fiber on the metabolism of grape polyphenols. It is expected to provide help for the in-depth research on the metabolism and biological activity of grape pomace polyphenol extracts, and to provide theoretical support for the development and utilization of grape pomace.

16.
J Appl Microbiol ; 133(2): 656-664, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35451085

RESUMEN

AIM: We aim to explore the non-structural sugars from white wine grape pomace (WWGP) as the input carbon source for the co-production of multiple high-value products by the non-fastidious yeast Rhodotorula babjevae to create a sustainable and economically appealing process. METHODS AND RESULTS: Water extraction of unfermented, soluble sugars from WWGP yielded extracts with similar amounts of glucose and fructose, which were used to prepare a growth medium. Rhodorotula babjevae multiplied as fast on WWGP-based medium as on a reference medium but achieved higher cell dry weight (CDW) and lower intracellular triacylglycerol accumulation (22.5% vs. 28.6%) in WWGP-based medium. In addition, R. babjevae produced mannitol and arabitol and carotenoids and secreted polyol esters of fatty acids, a rare type of glycolipid as confirmed by Fourier transform-infrared, nuclear magnetic resonance and high-performance liquid chromatography analyses. Remarkably, R. babjevae consumed simultaneously both fructose and glucose when on WWGP-based medium and left glucose practically untouched in the reference medium, evidencing a fructophilic character. CONCLUSIONS: Rhodorotula babjevae, a metabolic versatile yeast, proliferated on a minimally processed extract and successfully converted glucose and fructose into high-value products. SIGNIFICANCE AND IMPACT OF STUDY: Different chemicals with market potential can be produced through the valorization of abundant waste feedstocks generated by the wine industry to which R. babjevae can contribute.


Asunto(s)
Vitis , Carbono , Carotenoides , Ácidos Grasos/metabolismo , Fructosa , Glucosa/metabolismo , Azúcares , Levaduras/metabolismo
17.
J Appl Microbiol ; 133(1): 130-144, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34735730

RESUMEN

AIMS: The purpose of this study was to functionalize an ovine stretched cheese belonging to 'Vastedda' typology with red grape pomace powder (GPP) of Nero d'Avola cultivar and to characterize the microbiological, physicochemical, phenolic profile and sensory characteristics of the final cheeses. METHODS AND RESULTS: Before cheeses production, GPP was characterized for its microbiological profile, antibacterial activity and polyphenolic content. No colonies of bacteria and yeasts were detected in the GPP. GPP showed a large inhibition spectrum against spoilage and pathogenic bacteria. Three classes of polyphenolic compounds belonging to flavan-3-ols, flavonol and phenolic acids were identified. Two cheeses [0 and 1% (w w-1 ) of GPP] were produced with pasteurized ewe's milk and commercial starter cultures. Plate counts and randomly amplified polymorphic DNA analysis demonstrated the ability of the starter strains to drive the fermentation process in the presence of GPP. GPP enrichment resulted in an increase of protein, phenolic compounds, sensory traits and reduced fat. CONCLUSIONS: GPP addition to cheese represents an optimal strategy for the valorization of winemaking by-products and to obtain polyphenol-enriched cheese. SIGNIFICANCE AND IMPACT OF THE STUDY: This study allowed to achieve an ovine cheese with specific physicochemical, nutraceutical and sensorial characteristics able to enlarge the functional dairy product portfolio.


Asunto(s)
Queso , Vitis , Animales , Queso/microbiología , Femenino , Microbiología de Alimentos , Leche/microbiología , Polifenoles/farmacología , Ovinos , Oveja Doméstica
18.
Phytother Res ; 36(12): 4620-4630, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36069605

RESUMEN

Grape (Vitis vinifera L.) pomace is a residue derived from the winemaking process, which contains bioactive compounds displaying noteworthy health-promoting properties. The aim of the present study was to investigate the phenolic composition and protective effects of a water extract of grape pomace (WEGP) in colorectal cancer cell line SW480 and in isolated mouse colon exposed to Escherichia coli lipopolysaccharide (LPS). The extract decreased SW-480 cell viability, as well as vascular endothelial factor A (VEGFA), hypoxia-induced factor 1α (HIF1α), and transient receptor potential M8 (TRPM8) LPS-induced gene expression. Moreover, the extract inhibited mRNA levels of nuclear factor kB (NFkB), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)α, interleukin (IL)-6, IL-1ß, IL-10, inducible nitric oxide synthase (iNOS), and interferon (IFN)γ, in isolated colon. Conversely, WEGP increased the gene expression of antioxidant catalase (CAT) and superoxide dismutase (SOD), in the same model. The modulatory effects exerted by WEGP could be related, at least in part, to the phenolic composition, with particular regards to the catechin level. Docking calculations also predicted the interactions of catechin toward TRPM8 receptor, deeply involved in colon cancer; thus further suggesting the grape pomace as a valuable source of bioactive extracts and phytochemicals with protective effects in the colon.


Asunto(s)
Vitis , Animales , Ratones , Agua , Inmunidad , Colon
19.
Molecules ; 27(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36296420

RESUMEN

Flavonoids, stilbenes, lignans, and phenolic acids, classes of polyphenols found in grape pomace (GP), were investigated as an important alternative source for active substances that could be used in the management of oxidative stress and inflammation. The benefic antioxidant and anti-inflammatory actions of GP are presented in the literature, but they are derived from a large variety of experimental in vitro and in vivo settings. In these in vitro works, the decrease in reactive oxygen species, malondialdehyde, and thiobarbituric acid reactive substances levels and the increase in glutathione levels show the antioxidant effects. The inhibition of nuclear factor kappa B and prostaglandin E2 inflammatory pathways and the decrease of some inflammatory markers such as interleukin-8 (IL-8) demonstrate the anti-inflammatory actions of GP polyphenols. The in vivo studies further confirmed the antioxidant (increase in catalase, superoxide dismutase and glutathione peroxidase levels and a stimulation of endothelial nitric oxide synthase -eNOS gene expression) and anti-inflammatory (inhibition of IL-1𝛼, IL-1ß, IL-6, interferon-𝛾, TNF-α and C-reactive protein release) activities. Grape pomace as a whole extract, but also different individual polyphenols that are contained in GP can modulate the endogenous pathway responsible in reducing oxidative stress and chronic inflammation. The present review analyzed the effects of GP in oxidative stress and inflammation, suggesting that it could become a valuable therapeutic candidate capable to reduce the aforementioned pathological processes. Grape pomace extract could become an adjuvant treatment in the attempt to reduce the side effects of the classical anti-inflammatory medication like non-steroidal anti-inflammatory drugs (NSAIDs).


Asunto(s)
Lignanos , Estilbenos , Vitis , Polifenoles/farmacología , Polifenoles/metabolismo , Vitis/metabolismo , Interleucina-8/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Catalasa/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Glutatión Peroxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , FN-kappa B/metabolismo , Proteína C-Reactiva/metabolismo , Dinoprostona/metabolismo , Interleucina-6/metabolismo , Estrés Oxidativo , Flavonoides/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Inflamación/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , Superóxido Dismutasa/metabolismo , Estilbenos/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/metabolismo , Lignanos/metabolismo , Glutatión/metabolismo , Interferones
20.
Molecules ; 27(8)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35458642

RESUMEN

This study sought to evaluate the possibility of using grape pomace, a waste material from wine production, for the preparation of cosmetic components. Following the existing clear research trend related to improving the safety of cleansing cosmetics, an attempt was made to determine the possibility of preparing model shower gels based on grape pomace extract. A new method for producing cosmetic components named loan chemical extraction (LCE) was developed and is described for the first time in this paper. In the LCE method, an extraction medium consisting only of the components from the final product was used. Thus, there were no additional substances in the cosmetics developed, and the formulation was significantly enriched with compounds isolated from grape pomace. Samples of the model shower gels produced were evaluated in terms of their basic parameters related to functionality (e.g., foaming properties, rheological characteristics, color) and their effect on the skin. The results obtained showed that the extracts based on waste grape pomace contained a number of valuable cosmetic compounds (e.g., organic acids, phenolic compounds, amino acids and sugars), and the model products basis on them provided colorful and safe natural cosmetics.


Asunto(s)
Cosméticos , Vitis , Vino , Higiene , Micelas , Extractos Vegetales/química , Vitis/química , Vino/análisis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda