Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(45): e2212417119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322731

RESUMEN

Mitochondrial dysfunction can be associated with a range of clinical manifestations. Here, we report a family with a complex phenotype including combinations of connective tissue, neurological, and metabolic symptoms that were passed on to all surviving children. Analysis of the maternally inherited mtDNA revealed a novel genotype encompassing the haplogroup J - defining mitochondrial DNA (mtDNA) ND5 m.13708G>A (A458T) variant arising on the mtDNA haplogroup H7A background, an extremely rare combination. Analysis of transmitochondrial cybrids with the 13708A-H7 mtDNA revealed a lower mitochondrial respiration, increased reactive oxygen species production (mROS), and dysregulation of connective tissue gene expression. The mitochondrial dysfunction was exacerbated by histamine, explaining why all eight surviving children inherited the dysfunctional histidine decarboxylase allele (W327X) from the father. Thus, certain combinations of common mtDNA variants can cause mitochondrial dysfunction, mitochondrial dysfunction can affect extracellular matrix gene expression, and histamine-activated mROS production can augment the severity of mitochondrial dysfunction. Most important, we have identified a previously unreported genetic cause of mitochondrial disorder arising from the incompatibility of common, nonpathogenic mtDNA variants.


Asunto(s)
ADN Mitocondrial , Histamina , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Haplotipos , Histamina/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Tejido Conectivo/metabolismo
2.
Mol Carcinog ; 63(8): 1467-1485, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38726928

RESUMEN

Reactive oxygen species (ROS) are metabolic by-products of cells, and abnormal changes in their levels are often associated with tumor development. Our aim was to determine the role of collagen and calcium binding EGF domain 1 (CCBE1) in oxidative stress and tumorigenesis in non-small cell lung cancer cells (NSCLC). We investigated the tumorigenic potential of CCBE1 in NSCLC using in vitro and in vivo models of CCBE1 overexpression and knockdown. Immunohistochemical staining results showed that the expression of CCBE1 in cancer tissues was significantly higher than that in adjacent tissues. Cell counting Kit 8, clonal formation, wound healing, and transwell experiments showed that CCBE1 gene knockdown significantly inhibited the migration, invasion, and proliferation of NSCLC cell lines. In terms of mechanism, the silencing of CCBE1 can significantly promote the morphological abnormalities of mitochondria, significantly increase the intracellular ROS level, and promote cell apoptosis. This change of oxidative stress can affect cell proliferation, migration, and invasion by regulating the phosphorylation level of ERK/JNK/P38 MAPK. Specifically, the downregulation of CCBE1 inhibits the phosphorylation of ERK/P38 and promotes the phosphorylation of JNK in NSCLC, and this regulation can be reversed by the antioxidant NAC. In vivo experiments confirmed that downregulating CCBE1 gene could inhibit the growth of NSCLC in BALB/c nude mice. Taken together, our results confirm the tumorigenic role of CCBE1 in promoting tumor invasion and migration in NSCLC, and reveal the molecular mechanism by which CCBE1 regulates oxidative stress and the ERK/JNK/P38 MAPK pathway.


Asunto(s)
Proteínas de Unión al Calcio , Carcinoma de Pulmón de Células no Pequeñas , Movimiento Celular , Proliferación Celular , Neoplasias Pulmonares , Sistema de Señalización de MAP Quinasas , Especies Reactivas de Oxígeno , Humanos , Especies Reactivas de Oxígeno/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Animales , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Ratones , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Fosforilación , Línea Celular Tumoral , Apoptosis , Ratones Desnudos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Masculino , Regulación Neoplásica de la Expresión Génica , Progresión de la Enfermedad , Femenino , Estrés Oxidativo , Ratones Endogámicos BALB C
3.
Eur J Neurol ; : e16405, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973423

RESUMEN

BACKGROUND AND PURPOSE: Late-onset mitochondrial disorders are diagnostically challenging with significant heterogeneity in disease presentation. A case is reported of a 67-year-old gentleman who presented with a 3-month history of seizures, recurrent encephalopathy, ataxia and weight loss, preceded by recent initiation of haemodialysis for end-stage chronic kidney disease. METHODS: Extensive work-up including serological, cerebrospinal fluid, magnetic resonance imaging and electroencephalography was performed. Whole exome sequencing and muscle biopsy confirmed the diagnosis. RESULTS: Magnetic resonance imaging brain demonstrated a single non-enhancing T2 fluid attenuated inversion recovery hyperintense cortical/subcortical signal change in the right temporal lobe and cerebellar atrophy. Given the subacute presentation of uncertain aetiology, he was empirically treated for autoimmune/paraneoplastic encephalitis. Despite radiological resolution of the cortical abnormality 2 weeks later, there was no clinical improvement. Further collateral history unveiled a mildly ataxic gait and longstanding hearing loss suggestive of a genetic cause. Whole exome sequencing revealed a likely pathogenic, heteroplasmic mitochondrial DNA variant in the MT-TV gene, m.1659T>C, present at higher levels of heteroplasmy in muscle (91%) compared to other mitotic tissues. A high fat/protein diet and multivitamins including co-enzyme Q10 were commenced. Treatment of the nutritional deficiency and avoidance of intermittent fasting due to unreliable oral intake secondary to encephalopathy probably contributed to the clinical improvement seen over the ensuing few months, with resolution of his encephalopathy and return to his baseline gait and weight. CONCLUSION: An adult case is reported with an acute neurological presentation mimicking encephalitis, caused by a heteroplasmic m.1659T>C MT-TV variant, previously reported once in a child who displayed a different clinical phenotype.

4.
Mol Genet Metab ; 139(4): 107630, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392700

RESUMEN

Primary coenzyme Q10 (CoQ10) deficiency is a group of inborn errors of metabolism caused by defects in CoQ10 biosynthesis. Biallelic pathogenic variants in COQ7, encoding mitochondrial 5-demethoxyubiquinone hydroxylase, have been reported in nine patients from seven families. We identified five new patients with COQ7-related primary CoQ10 deficiency, performed clinical assessment of the patients, and studied the functional effects of current and previously reported COQ7 variants and potential treatment options. The main clinical features included a neonatal-onset presentation with severe neuromuscular, cardiorespiratory and renal involvement and a late-onset disease presenting with progressive neuropathy, lower extremity weakness, abnormal gait, and variable developmental delay. Baker's yeast orthologue of COQ7, CAT5, is required for growth on oxidative carbon sources and cat5Δ strain demonstrates oxidative growth defect. Expression of wild-type CAT5 could completely rescue the defect; however, yeast CAT5 harboring equivalent human pathogenic variants could not. Interestingly, cat5Δ yeast harboring p.Arg57Gln (equivalent to human p.Arg54Gln), p.Arg112Trp (equivalent to p.Arg107Trp), p.Ile69Asn (equivalent to p.Ile66Asn) and combination of p.Lys108Met and p.Leu116Pro (equivalent to the complex allele p.[Thr103Met;Leu111Pro]) partially rescued the growth defects, indicating these variants are hypomorphic alleles. Supplementation with 2,4 dihydroxybenzoic acid (2,4-diHB) rescued the growth defect of both the leaky and severe mutants. Overexpression of COQ8 and 2,4-diHB supplementation synergistically restored oxidative growth and respiratory defect. Overall, we define two distinct disease presentations of COQ7-related disorder with emerging genotype-phenotype correlation and validate the use of the yeast model for functional studies of COQ7 variants.


Asunto(s)
Enfermedades Mitocondriales , Ubiquinona , Humanos , Recién Nacido , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Ubiquinona/metabolismo
5.
Mol Genet Metab ; 138(3): 107373, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36680912

RESUMEN

Multiple mitochondrial enzymes employ lipoic acid as a coenzyme. Pathogenic variants in LIAS, encoding lipoic acid synthase (LIAS), are associated with autosomal recessive LIAS-related disorder (OMIM# 614462). This disorder is characterized by infantile-onset hypotonia, profound psychomotor delay, epileptic encephalopathy, nonketotic hyperglycinemia, and lactic acidosis. We present the case of a 20-year-old female who experienced developmental deficits at the age of 6 months and began to have seizures at 3 years of age. Exome sequencing revealed compound heterozygous novel variants in LIAS, designated c.277delC (p.Leu93Ter) and c.542A > T (p.Asp181Val). The p.Leu93Ter variant is predicted to cause loss of function due to the severe truncation of the encoded protein. To examine the p.Asp181Val variant, functional analysis was performed using Baker's yeast (Saccharomyces cerevisiae) lacking LIP5, the homologue of human LIAS. Wild-type LIAS promoted oxidative growth of the lip5∆ yeast strain. In contrast, lip5∆ yeast expressing p.Asp181Val exhibited poor growth, similar to known pathogenic variants, p.Asp215Glu and p.Met310Thr. Our work has expanded the phenotypic and genotypic spectrum of LIAS-related disorder and established the use of the yeast model as a system for functional study of novel missense variants in LIAS.


Asunto(s)
Discapacidades del Desarrollo , Epilepsia , Sulfurtransferasas , Adulto , Niño , Femenino , Humanos , Lactante , Adulto Joven , Discapacidades del Desarrollo/genética , Epilepsia/genética , Hipotonía Muscular , Saccharomyces cerevisiae , Sulfurtransferasas/genética
6.
Mol Genet Metab ; 140(1-2): 107710, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37903659

RESUMEN

Iron­sulfur clusters (FeS) are one of the most primitive and ubiquitous cofactors used by various enzymes in multiple pathways. Biosynthesis of FeS is a complex multi-step process that is tightly regulated and requires multiple machineries. IBA57, along with ISCA1 and ISCA2, play a role in maturation of [4Fe-4S] clusters which are required for multiple mitochondrial enzymes including mitochondrial Complex I, Complex II, lipoic acid synthase, and aconitase. Pathogenic variants in IBA57 have been associated with multiple mitochondrial dysfunctions syndrome 3 (MMDS3) characterized by infantile to early childhood-onset psychomotor regression, optic atrophy and nonspecific dysmorphism. Here we report a female proband who had prenatal involvement including IUGR and microcephaly and developed subacute psychomotor regression at the age of 5 weeks in the setting of preceding viral infection. Brain imaging revealed cortical malformation with polymicrogyria and abnormal signal alteration in brainstem and spinal cord. Biochemical analysis revealed increased plasma glycine and hyperexcretion of multiple organic acids in urine, raising the concern for lipoic acid biosynthesis defects and mitochondrial FeS assembly defects. Molecular analysis subsequently detected compound heterozygous variants in IBA57, confirming the diagnosis of MMDS3. Although the number of MMDS3 patients are limited, certain degree of genotype-phenotype correlation has been observed. Unusual brain imaging in the proband highlights the need to include mitochondrial disorders as differential diagnoses of structural brain abnormalities. Lastly, in addition to previously known biomarkers including high blood lactate and plasma glycine levels, the increase of 2-hydroxyadipic and 2-ketoadipic acids in urine organic acid analysis, in the appropriate clinical context, should prompt an evaluation for the lipoic acid biosynthesis defects and mitochondrial FeS assembly defects.


Asunto(s)
Proteínas Hierro-Azufre , Enfermedades Mitocondriales , Ácido Tióctico , Humanos , Preescolar , Femenino , Lactante , Lisina/metabolismo , Triptófano/metabolismo , Proteínas Hierro-Azufre/genética , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Biomarcadores/metabolismo , Glicina/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Portadoras/genética
7.
Am J Med Genet A ; 191(5): 1366-1372, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36751706

RESUMEN

TMEM70 deficiency causing mitochondrial complex V deficiency, nuclear type 2 (MIM: 614052) is the most common nuclear encoded defect affecting ATP synthase and has been well described in the literature as being characterized by neonatal or infantile onset of poor feeding, hypotonia, lethargy, respiratory compromise, heart failure, lactic acidosis, hyperammonemia, and 3-methylglutaconic aciduria progressing to a phenotype of developmental delay, failure to thrive, short stature, nonprogressive cardiomyopathy, microcephaly, facial dysmorphisms, hypospadias, persistent pulmonary hypertension of the newborn, and Wolff-Parkinson-White syndrome, as well as metabolic crises followed by developmental regression. The patient with TMEM70 deficiency herein reported has the unique presentation of aortic root dilatation, differing facial dysmorphisms, and no history of neonatal metabolic decompensation or developmental delay, as well as a plasma metabolomics signature, including elevated 3-methylglutaconic acid, 3-methylglutarylcarnitine, alanine, and lactate, in addition to the commonly described increased 3-methylglutaconic acid on urine organic acid analysis that helped aid in the diagnostic interpretation of variants of uncertain significance in TMEM70.


Asunto(s)
Aorta Torácica , Cardiomiopatías , Masculino , Humanos , Dilatación , Fenotipo , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética
8.
Eur J Neurol ; 30(7): 2079-2091, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37038312

RESUMEN

BACKGROUND AND PURPOSE: Mitochondrial diseases (MDs) are heterogeneous disorders caused by mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) associated with specific syndromes. However, especially in childhood, patients often display heterogeneity. Several reports on the biochemical and molecular profiles in children have been published, but studies tend not to differentiate between mtDNA- and nDNA-associated diseases, and focus is often on a specific phenotype. Thus, large cohort studies specifically focusing on mtDNA defects in the pediatric population are lacking. METHODS: We reviewed the clinical, metabolic, biochemical, and neuroimaging data of 150 patients with MDs due to mtDNA alterations collected at our neurological institute over the past 20 years. RESULTS: mtDNA impairment is less frequent than nDNA impairment in pediatric MDs. Ocular involvement is extremely frequent in our cohort, as is classical Leber hereditary optic neuropathy, especially with onset before 12 years of age. Extraneurological manifestations and isolated myopathy appear to be rare, unlike adult phenotypes. Deep gray matter involvement, early disease onset, and specific phenotypes, such as Pearson syndrome and Leigh syndrome, represent unfavorable prognostic factors. Phenotypes related to single large scale mtDNA deletions appear to be very frequent in the pediatric population. Furthermore, we report for the first time an mtDNA pathogenic variant associated with cavitating leukodystrophy. CONCLUSIONS: We report on a large cohort of pediatric patients with mtDNA defects, adding new data on the phenotypical characterization of mtDNA defects and suggestions for diagnostic workup and therapeutic approach.


Asunto(s)
Enfermedad de Leigh , Enfermedades Mitocondriales , Enfermedades Musculares , Niño , Humanos , ADN Mitocondrial/genética , Estudios de Cohortes , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/complicaciones , Enfermedad de Leigh/genética , Enfermedades Musculares/complicaciones , Mutación
9.
Eur J Neurol ; 30(7): 2051-2061, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37046408

RESUMEN

BACKGROUND AND PURPOSE: Stroke-like episodes (SLEs) are defined as acute onset of neurological symptoms mimicking a stroke and radiological lesions non-congruent to vascular territory. We aimed to analyze the acute clinical and radiological features of SLEs to determine their pathophysiology. METHODS: We performed a monocenter retrospective analysis of 120 SLEs in 60 children over a 20-year period. Inclusion criteria were compatible clinical symptoms and stroke-like lesions on brain magnetic resonance imaging (MRI; performed for all 120 events) with focal hyperintensity on diffusion-weighted imaging in a non-vascular territory. RESULTS: Three groups were identified: children with mitochondrial diseases (n = 22) involving mitochondrial DNA mutations (55%) or nuclear DNA mutations (45%); those with other metabolic diseases or epilepsy disorders (n = 22); and those in whom no etiology was found despite extensive investigations (n = 16). Age at first SLE was younger in the group with metabolic or epilepsy disorders (18 months vs. 128 months; p < 0.0001) and an infectious trigger was more frequent (69% vs. 20%; p = 0.0001). Seizures occurred in 75% of episodes, revealing 50% episodes of SLEs and mainly leading to status epilepticus (90%). Of the 120 MRI scans confirming the diagnosis, 28 were performed within a short and strict 48-h period and were further analyzed to better understand the underlying mechanisms. The scans showed primary cortical hyperintensity (n = 28/28) with decreased apparent diffusion coefficient in 52% of cases. Systematic hyperperfusion was found on spin labeling sequences when available (n = 18/18). CONCLUSION: Clinical and radiological results support the existence of a vicious circle based on two main mechanisms: energy deficit and neuronal hyperexcitability at the origin of SLE.


Asunto(s)
Epilepsia , Accidente Cerebrovascular , Niño , Humanos , Lactante , Encéfalo/patología , Epilepsia/complicaciones , Imagen por Resonancia Magnética , Estudios Retrospectivos , Accidente Cerebrovascular/etiología , Preescolar
10.
Cell Mol Life Sci ; 79(5): 258, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35469021

RESUMEN

Previous works have shown that zearalenone (ZEA), as an estrogenic pollutant, has adverse effects on mammalian folliculogenesis. In the present study, we found that prolonged exposure of female mice to ZEA around the end of pregnancy caused severe impairment of primordial follicle formation in the ovaries of newborn mice and altered the expression of many genes in oocytes as revealed by single-cell RNA sequencing (scRNA-seq). These changes were associated with morphological and molecular alterations of mitochondria, increased autophagic markers in oocytes, and epigenetic changes in the ovaries of newborn mice from ZEA-exposed mothers. The latter increased expression of HDAC2 deacetylases was leading to decreased levels of H3K9ac and H4K12ac. Most of these modifications were relieved when the expression of  Hdac2 in newborn ovaries was reduced by RNA interference during in vitro culture in the presence of ZEA. Such changes were also alleviated in offspring ovaries from mothers treated with both ZEA and the coenzyme Q10 (CoQ10), which is known to be able to restore mitochondrial activities. We concluded that impaired mitochondrial activities in oocytes caused by ZEA are at the origin of metabolic alterations that modify the expression of genes controlling autophagy and primordial follicle assembly through changes in epigenetic histones.


Asunto(s)
Ovario , Zearalenona , Animales , Femenino , Humanos , Mamíferos , Ratones , Mitocondrias , Madres , Oocitos/metabolismo , Embarazo , Interferencia de ARN , Zearalenona/metabolismo , Zearalenona/toxicidad
11.
Metab Brain Dis ; 38(7): 2489-2497, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37642897

RESUMEN

Leigh syndrome (LS) and Leigh-like spectrum are the most common infantile mitochondrial disorders characterized by heterogeneous neurologic and metabolic manifestations. Pathogenic variants in SLC carriers are frequently reported in LS given their important role in transporting various solutes across the blood-brain barrier. SLC19A3 (THTR2) is one of these carriers transporting vitamin-B1 (vitB1, thiamine) into the cell. Targeted NGS of nuclear genes involved in mitochondrial diseases was performed in a patient belonging to a consanguineous Tunisian family with LS and revealed a homozygous c.1264 A > G (p.T422A) variant in SLC19A3. Molecular docking revealed that the p.T422A aa change is located at a key position interacting with vitB1 and causes conformational changes compromising vitB1 import. We further disclosed decreased plasma antioxidant activities of CAT, SOD and GSH enzymes, and a 42% decrease of the mtDNA copy number in patient blood.Altogether, our results disclose that the c.1264 A > G (p.T422A) variant in SLC19A3 affects vitB1 transport, induces a mtDNA depletion and reduces the expression level of oxidative stress enzymes, altogether contributing to the LS phenotype of the patient.


Asunto(s)
Enfermedad de Leigh , Errores Innatos del Metabolismo , Deficiencia de Tiamina , Humanos , Consanguinidad , ADN Mitocondrial/genética , Enfermedad de Leigh/genética , Proteínas de Transporte de Membrana , Simulación del Acoplamiento Molecular , Mutación/genética , Estrés Oxidativo/genética , Tiamina
12.
Ecotoxicol Environ Saf ; 255: 114780, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36933483

RESUMEN

Atrazine (ATR) is one of the herbicides widely used worldwide. Meanwhile, it is an environmental endocrine disruptor that can cross the blood-brain barrier and cause damage to the endocrine-nervous system, especially by affecting the normal secretion of dopamine (DA). Regrettably, effector markers and cascade response mechanisms in damaged dopaminergic neurons induced by ATR exposure remain elusive. In this paper, we focus on investigating aggregation and position change of transactive response DNA-binding protein-43 (TDP-43) after ATR exposure, and illustrating whether TDP-43 can serve as a potential marker of mitochondrial dysfunction which causes damage to dopaminergic neurons. In our study, we used rat adrenal pheochromocytoma cell line 12 (PC12) to establish an in vitro model of dopaminergic neurons. After PC12 was intervened by ATR, we found reduced DA cycling and DA levels, and that TDP-43 aggregated continuously in the cytoplasm and then translocated to mitochondria. Furthermore, the studies we have performed showed that the translocation can cause mitochondrial dysfunction through activating the unfolded mitochondrial protein response (UPRmt), ultimately causing damage to dopaminergic neuron. The research we have done suggests that TDP-43 can serve as a potential effector marker of dopaminergic neuron damaged caused by ATR exposure.


Asunto(s)
Atrazina , Herbicidas , Ratas , Animales , Atrazina/toxicidad , Atrazina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Herbicidas/toxicidad , Herbicidas/metabolismo , Dopamina/metabolismo , Proteínas de Unión al ADN/metabolismo
13.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674591

RESUMEN

Leber Hereditary Optic Neuropathy (LHON) affects a minority of carriers of causative mitochondrial DNA mutations. We investigated a cohort of patients with LHON, including m.11778G>A, m.3460G>A, m.14484T>C and DNAJC30 c.152A>G variants, and their asymptomatic maternal carrier relatives for additional potential associations with vision loss. We assessed visual acuity, optical coherence tomography (OCT) of the peripapillary retinal nerve fibre layer (RNFL), visually evoked potential including P-100 latency, and full mitochondrial genome sequencing. Comparison was made with a reference standard for OCT; European Descent, Heidelberg Engineering ©; and electrophysiology measurements with in-house normative ranges. RNFL was thinned overall in LHON patients (n = 12); median global RNFL −54 µm in the right eye (RE) and −50 µm in the left eye (LE) versus normal, and was found to be normal overall in asymptomatic carriers at +1 µm RE and −2 µm LE (n = 16). In four asymptomatic carriers there was RNFL thinning found either unilaterally or bilaterally; these cases were associated with isolated delay in P-100 latency (25%), delay and reduced visual acuity (50%), or reduced visual acuity without P-100 latency delay (25%). Optic nerve dysfunction was associated with mitochondrial haplogroup H and HV, versus non-H haplogroups, in the asymptomatic carriers (Fisher's exact test, p = 0.05). Our findings suggest that optic nerve abnormalities may be identified in asymptomatic LHON mitochondrial mutation carriers, which may be associated with optic nerve dysfunction. For asymptomatic carriers these findings were associated with mitochondrial haplogroup H and HV.


Asunto(s)
Atrofia Óptica Hereditaria de Leber , Humanos , Atrofia Óptica Hereditaria de Leber/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Retina , Mutación , Nervio Óptico , Trastornos de la Visión
14.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175745

RESUMEN

Patients who have recovered from coronavirus disease 2019 (COVID-19) infection may experience chronic fatigue when exercising, despite no obvious heart or lung abnormalities. The present lack of effective treatments makes managing long COVID a major challenge. One of the underlying mechanisms of long COVID may be mitochondrial dysfunction. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can alter the mitochondria responsible for energy production in cells. This alteration leads to mitochondrial dysfunction which, in turn, increases oxidative stress. Ultimately, this results in a loss of mitochondrial integrity and cell death. Moreover, viral proteins can bind to mitochondrial complexes, disrupting mitochondrial function and causing the immune cells to over-react. This over-reaction leads to inflammation and potentially long COVID symptoms. It is important to note that the roles of mitochondrial damage and inflammatory responses caused by SARS-CoV-2 in the development of long COVID are still being elucidated. Targeting mitochondrial function may provide promising new clinical approaches for long-COVID patients; however, further studies are needed to evaluate the safety and efficacy of such approaches.


Asunto(s)
COVID-19 , Enfermedades Mitocondriales , Humanos , SARS-CoV-2 , Síndrome Post Agudo de COVID-19 , Inflamación
15.
Curr Issues Mol Biol ; 44(3): 1127-1148, 2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35723297

RESUMEN

Mitochondria are major contributors to ATP synthesis, generating more than 90% of the total cellular energy production through oxidative phosphorylation (OXPHOS): metabolite oxidation, such as the ß-oxidation of fatty acids, and the Krebs's cycle. OXPHOS inadequacy due to large genetic lesions in mitochondrial as well as nuclear genes and homo- or heteroplasmic point mutations in mitochondrially encoded genes is a characteristic of heterogeneous, maternally inherited genetic disorders known as mitochondrial disorders that affect multisystemic tissues and organs with high energy requirements, resulting in various signs and symptoms. Several traditional diagnostic approaches, including magnetic resonance imaging of the brain, cardiac testing, biochemical screening, variable heteroplasmy genetic testing, identifying clinical features, and skeletal muscle biopsies, are associated with increased risks, high costs, a high degree of false-positive or false-negative results, or a lack of precision, which limits their diagnostic abilities for mitochondrial disorders. Variable heteroplasmy levels, mtDNA depletion, and the identification of pathogenic variants can be detected through genetic sequencing, including the gold standard Sanger sequencing. However, sequencing can be time consuming, and Sanger sequencing can result in the missed recognition of larger structural variations such as CNVs or copy-number variations. Although each sequencing method has its own limitations, genetic sequencing can be an alternative to traditional diagnostic methods. The ever-growing roster of possible mutations has led to the development of next-generation sequencing (NGS). The enhancement of NGS methods can offer a precise diagnosis of the mitochondrial disorder within a short period at a reasonable expense for both research and clinical applications.

16.
Mol Genet Metab ; 136(4): 260-267, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35820270

RESUMEN

Biallelic pathogenic variants in the nuclear gene DARS2 (MIM# 610956), encoding the mitochondrial enzyme aspartyl-tRNA synthetase (MT-ASPRS) cause leukoencephalopathy with Brain Stem and Spinal Cord Involvement and Lactate Elevation (LBSL) (MIM# 611105), a neurometabolic disorder characterized by progressive ataxia, spasticity, developmental arrest or regression and characteristic brain MRI findings. Most patients exhibit a slowly progressive disease course with motor deterirartion that begins in childhood or adolescence, but can also occasionaly occur in adulthood. More severe LBSL presentations with atypical brain MRI findings have been recently described. Baker's yeast orthologue of DARS2, MSD1, is required for growth on oxidative carbon sources. A yeast with MSD1 knockout (msd1Δ) demonstrated a complete lack of oxidative growth which could be rescued by wild-type MSD1 but not MSD1 with pathogenic variants. Here we reported two siblings who exhibited developmental regression and ataxia with different age of onset and phenotypic severity. Exome sequencing revealed 2 compound heterozygous missense variants in DARS2: c.473A>T (p.Glu158Val) and c.829G>A (p.Glu277Lys); this variant combination has not been previously reported. The msd1Δ yeast transformed with plasmids expressing p.Glu259Lys, equivalent to human p.Glu277Lys, showed complete loss of oxidative growth and oxygen consumption, while the strain carrying p.Gln137Val, equivalent to human p.Glu158Val, showed a significant reduction of oxidative growth, but a residual ability to grow was retained. Structural analysis indicated that p.Glu158Val may interfere with protein binding of tRNAAsp, while p.Glu277Lys may impact both homodimerization and catalysis of MT-ASPRS. Our data illustrate the utility of yeast model and in silico analysis to determine pathogenicity of DARS2 variants, expand the genotypic spectrum and suggest intrafamilial variability in LBSL.


Asunto(s)
Aspartato-ARNt Ligasa , Leucoencefalopatías , Adolescente , Adulto , Aspartato-ARNt Ligasa/genética , Ataxia/patología , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Progresión de la Enfermedad , Humanos , Ácido Láctico , Leucoencefalopatías/diagnóstico por imagen , Leucoencefalopatías/genética , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Hermanos , Médula Espinal/diagnóstico por imagen , Médula Espinal/metabolismo , Médula Espinal/patología
17.
Clin Genet ; 101(2): 233-241, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34842280

RESUMEN

IMMT gene codes for mitofilin, a mitochondrial inner membrane protein that regulates the morphology of mitochondrial cristae. The phenotype associated with mutations in this gene has not been yet established, but functional studies carried out show that its loss causes a mitochondrial alteration, both in the morphology of the mitochondrial crests and in their function. We present two cousins from an extended highly consanguineous family with developmental encephalopathy, hypotonia, nystagmus due to optic neuropathy. The likely pathogenic homozygous c.895A>G (p.Lys299Glu) variant in the IMMT gene co-segregates with the disease and associates altered mitochondrial cristae observed by electron microscopy.


Asunto(s)
Homocigoto , Encefalomiopatías Mitocondriales/diagnóstico , Encefalomiopatías Mitocondriales/genética , Proteínas Mitocondriales , Proteínas Musculares , Mutación , Enfermedades del Nervio Óptico/diagnóstico , Enfermedades del Nervio Óptico/genética , Alelos , Sustitución de Aminoácidos , Biopsia , Consanguinidad , Diagnóstico por Imagen , Predisposición Genética a la Enfermedad , Humanos , Lactante , Fenotipo , Evaluación de Síntomas
18.
Am J Med Genet A ; 188(1): 259-268, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34510712

RESUMEN

Sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD; MIM #616084) is an autosomal recessive disorder of mitochondrial and cytosolic tRNA processing caused by pathogenic, biallelic variants in TRNT1. Other features of this disorder include central nervous system, renal, cardiac, ophthalmological features, and sensorineural hearing impairment. SIFD was first described in 2013 and to date, it has been reported in 46 patients. Herein, we review the literature and describe two siblings with SIFD and note the novel phenotype of hypoglycemia in the context of growth hormone (GH) deficiency. GH deficiency without hypoglycemia has previously been reported in three patients with SIFD, but GH deficiency had not been firmly ascribed to SIFD. We propose to expand the phenotype to include GH deficiency, hypoglycemia, and previously unreported dysmorphic features. Furthermore, we highlight the intrafamilial variability of the disease by the discordance of our patients' clinical phenotypes and biochemical profiles measured by untargeted metabolomics analysis. Several metabolomic abnormalities were observed in both patients, and these may represent a potential biochemical signature for SIFD.


Asunto(s)
Anemia Sideroblástica , Anemia Sideroblástica/genética , Fiebre/complicaciones , Fiebre/genética , Humanos , Mutación , Nucleotidiltransferasas/genética , Fenotipo
19.
Brain ; 144(5): 1422-1434, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33970200

RESUMEN

Human 4-hydroxyphenylpyruvate dioxygenase-like (HPDL) is a putative iron-containing non-heme oxygenase of unknown specificity and biological significance. We report 25 families containing 34 individuals with neurological disease associated with biallelic HPDL variants. Phenotypes ranged from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spasticity and global developmental delays, sometimes complicated by episodes of neurological and respiratory decompensation. Variants included bona fide pathogenic truncating changes, although most were missense substitutions. Functionality of variants could not be determined directly as the enzymatic specificity of HPDL is unknown; however, when HPDL missense substitutions were introduced into 4-hydroxyphenylpyruvate dioxygenase (HPPD, an HPDL orthologue), they impaired the ability of HPPD to convert 4-hydroxyphenylpyruvate into homogentisate. Moreover, three additional sets of experiments provided evidence for a role of HPDL in the nervous system and further supported its link to neurological disease: (i) HPDL was expressed in the nervous system and expression increased during neural differentiation; (ii) knockdown of zebrafish hpdl led to abnormal motor behaviour, replicating aspects of the human disease; and (iii) HPDL localized to mitochondria, consistent with mitochondrial disease that is often associated with neurological manifestations. Our findings suggest that biallelic HPDL variants cause a syndrome varying from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spastic tetraplegia associated with global developmental delays.


Asunto(s)
Oxigenasas/genética , Paraplejía Espástica Hereditaria/genética , Animales , Femenino , Humanos , Masculino , Ratones , Mutación , Linaje , Ratas , Pez Cebra
20.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36361994

RESUMEN

Leber's Hereditary Optic Neuropathy (LHON) is the most common primary mitochondrial DNA disorder. It is characterized by bilateral severe central subacute vision loss due to specific loss of Retinal Ganglion Cells and their axons. Historically, treatment options have been quite limited, but ongoing clinical trials show promise, with significant advances being made in the testing of free radical scavengers and gene therapy. In this review, we summarize management strategies and rational of treatment based on current insights from molecular research. This includes preventative recommendations for unaffected genetic carriers, current medical and supportive treatments for those affected, and emerging evidence for future potential therapeutics.


Asunto(s)
Atrofia Óptica Hereditaria de Leber , Humanos , Atrofia Óptica Hereditaria de Leber/terapia , Atrofia Óptica Hereditaria de Leber/tratamiento farmacológico , ADN Mitocondrial/metabolismo , Células Ganglionares de la Retina/metabolismo , Mitocondrias/genética , Predicción
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda