Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 589
Filtrar
1.
Immunity ; 57(9): 2013-2029, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39151425

RESUMEN

The intestinal microbiota determines immune responses against extraintestinal antigens, including tumor-associated antigens. Indeed, depletion or gross perturbation of the microbiota undermines the efficacy of cancer immunotherapy, thereby compromising the clinical outcome of cancer patients. In this review, we discuss the long-distance effects of the gut microbiota and the mechanisms governing antitumor immunity, such as the translocation of intestinal microbes into tumors, migration of leukocyte populations from the gut to the rest of the body, including tumors, as well as immunomodulatory microbial products and metabolites. The relationship between these pathways is incompletely understood, in particular the significance of the tumor microbiota with respect to the identification of host and/or microbial products that regulate the egress of bacteria and immunocytes toward tumor beds.


Asunto(s)
Microbioma Gastrointestinal , Vigilancia Inmunológica , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/microbiología , Neoplasias/terapia , Microbioma Gastrointestinal/inmunología , Animales , Vigilancia Inmunológica/inmunología , Inmunoterapia/métodos , Monitorización Inmunológica
2.
Trends Immunol ; 44(8): 568-570, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37451906

RESUMEN

The gut microbiome influences the response, resistance, and toxicity of cancer immunotherapy, but the underlying mechanisms remain unknown. Fidelle et al. identify intestinal MAdCAM-1 as a mechanistic target through which gut dysbiosis blunts antitumor immunity, with opportunities for putative therapeutic intervention.


Asunto(s)
Microbioma Gastrointestinal , Linfocitos T , Humanos , Inmunoterapia , Disbiosis
3.
Gastroenterology ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876174

RESUMEN

Gastrointestinal biofilms are matrix-enclosed, highly heterogenic and spatially organized polymicrobial communities that can cover large areas in the gastrointestinal tract. Gut microbiota dysbiosis, mucus disruption, and epithelial invasion are associated with pathogenic biofilms that have been linked to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel diseases, gastric cancer, and colorectal cancer. Intestinal biofilms are highly prevalent in ulcerative colitis and irritable bowel syndrome patients, and most endoscopists will have observed such biofilms during colonoscopy, maybe without appreciating their biological and clinical importance. Gut biofilms have a protective extracellular matrix that renders them challenging to treat, and effective therapies are yet to be developed. This review covers gastrointestinal biofilm formation, growth, appearance and detection, biofilm architecture and signalling, human host defence mechanisms, disease and clinical relevance of biofilms, therapeutic approaches, and future perspectives. Critical knowledge gaps and open research questions regarding the biofilm's exact pathophysiological relevance and key hurdles in translating therapeutic advances into the clinic are discussed. Taken together, this review summarizes the status quo in gut biofilm research and provides perspectives and guidance for future research and therapeutic strategies.

4.
Neurobiol Dis ; 192: 106423, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38286388

RESUMEN

Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite produced by the action of gut microbiota and the hepatic enzyme Flavin Mono­oxygenase 3 (FMO3). TMAO level has a positive correlation with the risk of cardiovascular events, including stroke, and their level is influenced mainly by dietary choice and the action of liver enzyme FMO3. TMAO plays a role in the development of atherosclerosis plaque, which is one of the causative factors of the stroke event. Preclinical and clinical investigations on the TMAO and associated stroke risk, severity, and outcomes are summarised in this review. In addition, mechanisms of TMAO-driven vascular dysfunction are also discussed, such as inflammation, oxidative stress, thrombus and foam cell formation, altered cholesterol and bile acid metabolism, etc. Post-stroke inflammatory cascades involving activation of immune cells, i.e., microglia and astrocytes, result in Blood-brain-barrier (BBB) disruption, allowing TMAO to infiltrate the brain and further aggravate inflammation. This event occurs as a result of the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway through the release of inflammatory cytokines and chemokines that further aggravate the BBB and initiate further recruitment of immune cells in the brain. Thus, it's likely that maintaining TMAO levels and associated gut microbiota could be a promising approach for treating and improving stroke complications.


Asunto(s)
Metilaminas , Accidente Cerebrovascular , Humanos , Inflamación , Óxidos
5.
Neurobiol Dis ; 200: 106640, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39159895

RESUMEN

Degenerative cervical myelopathy (DCM) describes a spectrum of disorders that cause progressive and chronic cervical spinal cord compression. The clinical presentation can be complex and can include locomotor impairment, hand and upper extremity dysfunction, pain, loss of bladder and bowel function, as well as gastrointestinal dysfunction. Once diagnosed, surgical decompression is the recommended treatment for DCM patients with moderate to severe impairment. Our body is composed of a large community of microorganisms, known as the microbiota. Traumatic and non-traumatic spinal cord injuries (SCIs) can induce changes in the gut microbiota and gut microbiota derived metabolites. These changes have been reported as important disease-modifying factors after injury. However, whether gut dysbiosis is associated with functional neurological recovery after surgical decompression has not been examined to date. Here, DCM was induced in C57BL/6 mice by implanting an aromatic polyether material underneath the C5-6 laminae. The extent of gut dysbiosis was assessed by gas chromatography and 16S rRNA sequencing from fecal samples before and after decompression. Neuromotor activity was assessed using the Catwalk test. Our results show that DCM pre- and post- surgical decompression is associated with gut dysbiosis, without altering short chain fatty acids (SCFAs) levels. Significant differences in Clostridia, Verrumicrobiae, Lachnospiracea, Firmicutes, Bacteroidales, and Clostridiaceae were observed between the DCM group (before decompression) and after surgical decompression (2 and 5 weeks). The changes in gut microbiota composition correlated with locomotor features of the Catwalk. For example, a longer duration of ground contact and dysfunctional swing in the forelimbs, were positively correlated with gut dysbiosis. These results show for the first time an association between gut dysbiosis and locomotor deterioration after delayed surgical decompression. Thus, providing a better understanding of the extent of changes in microbiota composition in the setting of DCM pre- and post- surgical decompression.


Asunto(s)
Descompresión Quirúrgica , Disbiosis , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Animales , Descompresión Quirúrgica/métodos , Microbioma Gastrointestinal/fisiología , Ratones , Enfermedades de la Médula Espinal/cirugía , Masculino , Vértebras Cervicales/cirugía , Compresión de la Médula Espinal/cirugía
6.
J Hepatol ; 81(3): 429-440, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38554847

RESUMEN

BACKGROUND & AIMS: Cystic fibrosis-related liver disease (CFLD) is a chronic cholangiopathy that increases morbidity and mortality in patients with CF. Current treatments are unsatisfactory, and incomplete understanding of CFLD pathogenesis hampers therapeutic development. We have previously shown that mouse CF cholangiocytes respond to lipopolysaccharide with excessive inflammation. Thus, we investigated the role of the gut-liver axis in the pathogenesis of CFLD. METHODS: Wild-type (WT), whole-body Cftr knockout (CFTR-KO) and gut-corrected (CFTR-KO-GC) mice were studied. Liver changes were assessed by immunohistochemistry and single-cell transcriptomics (single-cell RNA sequencing), inflammatory mediators were analysed by proteome array, faecal microbiota by 16S ribosomal RNA sequencing and gut permeability by FITC-dextran assay. RESULTS: The livers of CFTR-KO mice showed ductular proliferation and periportal inflammation, whereas livers of CFTR-KO-GC mice had no evident pathology. Single-cell RNA sequencing analysis of periportal cells showed increased presence of neutrophils, macrophages and T cells, and activation of pro-inflammatory and pathogen-mediated immune pathways in CFTR-KO livers, consistent with a response to gut-derived stimuli. CFTR-KO mice exhibited gut dysbiosis with enrichment of Enterobacteriaceae and Enterococcus spp., which was associated with increased intestinal permeability and mucosal inflammation, whereas gut dysbiosis and inflammation were absent in CFTR-KO-GC mice. Treatment with nonabsorbable antibiotics ameliorated intestinal permeability and liver inflammation in CFTR-KO mice. Faecal microbiota transfer from CFTR-KO to germ-free WT mice did not result in dysbiosis nor liver pathology, indicating that defective intestinal CFTR is required to maintain dysbiosis. CONCLUSION: Defective CFTR in the gut sustains a pathogenic microbiota, creates an inflammatory milieu, and alters intestinal permeability. These changes are necessary for the development of cholangiopathy. Restoring CFTR in the intestine or modulating the microbiota could be a promising strategy to prevent or attenuate liver disease. IMPACT AND IMPLICATIONS: Severe cystic fibrosis-related liver disease (CFLD) affects 10% of patients with cystic fibrosis (CF) and contributes to increased morbidity and mortality. Treatment options remain limited due to a lack of understanding of disease pathophysiology. The cystic fibrosis transmembrane conductance regulator (CFTR) mediates Cl- and HCO3- secretion in the biliary epithelium and its defective function is thought to cause cholestasis and excessive inflammatory responses in CF. However, our study in Cftr-knockout mice demonstrates that microbial dysbiosis, combined with increased intestinal permeability caused by defective CFTR in the intestinal mucosa, acts as a necessary co-factor for the development of CFLD-like liver pathology in mice. These findings uncover a major role for the gut microbiota in CFLD pathogenesis and call for further investigation and clinical validation to develop targeted therapeutic strategies acting on the gut-liver axis in CF.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Disbiosis , Microbioma Gastrointestinal , Ratones Noqueados , Animales , Disbiosis/microbiología , Disbiosis/etiología , Fibrosis Quística/microbiología , Fibrosis Quística/complicaciones , Ratones , Microbioma Gastrointestinal/fisiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Hígado/metabolismo , Hígado/patología , Modelos Animales de Enfermedad , Hepatopatías/etiología , Hepatopatías/microbiología , Permeabilidad
7.
J Neuroinflammation ; 21(1): 224, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277768

RESUMEN

BACKGROUND: Gut microbiota dysbiosis is closely associated with psychiatric disorders such as depression and anxiety (DA). In our preliminary study, fecal microbiota transplantation from volunteers with psychological stress and subclinical symptoms of depression (Vsd) induced DA-like behaviors in mice. Escherichia fergusonii (Esf) was found to be more abundant in the feces of Vsd compared to healthy volunteers. Therefore, we investigated the effect of Esf on DA-like behavior and neuroinflammation in mice with and without celiac vagotomy. METHODS AND RESULTS: Orally gavaged Esf increased DA-like behaviors, tumor necrosis factor (TNF)-α, and toll-like receptor-4 (TLR4) expression, and NF-κB+Iba1+ and lipopolysaccharide (LPS)+Iba1+ cell populations, while decreasing serotonin, 5-HT1A receptor, and brain-derived neurotrophic factor (BDNF) expression in the hippocampus and prefrontal cortex. However, celiac vagotomy attenuated Esf-induced DA-like behavior and neuroinflammation. Orally gavaged extracellular vesicle (EV) from Vsd feces (vfEV) or Esf culture (esEV) induced DA-like behavior and inflammation in hippocampus, prefrontal cortex and colon. However, celiac vagotomy attenuated vfEV- or esEV-induced DA-like behaviors and inflammation in the brain alone, while vfEV- or esEV-induced blood LPS and TNF-α levels, colonic TNF-α expression and NF-κB-positive cell number, and fecal LPS level were not. Although orally gavaged fluorescence isothiocyanate-labeled esEV was translocated into the blood and hippocampus, celiac vagotomy decreased its translocation into the hippocampus alone. CONCLUSIONS: esEVs may be translocated into the brain via the vagus nerve and bloodstream, subsequently inducing TNF-α expression and suppressing serotonin, its receptor, and BDNF expression through the activation of TLR4-mediated NF-κB signaling, thereby contributing to DA pathogenesis.


Asunto(s)
Depresión , Vesículas Extracelulares , Enfermedades Neuroinflamatorias , Nervio Vago , Animales , Ratones , Nervio Vago/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Masculino , Enfermedades Neuroinflamatorias/metabolismo , Depresión/metabolismo , Depresión/etiología , Ratones Endogámicos C57BL , Vagotomía
8.
J Transl Med ; 22(1): 729, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103909

RESUMEN

BACKGROUND: Metabolic syndrome (MetS) is highly prevalent in individuals with schizophrenia (SZ), leading to negative consequences like premature mortality. Gut dysbiosis, which refers to an imbalance of the microbiota, and chronic inflammation are associated with both SZ and MetS. However, the relationship between gut dysbiosis, host immunological dysfunction, and SZ comorbid with MetS (SZ-MetS) remains unclear. This study aims to explore alterations in gut microbiota and their correlation with immune dysfunction in SZ-MetS, offering new insights into its pathogenesis. METHODS AND RESULTS: We enrolled 114 Chinese patients with SZ-MetS and 111 age-matched healthy controls from Zhejiang, China, to investigate fecal microbiota using Illumina MiSeq sequencing targeting 16 S rRNA gene V3-V4 hypervariable regions. Host immune responses were assessed using the Bio-Plex Pro Human Cytokine 27-Plex Assay to examine cytokine profiles. In SZ-MetS, we observed decreased bacterial α-diversity and significant differences in ß-diversity. LEfSe analysis identified enriched acetate-producing genera (Megamonas and Lactobacillus), and decreased butyrate-producing bacteria (Subdoligranulum, and Faecalibacterium) in SZ-MetS. These altered genera correlated with body mass index, the severity of symptoms (as measured by the Scale for Assessment of Positive Symptoms and Scale for Assessment of Negative Symptoms), and triglyceride levels. Altered bacterial metabolic pathways related to lipopolysaccharide biosynthesis, lipid metabolism, and various amino acid metabolism were also found. Additionally, SZ-MetS exhibited immunological dysfunction with increased pro-inflammatory cytokines, which correlated with the differential genera. CONCLUSION: These findings suggested that gut microbiota dysbiosis and immune dysfunction play a vital role in SZ-MetS development, highlighting potential therapeutic approaches targeting the gut microbiota. While these therapies show promise, further mechanistic studies are needed to fully understand their efficacy and safety before clinical implementation.


Asunto(s)
Microbioma Gastrointestinal , Síndrome Metabólico , Esquizofrenia , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios de Casos y Controles , China , Comorbilidad , Citocinas/metabolismo , Disbiosis/microbiología , Disbiosis/inmunología , Disbiosis/complicaciones , Pueblos del Este de Asia , Heces/microbiología , Inmunidad , Síndrome Metabólico/microbiología , Síndrome Metabólico/inmunología , Síndrome Metabólico/complicaciones , Esquizofrenia/microbiología , Esquizofrenia/inmunología , Esquizofrenia/complicaciones
9.
BMC Microbiol ; 24(1): 342, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271995

RESUMEN

PURPOSE: To determine the association of gut microbiome diversity and sight-threatening diabetic retinopathy (STDR) amongst patients with pre-existing diabetes. METHODS: A cross-sectional study was performed, wherein 54 participants selected in total were placed into cases cohort if diagnosed with STDR and those without STDR but had a diagnosis of diabetes mellitus of at least 10-year duration were taken as controls. Statistical analysis comparing the gut microbial alpha diversity between cases and control groups as well as patients differentiated based on previously hypothesized Bacteroidetes/Firmicutes(B/F) ratio with an optimal cut-off 1.05 to identify patients with STDR were performed. RESULTS: Comparing gut microbial alpha diversity did not show any difference between cases and control groups. However, statistically significant difference was noted amongst patients with B/F ratio ≥1.05 when compared to B/F ratio < 1.05; ACE index [Cut-off < 1.05:773.83 ± 362.73; Cut-off > 1.05:728.03 ± 227.37; p-0.016]; Chao1index [Cut-off < 1.05:773.63 ± 361.88; Cut-off > 1.05:728.13 ± 227.58; p-0.016]; Simpson index [Cut-off < 1.05:0.998 ± 0.001; Cut-off > 1.05:0.997 ± 0.001; p-0.006]; Shannon index [Cut-off < 1.05:6.37 ± 0.49; Cut-off > 1.05:6.10 ± 0.43; p-0.003]. Sub-group analysis showed that cases with B/F ratio ≥ 1.05, divided into proliferative diabetic retinopathy (PDR) and clinically significant macular edema (CSME), showed decreased diversity compared to controls (B/F ratio < 1.05). For PDR, all four diversity indices significantly decreased (p < 0.05). However, for CSME, only Shannon and Simpson indices showed significant decrease in diversity (p < 0.05). CONCLUSIONS: Based on clinical diagnosis, decreasing gut microbial diversity was observed among patients with STDR, although not statistically significant. When utilizing B/F ratio, the decreasing gut microbial diversity in STDR patients seems to be associated due to species richness and evenness in PDR when compared to decreasing species richness in CSME.


Asunto(s)
Retinopatía Diabética , Microbioma Gastrointestinal , Humanos , Retinopatía Diabética/microbiología , Masculino , Femenino , Estudios Transversales , Persona de Mediana Edad , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Adulto , Bacteroidetes/aislamiento & purificación , Bacteroidetes/genética , Bacteroidetes/clasificación , Anciano , Estudios de Casos y Controles , Biodiversidad , Firmicutes/aislamiento & purificación , Firmicutes/clasificación , Firmicutes/genética
10.
Crit Rev Microbiol ; : 1-31, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602474

RESUMEN

Periodontitis is an immuno-inflammatory disease of the soft tissues surrounding the teeth. Periodontitis is linked to many communicable and non-communicable diseases such as diabetes, cardiovascular disease, rheumatoid arthritis, and cancers. The oral-systemic link between periodontal disease and systemic diseases is attributed to the spread of inflammation, microbial products and microbes to distant organ systems. Oral bacteria reach the gut via swallowed saliva, whereby they induce gut dysbiosis and gastrointestinal dysfunctions. Some periodontal pathogens like Porphyromonas. gingivalis, Klebsiella, Helicobacter. Pylori, Streptococcus, Veillonella, Parvimonas micra, Fusobacterium nucleatum, Peptostreptococcus, Haemophilus, Aggregatibacter actinomycetomcommitans and Streptococcus mutans can withstand the unfavorable acidic, survive in the gut and result in gut dysbiosis. Gut dysbiosis increases gut inflammation, and induce dysplastic changes that lead to gut dysfunction. Various studies have linked oral bacteria, and oral-gut axis to various GIT disorders like inflammatory bowel disease, liver diseases, hepatocellular and pancreatic ductal carcinoma, ulcerative colitis, and Crohn's disease. Although the correlation between periodontitis and GIT disorders is well established, the intricate molecular mechanisms by which oral microflora induce these changes have not been discussed extensively. This review comprehensively discusses the intricate and unique molecular and immunological mechanisms by which periodontal pathogens can induce gut dysbiosis and dysfunction.

11.
J Med Virol ; 96(1): e29336, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38193530

RESUMEN

Based on the forefront of clinical research, there is a growing recognition that the gut microbiota, which plays a pivotal role in shaping both the innate and adaptive immune systems, may significantly contribute to the pathogenesis of coronavirus disease 2019 (COVID-19). Although an association between altered gut microbiota and COVID-19 pathogenesis has been established, the causative mechanisms remain incompletely understood. Additionally, the validation of the precise functional alterations within the gut microbiota relevant to COVID-19 pathogenesis has been limited by a scarcity of suitable animal experimental models. In the present investigation, we employed a newly developed humanized ACE2 knock-in (hACE2-KI) mouse model, capable of recapitulating critical aspects of pulmonary and intestinal infection, to explore the modifications in the gut microbiota following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Examination of fecal samples using 16S rRNA gene profiling unveiled a notable reduction in species richness and conspicuous alterations in microbiota composition at 6 days postinfection (dpi). These alterations were primarily characterized by a decline in beneficial bacterial species and an escalation in certain opportunistic pathogens. Moreover, our analysis entailed a correlation study between the gut microbiota and plasma cytokine concentrations, revealing the potential involvement of the Lachnospiraceae_NK4A136_group and unclassified_f_Lachnospiraceae genera in attenuating hyperinflammatory responses triggered by the infection. Furthermore, integration of gut microbiota data with RNA-seq analysis results suggested that the increased presence of Staphylococcus in fecal samples may signify the potential for bacterial coinfection in lung tissues via gut translocation. In summary, our hACE2-KI mouse model effectively recapitulated the observed alterations in the gut microbiota during SARS-CoV-2 infection. This model presents a valuable tool for elucidating gut microbiota-targeted strategies aimed at mitigating COVID-19.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Animales , Ratones , SARS-CoV-2 , ARN Ribosómico 16S/genética , Modelos Animales de Enfermedad
12.
Brain Behav Immun ; 119: 363-380, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38608741

RESUMEN

The gut microbiota is altered in epilepsy and is emerging as a potential target for new therapies. We studied the effects of rifaximin, a gastrointestinal tract-specific antibiotic, on seizures and neuropathology and on alterations in the gut and its microbiota in a mouse model of temporal lobe epilepsy (TLE). Epilepsy was induced by intra-amygdala kainate injection causing status epilepticus (SE) in C57Bl6 adult male mice. Sham mice were injected with vehicle. Two cohorts of SE mice were fed a rifaximin-supplemented diet for 21 days, starting either at 24 h post-SE (early disease stage) or at day 51 post-SE (chronic disease stage). Corresponding groups of SE mice (one each disease stage) were fed a standard (control) diet. Cortical ECoG recording was done at each disease stage (24/7) for 21 days in all SE mice to measure the number and duration of spontaneous seizures during either rifaximin treatment or control diet. Then, epileptic mice ± rifaximin and respective sham mice were sacrificed and brain, gut and feces collected. Biospecimens were used for: (i) quantitative histological analysis of the gut structural and cellular components; (ii) markers of gut inflammation and intestinal barrier integrity by RTqPCR; (iii) 16S rRNA metagenomics analysis in feces. Hippocampal neuronal cell loss was assessed in epileptic mice killed in the early disease phase. Rifaximin administered for 21 days post-SE (early disease stage) reduced seizure duration (p < 0.01) and prevented hilar mossy cells loss in the hippocampus compared to epileptic mice fed a control diet. Epileptic mice fed a control diet showed a reduction of both villus height and villus height/crypt depth ratio (p < 0.01) and a decreased number of goblet cells (p < 0.01) in the duodenum, as well as increased macrophage (Iba1)-immunostaining in the jejunum (p < 0.05), compared to respective sham mice. Rifaximin's effect on seizures was associated with a reversal of gut structural and cellular changes, except for goblet cells which remained reduced. Seizure duration in epileptic mice was negatively correlated with the number of mossy cells (p < 0.01) and with villus height/crypt depth ratio (p < 0.05). Rifaximin-treated epileptic mice also showed increased tight junctions (occludin and ZO-1, p < 0.01) and decreased TNF mRNA expression (p < 0.01) in the duodenum compared to epileptic mice fed a control diet. Rifaximin administered for 21 days in chronic epileptic mice (chronic disease stage) did not change the number or duration of seizures compared to epileptic mice fed a control diet. Chronic epileptic mice fed a control diet showed an increased crypt depth (p < 0.05) and reduced villus height/crypt depth ratio (p < 0.01) compared to respective sham mice. Rifaximin treatment did not affect these intestinal changes. At both disease stages, rifaximin modified α- and ß-diversity in epileptic and sham mice compared to respective mice fed a control diet. The microbiota composition in epileptic mice, as well as the effects of rifaximin at the phylum, family and genus levels, depended on the stage of the disease. During the early disease phase, the abundance of specific taxa was positively correlated with seizure duration in epileptic mice. In conclusion, gut-related alterations reflecting a dysfunctional state, occur during epilepsy development in a TLE mouse model. A short-term treatment with rifaximin during the early phase of the disease, reduced seizure duration and neuropathology, and reversed some intestinal changes, strengthening the therapeutic effects of gut-based therapies in epilepsy.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Rifaximina , Convulsiones , Animales , Rifaximina/uso terapéutico , Rifaximina/farmacología , Ratones , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Convulsiones/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Estado Epiléptico/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Epilepsia/tratamiento farmacológico
13.
Exp Physiol ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264256

RESUMEN

Hyperglycaemia, hyperlipidaemia, hypertension and obesity are the main risk factors affecting the development and prognosis of ischaemic heart disease, which is still an important cause of death today. In our study, male Sprague-Dawley rats were fed either a standard diet (SD) or a high fat and high carbohydrate diet (HF-HCD) for 8 weeks and streptozotocin (STZ) was injected at the seventh week of the feeding period. In one set of rats, a mixture of a prebiotic and probiotics (synbiotic, SYN) was administered by gavage starting from the beginning of the feeding period. Experimental myocardial ischaemia-reperfusion (30 min/60 min) was induced at the end of 8 weeks. Hyperglycaemia, hypertension and increased serum low-density lipoprotein levels occurred in SD- and HF-HCD-fed and STZ-treated rats followed for 8 weeks. Increased density of the Proteobacteria phylum was observed in rats with increased blood glucose levels, indicating intestinal dysbiosis. The severity of cardiac damage was highest in the dysbiotic HF-HCD-fed hyperglycaemic rats, which was evident with increased serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), tumour necrosis factor-α, and interleukin-6 levels, along with a decrease in ST-segment resolution index. SYN supplementation to either a normal or a high-fat high-carbohydrate diet improved gut dysbiosis, reduced anxiety, decreased CK-MB and cTnI levels, and alleviated myocardial ischaemia-reperfusion injury in hyperglycaemic rats.

14.
Pharmacol Res ; 206: 107278, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908613

RESUMEN

Accumulating evidence has proved the close association between alterations in gut microbiota and resistance to chemotherapeutic drugs. However, the potential roles of gut microbiota in regulating oxaliplatin sensitivity in gastric cancer (GC) have not been investigated before. We first found that antibiotic treatment diminished the therapeutic efficacy of oxaliplatin in a GC mouse model. Importantly, this effect could be transmitted to germ-free mice via fecal microbiota transplantation, indicating a potential role of gut microbiota modulation in oxaliplatin efficacy. Further, metagenomics data showed that Akkermansia muciniphila (A. muciniphila) ranked first among the bacterial species with decreased relative abundances after antibiotic treatment. Metabolically active A. muciniphila promotes oxaliplatin efficacy. As shown by metabolomics analysis, the metabolic pattern of gut microbiota was disrupted with significantly downregulated levels of pentadecanoic acid (PEA), and the use of PEA significantly promoted oxaliplatin efficacy. Mechanistically, FUBP1 positively regulated aerobic glycolysis of GC cells to hinder the therapeutic efficacy of oxaliplatin. A. muciniphila-derived PEA functioned as an inhibitory factor of glycolysis by directly antagonizing the activity of FUBP1, which potentiated GC responses to oxaliplatin. Our research suggested a key role for intestinal A. muciniphila and its metabolite PEA in promoting oxaliplatin efficacy, thus providing a new perspective for probiotic and prebiotic intervention in GC patients during chemotherapy.


Asunto(s)
Akkermansia , Antineoplásicos , Microbioma Gastrointestinal , Glucólisis , Oxaliplatino , Neoplasias Gástricas , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/metabolismo , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Animales , Akkermansia/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Glucólisis/efectos de los fármacos , Ratones , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
15.
Pharmacol Res ; 206: 107303, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002869

RESUMEN

Hypertension-associated dysbiosis is linked to several clinical complications, including inflammation and possible kidney dysfunction. Inflammation and TLR4 activation during hypertension result from gut dysbiosis-related impairment of intestinal integrity. However, the contribution of TLR4 in kidney dysfunction during hypertension-induced gut dysbiosis is unclear. We designed this study to address this knowledge gap by utilizing TLR4 normal (TLR4N) and TLR4 mutant (TLR4M) mice. These mice were infused with high doses of Angiotensin-II for four weeks to induce hypertension. Results suggest that Ang-II significantly increased renal arterial resistive index (RI), decreased renal vascularity, and renal function (GFR) in TLR4N mice compared to TLR4M. 16 S rRNA sequencing analysis of gut microbiome revealed that Ang-II-induced hypertension resulted in alteration of Firmicutes: Bacteroidetes ratio in the gut of both TLR4N and TLR4M mice; however, it was not comparably rather differentially. Additionally, Ang-II-hypertension decreased the expression of tight junction proteins and increased gut permeability, which were more prominent in TLR4N mice than in TLR4M mice. Concomitant with gut hyperpermeability, an increased bacterial component translocation to the kidney was observed in TLR4N mice treated with Ang-II compared to TLR4N plus saline. Interestingly, microbiota translocation was mitigated in Ang-II-hypertensive TLR4M mice. Furthermore, Ang-II altered the expression of inflammatory (IL-1ß, IL-6) and anti-inflammatory IL-10) markers, and extracellular matrix proteins, including MMP-2, -9, -14, and TIMP-2 in the kidney of TLR4N mice, which were blunted in TLR4M mice. Our data demonstrate that ablation of TLR4 attenuates hypertension-induced gut dysbiosis resulting in preventing gut hyperpermeability, bacterial translocation, mitigation of renal inflammation and alleviation of kidney dysfunction.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Hipertensión , Riñón , Ratones Endogámicos C57BL , Mutación , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Masculino , Riñón/metabolismo , Hipertensión/metabolismo , Hipertensión/genética , Hipertensión/microbiología , Ratones , Angiotensina II , Traslocación Bacteriana
16.
J Pineal Res ; 76(6): e13007, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39269018

RESUMEN

Intestinal barrier dysfunction with high serum endotoxin is common in patients with liver fibrosis, but the mechanisms underlying liver fibrosis remain unclear. Melatonin is a well-recognized antioxidant and an anti-inflammatory agent that benefits multiple organs. However, the beneficial effects of melatonin on gut leakiness-associated liver fibrosis have not been systemically studied. Here, we investigated the protective mechanisms of melatonin against thioacetamide (TAA)-induced gut barrier dysfunction and hepatic fibrosis by focusing on posttranslational protein modifications through the gut-liver axis. Our results showed that gut leakiness markers, including decreased gut tight/adherens junction proteins (TJ/AJs) with increased intestinal deformation, apoptosis, and serum endotoxin, were observed early at 1 week after TAA exposure. Liver injury, apoptosis, and fibrosis were prominent at 2 and 4 weeks. Mechanistically, we found that gut TJ/AJs were hyper-acetylated, followed by ubiquitin-dependent proteolysis, leading to their degradation and gut leakiness. Gut dysbiosis, hepatic protein hyper-acetylation, and SIRT1 downregulation were also observed. Consistently, intestinal Sirt1 deficiency greatly enhanced protein hyper-acetylation, gut leakiness, endotoxemia, and liver fibrosis. Pretreatment with melatonin prevented or improved all these changes in both the gut and liver. Furthermore, melatonin blunted protein acetylation and injury in TAA-exposed T84 human intestinal and AML12 mouse liver cells. Overall, this study demonstrated novel mechanisms by which melatonin prevents gut leakiness and liver fibrosis through the gut-liver axis by attenuating the acetylation of intestinal and hepatic proteins. Thus, melatonin consumption can become a potentially safe supplement for liver fibrosis patients by preventing protein hyper-acetylation and gut leakiness.


Asunto(s)
Cirrosis Hepática , Melatonina , Sirtuina 1 , Tioacetamida , Tioacetamida/toxicidad , Sirtuina 1/metabolismo , Melatonina/farmacología , Animales , Cirrosis Hepática/metabolismo , Cirrosis Hepática/inducido químicamente , Ratones , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Acetilación/efectos de los fármacos , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología
17.
J Periodontal Res ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38757372

RESUMEN

AIM: Evidence suggests that translocation of oral pathogens through the oral-gut axis may induce intestinal dysbiosis. This study aimed to evaluate the impact of a highly leukotoxic Aggregatibacter actinomycetemcomitans (Aa) strain on the gut microbiota, intestinal mucosal integrity and immune system in healthy mice. METHODS: Eight-week-old male C57BL6 mice were divided into control (n = 16) and JP2 groups (n = 19), which received intragastric gavage with PBS and with a suspension of Aa JP2 (HK921), respectively, twice a week for 4 weeks. Colonic lamina propria, fecal material, serum, gingival tissues, and mandibles were obtained for analyses of leukocyte populations, inflammatory mediators, mucosal integrity, alveolar bone loss, and gut microbiota. Differences between groups for these parameters were examined by non-parametric tests. RESULTS: The gut microbial richness and the number of colonic macrophages, neutrophils, and monocytes were significantly lower in Aa JP2-infected mice than in controls (p < .05). In contrast, infected animals showed higher abundance of Clostridiaceae, Lactobacillus taiwanensis, Helicobacter rodentium, higher levels of IL-6 expression in colonic tissues, and higher splenic MPO activity than controls (p < .05). No differences in tight junction expression, serum endotoxin levels, and colonic inflammatory cytokines were observed between groups. Infected animals presented also slightly more alveolar bone loss and gingival IL-6 levels than controls (p < .05). CONCLUSION: Based on this model, intragastric administration of Aa JP2 is associated with changes in the gut ecosystem of healthy hosts, characterized by less live/recruited myeloid cells, enrichment of the gut microbiota with pathobionts and decrease in commensals. Negligible levels of colonic pro-inflammatory cytokines, and no signs of mucosal barrier disruption were related to these changes.

18.
Nutr Neurosci ; 27(3): 262-270, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36877601

RESUMEN

BACKGROUND: Prevalence of mental health disorders continue to increase worldwide. Over the past decades, suboptimal vitamin D (VD) levels and gut dysbiosis have been associated with neurological dysfunction and psychiatric disorders. METHODS: In this review, we examined the available literature on VD and mental health disorders, particularly depression and anxiety, in both clinical and pre-clinical studies. RESULTS: Our extensive review failed to find a link between VD deficiency, depression, and anxiety-related behavior in preclinical animal models. However, strong evidence suggests that VD supplementation may alleviate symptoms in chronically stressed rodents, with some promising evidence from clinical studies. Further, fecal microbiota transplantations suggest a potential role of gut microbiota in neuropsychiatric disorders, although the underlying mechanisms remain to be fully elucidated. It has been postulated that serotonin, primarily produced by gut bacteria, may be a crucial factor. Hence, whether VD has the ability to impact gut microbiota and modulate serotonin synthesis warrants further investigation. CONCLUSIONS: Taken together, literature has suggested that VD may serve as a key regulator in the gut-brain axis to modulate gut microbiota and alleviate symptoms of depression and anxiety. The inconsistent results of VD supplementation in clinical studies, particularly among VD deficient participants, suggests that current intake recommendations may need to be re-evaluated for individuals at-risk (i.e. prior to diagnosis) of developing depression and/or anxiety.


Asunto(s)
Depresión , Vitamina D , Animales , Humanos , Depresión/microbiología , Vitamina D/uso terapéutico , Serotonina , Trastornos de Ansiedad/tratamiento farmacológico , Ansiedad , Vitaminas
19.
Appl Microbiol Biotechnol ; 108(1): 34, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38183473

RESUMEN

Altered gut microbiota has been connected to hepatocellular carcinoma (HCC) occurrence and advancement. This study was conducted to identify a gut microbiota signature in differentiating between viral-related HCC (Viral-HCC) and non-hepatitis B-, non-hepatitis C-related HCC (NBNC-HCC). Fecal specimens were obtained from 16 healthy controls, 33 patients with viral-HCC (17 and 16 cases with hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, respectively), and 18 patients with NBNC-HCC. Compositions of fecal microbiota were assessed by 16S rRNA sequencing. Bioinformatic analysis was performed by the DADA2 pipeline in the R program. Significantly different genera from the top 50 relative abundance were used to classify between subgroups of HCC by the Random Forest algorithm. Our data demonstrated that the HCC group had a significantly decreased alpha-diversity and changed microbial composition in comparison with healthy controls. Within the top 50 relative abundance, there were 11 genera including Faecalibacterium, Agathobacter, and Coprococcus that were significantly enhanced in Viral-HCC, while 5 genera such as Bacteroides, Streptococcus, Ruminococcus gnavus group, Parabacteroides, and Erysipelatoclostridium were enhanced in NBNC-HCC. Compared to Viral-HCC, the NBNC-HCC subgroup significantly reduced various short-chain fatty acid-producing bacteria, as well as declined fecal butyrate but elevated plasma surrogate markers of microbial translocation. Based on the machine learning algorithm, a high diagnostic accuracy to classify HCC subgroups was achieved with an area under the receiver-operating characteristic (ROC) curve (AUC) of 0.94. Collectively, these data revealed that gut dysbiosis was distinct according to etiological factors of HCC, which might play an essential role in hepatocarcinogenesis. These findings underscore the possible use of a gut microbiota signature for the diagnosis and therapeutic approaches regarding different subgroups of HCC. KEY POINTS: • Gut dysbiosis is connected to hepatocarcinogenesis and can be used as a novel biomarker. • Gut microbiota composition is significantly altered in different etiological factors of HCC. • Microbiota-based signature can accurately distinguish between Viral-HCC and NBNC-HCC.


Asunto(s)
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Humanos , Disbiosis , ARN Ribosómico 16S/genética , Carcinogénesis
20.
Genomics ; 115(3): 110629, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37100093

RESUMEN

It remains a challenge to obtain the desired phenotypic traits in aquacultural production of Atlantic salmon, and part of the challenge might come from the effect that host-associated microorganisms have on the fish phenotype. To manipulate the microbiota towards the desired host traits, it is critical to understand the factors that shape it. The bacterial gut microbiota composition can vary greatly among fish, even when reared in the same closed system. While such microbiota differences can be linked to diseases, the molecular effect of disease on host-microbiota interactions and the potential involvement of epigenetic factors remain largely unknown. The aim of this study was to investigate the DNA methylation differences associated with a tenacibaculosis outbreak and microbiota displacement in the gut of Atlantic salmon. Using Whole Genome Bisulfite Sequencing (WGBS) of distal gut tissue from 20 salmon, we compared the genome-wide DNA methylation levels between uninfected individuals and sick fish suffering from tenacibaculosis and microbiota displacement. We discovered >19,000 differentially methylated cytosine sites, often located in differentially methylated regions, and aggregated around genes. The 68 genes connected to the most significant regions had functions related to the ulcerous disease such as epor and slc48a1a but also included prkcda and LOC106590732 whose orthologs are linked to microbiota changes in other species. Although the expression level was not analysed, our epigenetic analysis suggests specific genes potentially involved in host-microbiota interactions and more broadly it highlights the value of considering epigenetic factors in efforts to manipulate the microbiota of farmed fish.


Asunto(s)
Microbioma Gastrointestinal , Salmo salar , Epigenómica , Genotipo , Salmo salar/genética , Animales , Intestinos/microbiología , Metilación de ADN , Genoma
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda