Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nano Lett ; 24(13): 3843-3850, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38437628

RESUMEN

Nanostructured metals with conventional grain boundaries or interfaces exhibit high strength yet usually poor ductility. Here we report an interface engineering strategy that breaks the strength-ductility dilemma via externally incorporating graphene oxide at lamella boundaries of aluminum (Al) nanolaminates. By forming the binary intergranular films where graphene oxide was sandwiched between two amorphous alumina layers, the Al-based composite nanolaminates achieved ultrahigh compressive strength (over 1 GPa) while retaining excellent plastic deformability. Complementing experimental results with molecular dynamics simulation efforts, the ultrahigh strength was interpreted by the strong blocking effect of the binary intergranular films on dislocation nucleation and propagation, and the excellent plasticity was found to originate from the stress/strain-induced crystalline-to-amorphous transition of graphene oxide and the synergistic deformation between Al nanolamellas and the binary intergranular films.

2.
Small ; 19(25): e2206736, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36929621

RESUMEN

Nontrivial topological polar textures in ferroelectric materials, including vortices, skyrmions, and others, have the potential to develop ultrafast, high-density, reliable multilevel memory storage and conceptually innovative processing units, even beyond the limit of binary storage of 180° aligned polar materials. However, the realization of switchable polar textures at room temperature in ferroelectric materials integrated directly into silicon using a straightforward large area fabrication technique and effectively utilizing it to design multilevel programable memory and processing units has not yet been demonstrated. Here, utilizing vector piezoresponse force and conductive atomic force microscopy, microscopic evidence of the electric field switchable polar nanotexture is provided at room temperature in HfO2 -ZrO2 nanolaminates grown directly onto silicon using an atomic layer deposition technique. Additionally, a two-terminal Au/nanolaminates/Si ferroelectric tunnel junction is designed, which shows ultrafast (≈83 ns) nonvolatile multilevel current switching with high on/off ratio (>106 ), long-term durability (>4000 s), and giant tunnel electroresistance (108 %). Furthermore, 14 Boolean logic operations are tested utilizing a single device as a proof-of-concept for reconfigurable logic-in-memory processing. The results offer a potential approach to "processing with polar textures" and addressing the challenges of developing high-performance multilevel in-memory processing technology by virtue of its fundamentally distinct mechanism of operation.

3.
Nanotechnology ; 33(46)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35914514

RESUMEN

In this study, we demonstrate the effect of change of the sputtering power and the deposition pressure on the ignition and the combustion properties of Al/CuO reactive thin films. A reduced sputtering power of Al along with the deposition carried out at a higher-pressure result in a high-quality thin film showing a 200% improvement in the burn rate and a 50% drop in the ignition energy. This highlights the direct implication of the change of the process parameters on the responsivity and the reactivity of the reactive film while maintaining the Al and CuO thin-film integrity both crystallographically and chemically. Atomically resolved structural and chemical analyzes enabled us to qualitatively determine how the microstructural differences at the interface (thickness, stress level, delamination at high temperatures and intermixing) facilitate the Al and O migrations and impact the overall nano-thermite reactivity. We found that the deposition of CuO under low pressure produces well-defined and similar Al-CuO and CuO-Al interfaces with the least expected intermixing. Our investigations also showed that the magnitude of residual stress induced during the deposition plays a decisive role in influencing the overall nano-thermite reactivity. Higher is the magnitude of the tensile residual stress induced, stronger is the presence of gaseous oxygen at the interface. By contrast, high compressive interfacial stress aids in preserving the Al atoms for the main reaction while not getting expended in the interface thickening. Overall, this analysis helped in understanding the effect of change of deposition conditions on the reactivity of Al/CuO nanolaminates and several handles that may be pulled to optimize the process better by means of physical engineering of the interfaces.

4.
Nanotechnology ; 32(21)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33592601

RESUMEN

It was experimentally found that silica and gold particles can modify the combustion properties of nanothermites but the exact role of the thermal properties of these additives on the propagating combustion front relative to other potential contributions remains unknown. Gold and silica particles of different sizes and volume loadings were added into aluminum/copper oxide thermites. Their effects on the flame front dynamics were investigated experimentally using microscopic dynamic imaging techniques and theoretically via a reaction model coupling mass and heat diffusion processes. A detailed theoretical analysis of the local temperature and thermal gradients at the vicinity of these two additives shows that highly conductive inclusions do not accelerate the combustion front while poor conductive inclusions result in the distortion of the flame front (corrugation), and therefore produce high thermal gradients (up to 1010K.m-1) at the inclusion/host material interface. This results in an overall slowing down of the combustion front. These theoretical findings contradict the experimental observations in which a net increase of the flame front velocity was found when Au and SiO2particles are added into the thermite. This leads to the conclusion that the faster burn rate observed experimentally cannot be fully associated with thermal effects only, but rather on chemical (catalytic) and/or mechanical mechanisms: formation of highly-stressed zones around the inclusion promoting the reactant mixing. One additional experiment in which physical SiO2particles were replaced by voids (filled with Ar during experiment) to cancel the potential mechanical effects while preserving the thermal inhomogeneity in the thermite structure confirms the hypothesis that instead of pure thermal conduction, it is the mechanical mechanisms that dominate the propagation velocity in our specific Al/CuO multilayered films.

5.
Angew Chem Int Ed Engl ; 54(16): 4810-4, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25714491

RESUMEN

Herein we electrochemically and selectively extract Ti from the MAX phase Ti2SC to form carbon/sulfur (C/S) nanolaminates at room temperature. The products are composed of multi-layers of C/S flakes, with predominantly amorphous and some graphene-like structures. Covalent bonding between C and S is observed in the nanolaminates, which render the latter promising candidates as electrode materials for Li-S batteries. We also show that it is possible to extract Ti from other MAX phases, such as Ti3AlC2, Ti3SnC2, and Ti2GeC, suggesting that electrochemical etching can be a powerful method to selectively extract the "M" elements from the MAX phases, to produce "AX" layered structures, that cannot be made otherwise. The latter hold promise for a variety of applications, such as energy storage, catalysis, etc.

6.
ACS Appl Mater Interfaces ; 16(27): 35686-35696, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38935746

RESUMEN

The control of local heterogeneities in metallic glasses (MGs) represents an emerging field to improve their plasticity, preventing the propagation of catastrophic shear bands (SBs) responsible for the macroscopically brittle failure. To date, a nanoengineered approach aimed at finely tuning local heterogeneities controlling SB nucleation and propagation is still missing, hindering the potential to develop MGs with large and tunable strength/ductility balance and controlled deformation behavior. In this work, we exploited the potential of pulsed laser deposition (PLD) to synthesize a novel class of crystal/glass ultrafine nanolaminates (U-NLs) in which a ∼4 nm thick crystalline Al separates 6 and 9 nm thick Zr50Cu50 glass nanolayers, while reporting a high density of sharp interfaces and large chemical intermixing. In addition, we tune the morphology by synthesizing compact and nanogranular U-NLs, exploiting, respectively, atom-by-atom or cluster-assembled growth regimes. For compact U-NLs, we report high mass density (∼8.35 g/cm3) and enhanced and tunable mechanical behavior, reaching maximum values of hardness and yield strength of up to 9.3 and 3.6 GPa, respectively. In addition, we show up to 3.6% homogeneous elastoplastic deformation in compression as a result of SB blocking by the Al-rich sublayers. On the other hand, nanogranular U-NLs exhibit slightly lower yield strength (3.4 GPa) in combination with enhanced elastoplastic deformation (∼6%) followed by the formation of superficial SBs, which are not percolative even at deformations exceeding 15%, as a result of the larger free volume content within the cluster-assembled structure and the presence of crystal/glass nanointerfaces, enabling to accommodate SB events. Overall, we show how PLD enables the synthesis of crystal/glass U-NLs with ultimate control of local heterogeneities down to the atomic scale, providing new nanoengineered strategies capable of deep control of the deformation behavior, surpassing traditional trade-off between strength and ductility. Our approach can be extended to other combinations of metallic materials with clear interest for industrial applications such as structural coatings and microelectronics (MEMS and NEMS).

7.
ACS Appl Mater Interfaces ; 15(12): 16221-16231, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36939586

RESUMEN

Plasma-enhanced atomic layer deposition (PEALD) is utilized to improve the barrier properties of an organic chip-film patch (CFP) when it is used as an implant to prevent moisture and ions from migrating into the embedded electronic circuits. For this purpose, surface condition and material properties of eight modifications of Al2O3-TiO2 nanolaminates sequentially deposited on polyimide PI-2611 films are evaluated in detail. The effect of stress-induced warpage of the deposited Al2O3-TiO2 on the wafer level is calculated with the Stoney equation and reveals higher tensile stress values while increasing the thickness of Al2O3-TiO2 nanolaminates from 20 up to 80 nm. Contact angle measurement and atomic force microscopy are used to investigate the surface energy and wettability, as well as the surface morphology of polyimide-Al2O3-TiO2 interfaces. We show that plasma treatment of pristine polyimide leads to an enhanced adhesion force of the PEAL-deposited layer by a factor of 1.3. The water vapor transmission rate (WVTR) is determined by exposing the coated polyimide films to 85% humidity and 23 °C and yields down to 1.58 × 10-3 g(H2O)/(m2 d). The data obtained are compared with alternative coating processes using the polymers parylene-C and benzocyclobutene (BCB). The latter shows higher WVTR values of 1.2 × 10-1 and 1.7 × 10-1 g(H2O)/(m2 d) compared to the PEALD-PI-2611 systems, indicating lower barrier properties. Two Al2O3-TiO2 modifications with low WVTR values have been chosen for encapsulating the CFP substrates and exposing them in a long-time experiment to chemical and mechanical loads in a chamber filled with phosphate-buffered saline at 37 °C, pH 7.3, and a cyclically applied pressure of 160 mbar (∼120 mm Hg). The electrical leakage behavior of the CFP systems is measured and reveals reliable electrical long-term stability far beyond 11 months, highlighting the great potential of PEALD-encapsulated CFPs.

8.
Sci Technol Adv Mater ; 13(4): 043001, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27877499

RESUMEN

Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear resistance under extreme tribological conditions.

9.
Nanomaterials (Basel) ; 12(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35458067

RESUMEN

Achieving high mechanical performances in nanocomposites reinforced with lamellar fillers has been a great challenge in the last decade. Many efforts have been made to fabricate synthetic materials whose properties resemble those of the reinforcement. To achieve this, special architectures have been considered mimicking existing materials, such as nacre. However, achieving the desired performances is challenging since the mechanical response of the material is influenced by many factors, such as the filler content, the matrix molecular mobility and the compatibility between the two phases. Most importantly, the properties of a macroscopic bulk material strongly depend on the interaction at atomic levels and on their synergetic effect. In particular, the formation of highly-ordered brick-and-mortar structures depends on the interaction forces between the two phases. Consequently, poor mechanical performances of the material are associated with interface issues and low stress transfer from the matrix to the nanoparticles. Therefore, improvement of the interface at the chemical level enhances the mechanical response of the material. The purpose of this review is to give insight into the stress transfer mechanism in high filler content composites reinforced with 2D carbon nanoparticles and to describe the parameters that influence the efficiency of stress transfer and the strategies to improve it.

10.
Nanomaterials (Basel) ; 12(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35957028

RESUMEN

HfO2 and Fe2O3 thin films and laminated stacks were grown by atomic layer deposition at 350 °C from hafnium tetrachloride, ferrocene, and ozone. Nonlinear, saturating, and hysteretic magnetization was recorded in the films. Magnetization was expectedly dominated by increasing the content of Fe2O3. However, coercive force could also be enhanced by the choice of appropriate ratios of HfO2 and Fe2O3 in nanolaminated structures. Saturation magnetization was observed in the measurement temperature range of 5-350 K, decreasing towards higher temperatures and increasing with the films' thicknesses and crystal growth. Coercive force tended to increase with a decrease in the thickness of crystallized layers. The films containing insulating HfO2 layers grown alternately with magnetic Fe2O3 exhibited abilities to both switch resistively and magnetize at room temperature. Resistive switching was unipolar in all the oxides mounted between Ti and TiN electrodes.

11.
ACS Appl Mater Interfaces ; 14(10): 12873-12882, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35239317

RESUMEN

Multilayer nanolaminates (NLs) of alternate ultrathin sublayers of Al2O3 and TiO2 (ATA) with the thickness ranging ∼2 to 0.5 nm were fabricated by optimized pulsed laser deposition (PLD). Maxwell-Wagner (M-W) relaxation-induced interfacial polarization was realized and engineered by precisely controlling the sublayer thicknesses and the number of interfaces. X-ray reflectivity and cross-sectional transmission electron microscopy measurements of ATA NLs revealed an artificial periodicity with well-defined uniformly thick amorphous sublayers with chemically and physically distinct interfaces down to a sublayer thickness of ∼0.8 nm. The dielectric constants and loss of ATA NLs were found to increase from ∼60 to 670 and decrease from ∼0.9 to 0.16, respectively, as sublayer thicknesses reduced from ∼2 to 0.8 nm. However, for a sublayer thickness below 0.8 nm, the trend was reversed. Furthermore, temperature-dependent impedance spectroscopy studies revealed two distinct thermally activated relaxation processes, corresponding to TiO2 and Al2O3 sublayers, corroborating the M-W relaxation. The conductivity contrast between the sublayers of ATA NLs enhanced with reducing sublayer thickness and plateaued at a sublayer thickness of ∼0.8 nm, resulting in dominant M-W interfacial polarization and a high cut-off frequency of ∼50 kHz. These results demonstrate that ATA NLs grown by PLD may find application as potential high-k materials for next-generation nanoelectronic devices.

12.
Materials (Basel) ; 15(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36143596

RESUMEN

Flash memories are the preferred choice for data storage in portable gadgets. The charge trapping nonvolatile flash memories are the main contender to replace standard floating gate technology. In this work, we investigate metal/blocking oxide/high-k charge trapping layer/tunnel oxide/Si (MOHOS) structures from the viewpoint of their application as memory cells in charge trapping flash memories. Two different stacks, HfO2/Al2O3 nanolaminates and Al-doped HfO2, are used as the charge trapping layer, and SiO2 (of different thickness) or Al2O3 is used as the tunneling oxide. The charge trapping and memory windows, and retention and endurance characteristics are studied to assess the charge storage ability of memory cells. The influence of post-deposition oxygen annealing on the memory characteristics is also studied. The results reveal that these characteristics are most strongly affected by post-deposition oxygen annealing and the type and thickness of tunneling oxide. The stacks before annealing and the 3.5 nm SiO2 tunneling oxide have favorable charge trapping and retention properties, but their endurance is compromised because of the high electric field vulnerability. Rapid thermal annealing (RTA) in O2 significantly increases the electron trapping (hence, the memory window) in the stacks; however, it deteriorates their retention properties, most likely due to the interfacial reaction between the tunneling oxide and the charge trapping layer. The O2 annealing also enhances the high electric field susceptibility of the stacks, which results in better endurance. The results strongly imply that the origin of electron and hole traps is different-the hole traps are most likely related to HfO2, while electron traps are related to Al2O3. These findings could serve as a useful guide for further optimization of MOHOS structures as memory cells in NVM.

13.
Micromachines (Basel) ; 12(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063804

RESUMEN

The chemical, structural, morphological, and optical properties of Al-doped TiO2 thin films, called TiO2/Al2O3 nanolaminates, grown by plasma-enhanced atomic layer deposition (PEALD) on p-type Si <100> and commercial SLG glass were discussed. High-quality PEALD TiO2/Al2O3 nanolaminates were produced in the amorphous and crystalline phases. All crystalline nanolaminates have an overabundance of oxygen, while amorphous ones lack oxygen. The superabundance of oxygen on the crystalline film surface was illustrated by a schematic representation that described this phenomenon observed for PEALD TiO2/Al2O3 nanolaminates. The transition from crystalline to amorphous phase increased the surface hardness and the optical gap and decreased the refractive index. Therefore, the doping effect of TiO2 by the insertion of Al2O3 monolayers showed that it is possible to adjust different parameters of the thin-film material and to control, for example, the mobility of the hole-electron pair in the metal-insulator-devices semiconductors, corrosion protection, and optical properties, which are crucial for application in a wide range of technological areas, such as those used to manufacture fluorescence biosensors, photodetectors, and solar cells, among other devices.

14.
ACS Appl Mater Interfaces ; 13(23): 27392-27399, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34097402

RESUMEN

Stretchable barrier films capable of maintaining high levels of moisture- and gas-barrier performance under significant mechanical strains are a critical component for wearable/flexible electronics and other devices, but realization of stretchable moisture-barrier films has not been possible due to the inevitable issues of strain-induced rupturing compounded with moisture-induced swelling of a stretched barrier film. This study demonstrates nanolaminated polymer/metal oxide stretchable moisture-barrier films fabricated by a novel molecular layer deposition (MLD) process of polyamide-2,3 (PA-2,3) integrated with atomic layer deposition (ALD) metal oxide processes and an in situ surface-functionalization technique. The PA-2,3 surface upon in situ functionalization with H2O2 vapor offers adequate surface chemisorption sites for rapid nucleation of ALD oxides, minimizing defects at the PA-2,3/oxide interfaces in the nanolaminates. The integrated ALD/MLD process enables facile deposition and precise structural control of many-layered oxide/PA-2,3 nanolaminates, where the large number of PA-2,3 nanolayers provide high tolerance against mechanical stretching and flexing thanks to their defect-decoupling and stress-buffering functions, while the large number of oxide nanolayers shield against swelling by moisture. Specifically, a nanolaminate with 72 pairs of alternating 2 nm (5 cycles) PA-2,3 and 0.5 nm HfO2 (five cycles) maintains its water vapor transmission rate (WVTR) at the 10-6 g/m2 day level upon 10% tensile stretching and 2 mm-radius bending, a significant breakthrough for the wearable/flexible electronics technologies.

15.
Materials (Basel) ; 14(11)2021 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-34071013

RESUMEN

Amorphous/crystalline nanolaminate composites have aroused extensive research interest because of their high strength and good plasticity. In this paper, the nanoindentation behavior of Cu64Zr36/Cu amorphous/crystalline nanolaminates (ACNLs) is investigated by molecular dynamics (MD) simulation while giving special attention to the plastic processes occurring at the interface. The load-displacement curves of ACNLs reveal small fluctuations associated with shear transformation zone (STZ) activation in the amorphous layer, whereas larger fluctuations associated with dislocations emission occur in the crystalline layer. During loading, local STZ activation occurs and the number of STZs increases as the indentation depth in the amorphous layer increases. These STZs are mostly located around the indenter, which correlates to the high stresses concentrated around the indenter. When the indenter penetrates the crystalline layer, dislocations emit from the interface of amorphous/crystalline, and their number increases with increasing indentation depth. During unloading, the overall number of STZs and dislocations decreases, while other new STZs and dislocations become activated. These results are discussed in terms of stress distribution, residual stresses, indentation rate and indenter radius.

16.
Materials (Basel) ; 14(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578892

RESUMEN

High-k dielectric stacks are regarded as a promising information storage media in the Charge Trapping Non-Volatile Memories, which are the most viable alternative to the standard floating gate memory technology. The implementation of high-k materials in real devices requires (among the other investigations) estimation of their radiation hardness. Here we report the effect of gamma radiation (60Co source, doses of 10 and 10 kGy) on dielectric properties, memory windows, leakage currents and retention characteristics of nanolaminated HfO2/Al2O3 stacks obtained by atomic layer deposition and its relationship with post-deposition annealing in oxygen and nitrogen ambient. The results reveal that depending on the dose, either increase or reduction of all kinds of electrically active defects (i.e., initial oxide charge, fast and slow interface states) can be observed. Radiation generates oxide charges with a different sign in O2 and N2 annealed stacks. The results clearly demonstrate a substantial increase in memory windows of the as-grown and oxygen treated stacks resulting from enhancement of the electron trapping. The leakage currents and the retention times of O2 annealed stacks are not deteriorated by irradiation, hence these stacks have high radiation tolerance.

17.
Materials (Basel) ; 13(6)2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32178403

RESUMEN

Thermoelectrics is a green renewable energy technology which can significantly contribute to power generation due to its potential in generating electricity out of waste heat. The main challenge for the development of thermoelectrics is its low conversion efficiency. One key strategy to improve conversion efficiency is reducing the thermal conductivity of thermoelectric materials. In this paper, the state-of-the-art progresses made in improving thermoelectric materials are reviewed and discussed, focusing on phononic engineering via applying porous templates and ALD deposited nanolaminates structure. The effect of nanolaminates structure and porous templates on Seebeck coefficient, electrical conductivity and thermal conductivity, and hence in figure of merit zT of different types of materials system, including PnCs, lead chalcogenide-based nanostructured films on planar and porous templates, ZnO-based superlattice, and hybrid organic-inorganic superlattices, will be reviewed and discussed.

18.
Adv Mater ; 32(29): e1906697, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32484267

RESUMEN

MXenes are emerging rapidly as a new family of multifunctional nanomaterials with prospective applications rivaling that of graphenes. Herein, a timely account of the design and performance evaluation of MXene-based membranes is provided. First, the preparation and physicochemical characteristics of MXenes are outlined, with a focus on exfoliation, dispersion stability, and processability, which are crucial factors for membrane fabrication. Then, different formats of MXene-based membranes in the literature are introduced, comprising pristine or intercalated nanolaminates and polymer-based nanocomposites. Next, the major membrane processes so far pursued by MXenes are evaluated, covering gas separation, wastewater treatment, desalination, and organic solvent purification. The potential utility of MXenes in phase inversion and interfacial polymerization, as well as layer-by-layer assembly for the preparation of nanocomposite membranes, is also critically discussed. Looking forward, exploiting the high electrical conductivity and catalytic activity of certain MXenes is put into perspective for niche applications that are not easily achievable by other nanomaterials. Furthermore, the benefits of simulation/modeling approaches for designing MXene-based membranes are exemplified. Overall, critical insights are provided for materials science and membrane communities to navigate better while exploring the potential of MXenes for developing advanced separation membranes.

19.
Nanoscale Res Lett ; 13(1): 206, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29995299

RESUMEN

Integrating energetic materials on a chip has received great attention for its widely potential applications in the microscale energy consumption system, including electric initiation device. In this article, reactive Al/PTFE nanolaminates with periodic layer structure are prepared by magnetron sputtering, which consists of fuel Al, oxidant PTFE, and inert layer Al-F compound in a metastable system. The as-deposited Al/PTFE nanolaminates exhibit a significantly high energy output, and the onset temperature and the heat of reaction are 410 °C and 3034 J/g, respectively. Based on these properties, an integrated film bridge is designed and fabricated via integrating Al/PTFE nanolaminates with a Cu exploding foil, which exhibits enhanced energetic performances with more violent explosion phenomenon, larger quantities of ejected product, and higher plasma temperature in comparison with the Cu film bridge. The kinetic energy of flyers derived from the expansion of the Cu film bridge is also increased around 29.9% via integration with the Al/PTFE nanolaminates. Overall, the energetic performances can be improved substantially through a combination of the chemical reaction of Al/PTFE nanolaminates with the electric explosion of the Cu film bridge.

20.
ACS Appl Mater Interfaces ; 10(7): 6601-6607, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29381318

RESUMEN

V1-xMoxO2 thin films were fabricated by nanolamination of VO2/MoO3 alternating layers using atomic layer deposition (ALD) process, in which tetrakis-dimethyl-amino vanadium(IV) [V(NMe2)4] and molybdenum hexacarbonyl(VI) [Mo(CO)6] were used as vanadium and molybdenum precursors, respectively. The dopant content of V1-xMoxO2 films was controlled by adjusting MoO3 cycle percentage (PMo) in ALD pulse sequence, which varied from 2 to 10%. Effects of PMo on V1-xMoxO2 crystal structure, morphology, semiconductor-to-metal transition properties, and optical transmittance were studied. A linear reduction of phase transition temperature (Tc) by approximately -11 °C/cycle % Mo was observed for V1-xMoxO2 films within PMo ≤ 5%. Notably, dramatic enhanced luminous transmittance (Tlum = 63.8%) and solar modulation (ΔTsol = 23.5%) were observed for V1-xMoxO2 film with PMo = 7%.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda