Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2320194121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38568967

RESUMEN

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since its emergence in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a recombinant SARS-CoV-2 (nsp15mut) expressing catalytically inactivated nsp15, which we show promoted increased dsRNA accumulation. Infection with SARS-CoV-2 nsp15mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI cultures.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Endorribonucleasas/metabolismo , Transducción de Señal , Antivirales
2.
J Virol ; 98(7): e0083024, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38940559

RESUMEN

Viruses have evolved a range of strategies to utilize or manipulate the host's cellular translational machinery for efficient infection, although the mechanisms by which infectious bronchitis virus (IBV) manipulates the host translation machinery remain unclear. In this study, we firstly demonstrate that IBV infection causes host shutoff, although viral protein synthesis is not affected. We then screened 23 viral proteins, and identified that more than one viral protein is responsible for IBV-induced host shutoff, the inhibitory effects of proteins Nsp15 were particularly pronounced. Ribosome profiling was used to draw the landscape of viral mRNA and cellular genes expression model, and the results showed that IBV mRNAs gradually dominated the cellular mRNA pool, the translation efficiency of the viral mRNAs was lower than the median efficiency (about 1) of cellular mRNAs. In the analysis of viral transcription and translation, higher densities of RNA sequencing (RNA-seq) and ribosome profiling (Ribo-seq) reads were observed for structural proteins and 5' untranslated regions, which conformed to the typical transcriptional characteristics of nested viruses. Translational halt events and the number of host genes increased significantly after viral infection. The translationally paused genes were enriched in translation, unfolded-protein-related response, and activation of immune response pathways. Immune- and inflammation-related mRNAs were inefficiently translated in infected cells, and IBV infection delayed the production of IFN-ß and IFN-λ. Our results describe the translational landscape of IBV-infected cells and demonstrate new strategies by which IBV induces host gene shutoff to promote its replication. IMPORTANCE: Infectious bronchitis virus (IBV) is a γ-coronavirus that causes huge economic losses to the poultry industry. Understanding how the virus manipulates cellular biological processes to facilitate its replication is critical for controlling viral infections. Here, we used Ribo-seq to determine how IBV infection remodels the host's biological processes and identified multiple viral proteins involved in host gene shutoff. Immune- and inflammation-related mRNAs were inefficiently translated, the translation halt of unfolded proteins and immune activation-related genes increased significantly, benefitting IBV replication. These data provide new insights into how IBV modulates its host's antiviral responses.


Asunto(s)
Pollos , Infecciones por Coronavirus , Interacciones Huésped-Patógeno , Virus de la Bronquitis Infecciosa , Biosíntesis de Proteínas , Ribosomas , Replicación Viral , Virus de la Bronquitis Infecciosa/fisiología , Virus de la Bronquitis Infecciosa/genética , Animales , Ribosomas/metabolismo , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/metabolismo , Interacciones Huésped-Patógeno/genética , Pollos/virología , ARN Viral/genética , ARN Viral/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/genética , Línea Celular , Humanos
3.
J Biol Chem ; 299(11): 105341, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37832873

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2, the causative agent of coronavirus disease 2019, has resulted in the largest pandemic in recent history. Current therapeutic strategies to mitigate this disease have focused on the development of vaccines and on drugs that inhibit the viral 3CL protease or RNA-dependent RNA polymerase enzymes. A less-explored and potentially complementary drug target is Nsp15, a uracil-specific RNA endonuclease that shields coronaviruses and other nidoviruses from mammalian innate immune defenses. Here, we perform a high-throughput screen of over 100,000 small molecules to identify Nsp15 inhibitors. We characterize the potency, mechanism, selectivity, and predicted binding mode of five lead compounds. We show that one of these, IPA-3, is an irreversible inhibitor that might act via covalent modification of Cys residues within Nsp15. Moreover, we demonstrate that three of these inhibitors (hexachlorophene, IPA-3, and CID5675221) block severe acute respiratory syndrome coronavirus 2 replication in cells at subtoxic doses. This study provides a pipeline for the identification of Nsp15 inhibitors and pinpoints lead compounds for further development against coronavirus disease 2019 and related coronavirus infections.


Asunto(s)
Antivirales , Endorribonucleasas , SARS-CoV-2 , Proteínas no Estructurales Virales , Antivirales/farmacología , Endorribonucleasas/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos
4.
Arch Pharm (Weinheim) ; 357(1): e2300442, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37840345

RESUMEN

The coronavirus disease-19 (COVID-19) pandemic has raised major interest in innovative drug concepts to suppress human coronavirus (HCoV) infections. We previously reported on a class of 1,2,3-triazolo fused betulonic acid derivatives causing strong inhibition of HCoV-229E replication via the viral nsp15 protein, which is proposedly related to compound binding at an intermonomer interface in hexameric nsp15. In the present study, we further explored the structure-activity relationship (SAR), by varying the substituent at the 1,2,3-triazolo ring as well as the triterpenoid skeleton. The 1,2,3-triazolo fused triterpenoids were synthesized by a multicomponent triazolization reaction, which has been developed in-house. Several analogs possessing a betulin, oleanolic acid, or ursolic acid core displayed favorable activity and selectivity (EC50 values for HCoV-229E: 1.6-3.5 µM), but neither of them proved as effective as the lead compound containing betulonic acid. The 18ß-glycyrrhetinic acid-containing analogs had low selectivity. The antiviral findings were rationalized by in silico docking in the available structure of the HCoV-229E nsp15 protein. The new SAR insights will aid the further development of these 1,2,3-triazolo fused triterpenoid compounds as a unique type of coronavirus inhibitors.


Asunto(s)
Coronavirus Humano 229E , Triterpenos , Humanos , Coronavirus Humano 229E/metabolismo , Proteínas Virales , Triterpenos/farmacología , Relación Estructura-Actividad
5.
Saudi Pharm J ; 32(1): 101914, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38111672

RESUMEN

SARS-CoV-2 is accountable for severe social and economic disruption around the world causing COVID-19. Non-structural protein-15 (NSP15) possesses a domain that is vital to the viral life cycle and is known as uridylate-specific endoribonuclease (EndoU). This domain binds to the uridine 5'-monophosphate (U5P) so that the protein may carry out its native activity. It is considered a vital drug target to inhibit the growth of the virus. Thus, in this current study, ML-based QSAR and virtual screening of U5P analogues targeting Nsp15 were performed to identify potential molecules against SARS-CoV-2. Screening of 816 unique U5P analogues using ML-based QSAR identified 397 compounds ranked on their predicted bioactivity (pIC50). Further, molecular docking and hydrogen bond interaction analysis resulted in the selection of the top three compounds (53309102, 57398422, and 76314921). Molecular dynamics simulation of the most promising compounds showed that two molecules 53309102 and 57398422 acted as potential binders of Nsp15. The compound was able to inhibit nsp15 activity as it was successfully bound to the active site of the nsp15 protein. This was achieved by the formation of relevant contacts with enzymatically critical amino acid residues (His235, His250, and Lys290). Principal component analysis and free energy landscape studies showed stable complex formation while MM/GBSA calculation showed lower binding energies for 53309102 (ΔGTOTAL = -29.4 kcal/mol) and 57398422 (ΔGTOTAL = -39.4 kcal/mol) compared to the control U5P (ΔGTOTAL = -18.8 kcal/mol). This study aimed to identify analogues of U5P inhibiting the NSP15 function that potentially could be used for treating COVID-19.

6.
J Virol ; 96(12): e0068622, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35638780

RESUMEN

Infectious bronchitis virus (IBV), a γ-coronavirus, causes the economically important poultry disease infectious bronchitis. Cellular stress response is an effective antiviral strategy that leads to stress granule (SG) formation. Previous studies suggested that SGs were involved in the antiviral activity of host cells to limit viral propagation. Here, we aimed to delineate the molecular mechanisms regulating the SG response to pathogenic IBV strain infection. We found that most chicken embryo kidney (CEK) cells formed no SGs during IBV infection and IBV replication inhibited arsenite-induced SG formation. This inhibition was not caused by changes in the integrity or abundance of SG proteins during infection. IBV nonstructural protein 15 (Nsp15) endoribonuclease activity suppressed SG formation. Regardless of whether Nsp15 was expressed alone, with recombinant viral infection with Newcastle disease virus as a vector, or with EndoU-deficient IBV, the Nsp15 endoribonuclease activity was the main factor inhibiting SG formation. Importantly, uridine-specific endoribonuclease (EndoU)-deficient IBV infection induced colocalization of IBV N protein/dsRNA and SG-associated protein TIA1 in infected cells. Additionally, overexpressing TIA1 in CEK cells suppressed IBV replication and may be a potential antiviral factor for impairing viral replication. These data provide a novel foundation for future investigations of the mechanisms by which coronavirus endoribonuclease activity affects viral replication. IMPORTANCE Endoribonuclease is conserved in coronaviruses and affects viral replication and pathogenicity. Infectious bronchitis virus (IBV), a γ-coronavirus, infects respiratory, renal, and reproductive systems, causing millions of dollars in lost revenue to the poultry industry worldwide annually. Mutating the viral endoribonuclease poly(U) resulted in SG formation, and TIA1 protein colocalized with the viral N protein and dsRNA, thus damaging IBV replication. These results suggest a new antiviral target design strategy for coronaviruses.


Asunto(s)
Infecciones por Coronavirus , Endorribonucleasas , Virus de la Bronquitis Infecciosa , Gránulos de Estrés , Replicación Viral , Animales , Antivirales/farmacología , Embrión de Pollo , Pollos , Infecciones por Coronavirus/veterinaria , Endorribonucleasas/genética , Virus de la Bronquitis Infecciosa/enzimología , Virus de la Bronquitis Infecciosa/fisiología , Enfermedades de las Aves de Corral/virología , ARN Bicatenario
7.
Mol Divers ; 27(6): 2715-2728, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36456773

RESUMEN

Many countries in the world have recently experienced an outbreak of COVID-19, turned out to be a pandemic which significantly affected the world economy. Among many attempts to treat/control infection or to modulate host immunity, many small molecules including steroids were prescribed based on their use against other viral infection or inflammatory conditions. A recent report established the possibility of usage of a corticosteroid against the virus through inhibiting NSP-15; an mRNA endonuclease of SARS-CoV-2 and thereby viral replication. This study aimed to identify potential anti-viral agents for the virus through computational approaches and to validate binding properties with the protein target through molecular dynamics simulation. Unlike the conventional approaches, dedicated data base of steroid like compounds was used for initial screening along with dexamethasone and cortisone, which are used in the treatment of COVID-19 affected population in some countries. Molecular docking was performed for three compounds filtered from data base in addition to dexamethasone and Cortisone followed by molecular dynamics simulation analysis to validate the dynamics of binding at the active site. In addition, analysis of ADME properties established that these compounds have favorable drug-like properties. Based on docking, molecular dynamics simulation studies and various other trajectory analyses, compounds that are identified could be suggested as therapeutics or precursors towards designing new anti-viral agents against SARS-CoV-2, to combat COVID-19. Also, this is an attempt to study the impact of steroid compounds on NSP-15 of SARS-CoV-2, since many steroid like compounds are used during the treatment of COVID-19 patients.


Asunto(s)
COVID-19 , Cortisona , Humanos , SARS-CoV-2/metabolismo , Simulación del Acoplamiento Molecular , Antivirales/química , Endorribonucleasas , Dexametasona/farmacología
8.
Trends Food Sci Technol ; 132: 40-53, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36594074

RESUMEN

Background: COVID-19 due to SARS-CoV-2 infection has had an enormous adverse impact on global public health. As the COVID-19 pandemic evolves, the WHO declared several variants of concern (VOCs), including Alpha, Beta, Gamma, Delta, and Omicron. Compared with earlier variants, Omicron, now a dominant lineage, exhibits characteristics of enhanced transmissibility, tropism shift toward the upper respiratory tract, and attenuated disease severity. The robust transmission of Omicron despite attenuated disease severity still poses a great challenge for pandemic control. Under this circumstance, its tropism shift may be utilized for discovering effective preventive approaches. Scope and approach: This review aims to estimate the potential of green tea epigallocatechin gallate (EGCG), the most potent antiviral catechin, in neutralizing SARS-CoV-2 Omicron variant, based on current knowledge concerning EGCG distribution in tissues and Omicron tropism. Key findings and conclusions: EGCG has a low bioavailability. Plasma EGCG levels are in the range of submicromolar concentrations following green tea drinking, or reach at most low µM concentrations after pharmacological intervention. Nonetheless, its levels in the upper respiratory tract could reach concentrations as high as tens or even hundreds of µM following green tea consumption or pharmacological intervention. An approach for delivering sufficiently high concentrations of EGCG in the pharynx has been developed. Convincing data have demonstrated that EGCG at tens to hundreds of µM can dramatically neutralize SARS-CoV-2 and effectively eliminate SARS-CoV-2-induced cytopathic effects and plaque formation. Thus, EGCG, which exhibits hyperaccumulation in the upper respiratory tract, deserves closer investigation as an antiviral in the current global battle against COVID-19, given Omicron's greater tropism toward the upper respiratory tract.

9.
Proc Natl Acad Sci U S A ; 117(14): 8094-8103, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32198201

RESUMEN

Coronaviruses (CoVs) are positive-sense RNA viruses that can emerge from endemic reservoirs and infect zoonotically, causing significant morbidity and mortality. CoVs encode an endoribonuclease designated EndoU that facilitates evasion of host pattern recognition receptor MDA5, but the target of EndoU activity was not known. Here, we report that EndoU cleaves the 5'-polyuridines from negative-sense viral RNA, termed PUN RNA, which is the product of polyA-templated RNA synthesis. Using a virus containing an EndoU catalytic-inactive mutation, we detected a higher abundance of PUN RNA in the cytoplasm compared to wild-type-infected cells. Furthermore, we found that transfecting PUN RNA into cells stimulates a robust, MDA5-dependent interferon response, and that removal of the polyuridine extension on the RNA dampens the response. Overall, the results of this study reveal the PUN RNA to be a CoV MDA5-dependent pathogen-associated molecular pattern (PAMP). We also establish a mechanism for EndoU activity to cleave and limit the accumulation of this PAMP. Since EndoU activity is highly conserved in all CoVs, inhibiting this activity may serve as an approach for therapeutic interventions against existing and emerging CoV infections.


Asunto(s)
Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Coronavirus/metabolismo , Endorribonucleasas/metabolismo , Poli U/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Antivirales/farmacología , Línea Celular , Chlorocebus aethiops , Coronavirus/enzimología , Coronavirus/inmunología , Endorribonucleasas/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Interferones/farmacología , Poli U/química , ARN Viral/genética , ARN Viral/metabolismo , Uridina/química , Células Vero , Proteínas no Estructurales Virales/genética , Replicación Viral/fisiología
10.
J Biol Chem ; 297(4): 101218, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34562452

RESUMEN

The SARS-CoV-2 replication-transcription complex is an assembly of nonstructural viral proteins that collectively act to reproduce the viral genome and generate mRNA transcripts. While the structures of the individual proteins involved are known, how they assemble into a functioning superstructure is not. Applying molecular modeling tools, including protein-protein docking, to the available structures of nsp7-nsp16 and the nucleocapsid, we have constructed an atomistic model of how these proteins associate. Our principal finding is that the complex is hexameric, centered on nsp15. The nsp15 hexamer is capped on two faces by trimers of nsp14/nsp16/(nsp10)2, which then recruit six nsp12/nsp7/(nsp8)2 polymerase subunits to the complex. To this, six subunits of nsp13 are arranged around the superstructure, but not evenly distributed. Polymerase subunits that coordinate dimers of nsp13 are capable of binding the nucleocapsid, which positions the 5'-UTR TRS-L RNA over the polymerase active site, a state distinguishing transcription from replication. Analysis of the viral RNA path through the complex indicates the dsRNA that exits the polymerase passes over the nsp14 exonuclease and nsp15 endonuclease sites before being unwound by a convergence of zinc fingers from nsp10 and nsp14. The template strand is then directed away from the complex, while the nascent strand is directed to the sites responsible for mRNA capping. The model presents a cohesive picture of the multiple functions of the coronavirus replication-transcription complex and addresses fundamental questions related to proofreading, template switching, mRNA capping, and the role of the endonuclease.


Asunto(s)
Endorribonucleasas/metabolismo , Modelos Moleculares , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Sitios de Unión , COVID-19/patología , COVID-19/virología , Dimerización , Endorribonucleasas/química , Endorribonucleasas/genética , Humanos , Simulación del Acoplamiento Molecular , Estructura Cuaternaria de Proteína , ARN Bicatenario/química , ARN Bicatenario/metabolismo , SARS-CoV-2/aislamiento & purificación , Transcripción Genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Replicación Viral
11.
Microb Pathog ; 162: 105195, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34571150

RESUMEN

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) is an enveloped positive-sense ssRNA virus which is highly lethal to piglets, causing enormous economic losses to swine industry worldwide. Nsp15 protein is an endoribonuclease of PEDV and plays an indispensable role in the viral proliferation. We reported the transcription files of nsp15 transfected IPEC-J2 cells for the first time to broaden our understanding of PEDV pathogenesis. METHODS: RNA-seq was performed to compare gene expression profiles between pCAGGS-HA-nsp15 transfected IPEC-J2 cells and pCAGGS-HA (empty vector) transfected IPEC-J2 cells. Immune-related genes and pathways were identified and analyzed to deepen our understanding of nsp15 for PEDV pathogenicity. IPEC-J2 cells transfected with pCAGGS-HA-CCL5/CXCL8/CXCL10 were infected with CV777 and the virus load of PEDV was detected by qRT-PCR. RESULTS: A total of 21,654 genes were obtained by RNA-Seq and 415 differential expressed genes (DEGs) were identified, including 136 up-regulated and 279 down-regulated genes. A number of effect genes involved in immune responses and inflammation were differentially expressed. GO and KEGG enrichment analysis showed that 32 GO terms were significantly enriched and the DEGs were mainly enriched in immune-related pathways such as TNF signaling pathway, RIG-I-like receptor signaling pathway and Cytosolic DNA-sensing pathway. qRT-PCR results indicated the overexpression of selected chemokines, CCL5/CXCL8/CXCL10, can inhibit PEDV proliferation in IPEC-J2 cells. CONCLUSIONS: Our transcriptome profile illustrated a number of genes involving in immune responses and inflammation were inhibited by nsp15, such as CCL5, CXCL8, CXCL10, OAS, MXs, STAT1 and IRF9. The results suggested that nsp15 can antagonize IFNs and block chemokine system to provide an adequate intracellular environment for viral proliferation.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Animales , Línea Celular , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/veterinaria , Células Epiteliales , Perfilación de la Expresión Génica , Inmunidad , Virus de la Diarrea Epidémica Porcina/genética , Porcinos
12.
Cell Biochem Funct ; 40(8): 926-934, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36203381

RESUMEN

The quick widespread of the coronavirus and speedy upsurge in the tally of cases demand the fast development of effective drugs. The uridine-directed endoribonuclease activity of nonstructural protein 15 (Nsp15) of the coronavirus is responsible for the invasion of the host immune system. Therefore, developing potential inhibitors against Nsp15 is a promising strategy. In this concern, the in silico approach can play a significant role, as it is fast and cost-effective in comparison to the trial and error approaches of experimental investigations. In this study, six turmeric derivatives (curcuminoids) were chosen for in silico analysis. The molecular interactions, pharmacokinetics, and drug-likeness of all the curcuminoids were measured. Further, the stability of Nsp15-curcuminoids complexes was appraised by employing molecular dynamics (MD) simulations and MM-PBSA approaches. All the molecules were affirmed to have strong interactions and pharmacokinetic profile. The MD simulations data stated that the Nsp15-curcuminoids complexes were stable during simulations. All the curcuminoids showed stable and high binding affinity, and these curcuminoids could be admitted as potential modulators for Nsp15 inhibition.


Asunto(s)
COVID-19 , Proteínas no Estructurales Virales , Humanos , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , SARS-CoV-2/metabolismo , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Antivirales/farmacología
13.
Biochem J ; 478(13): 2465-2479, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34198324

RESUMEN

SARS-CoV-2 is responsible for COVID-19, a human disease that has caused over 2 million deaths, stretched health systems to near-breaking point and endangered economies of countries and families around the world. Antiviral treatments to combat COVID-19 are currently lacking. Remdesivir, the only antiviral drug approved for the treatment of COVID-19, can affect disease severity, but better treatments are needed. SARS-CoV-2 encodes 16 non-structural proteins (nsp) that possess different enzymatic activities with important roles in viral genome replication, transcription and host immune evasion. One key aspect of host immune evasion is performed by the uridine-directed endoribonuclease activity of nsp15. Here we describe the expression and purification of nsp15 recombinant protein. We have developed biochemical assays to follow its activity, and we have found evidence for allosteric behaviour. We screened a custom chemical library of over 5000 compounds to identify nsp15 endoribonuclease inhibitors, and we identified and validated NSC95397 as an inhibitor of nsp15 endoribonuclease in vitro. Although NSC95397 did not inhibit SARS-CoV-2 growth in VERO E6 cells, further studies will be required to determine the effect of nsp15 inhibition on host immune evasion.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Evaluación Preclínica de Medicamentos , Endorribonucleasas/antagonistas & inhibidores , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Regulación Alostérica , Animales , Chlorocebus aethiops , Endorribonucleasas/aislamiento & purificación , Endorribonucleasas/metabolismo , Pruebas de Enzimas , Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Técnicas In Vitro , Cinética , Naftoquinonas/farmacología , Reproducibilidad de los Resultados , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/crecimiento & desarrollo , Bibliotecas de Moléculas Pequeñas/química , Soluciones , Células Vero , Proteínas no Estructurales Virales/aislamiento & purificación , Proteínas no Estructurales Virales/metabolismo
14.
J Comput Chem ; 42(13): 897-907, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33713492

RESUMEN

SARS-CoV and SARS-CoV-2 belong to the subfamily Coronaviridae and infect humans, they are constituted by four structural proteins: Spike glycoprotein (S), membrane (M), envelope (E) and nucleocapsid (N), and nonstructural proteins, such as Nsp15 protein which is exclusively present on nidoviruses and is absent in other RNA viruses, making it an ideal target in the field of drug design. A virtual screening strategy to search for potential drugs was proposed, using molecular docking to explore a library of approved drugs available in the DrugBank database in order to identify possible NSP15 inhibitors to treat Covid19 disease. We found from the docking analysis that the antiviral drugs: Paritaprevir and Elbasvir, currently both approved for hepatitis C treatment which showed some of the lowest free binding energy values were considered as repositioning drugs to combat SARS-CoV-2. Furthermore, molecular dynamics simulations of the Apo and Holo-Nsp15 systems were performed in order to get insights about the stability of these protein-ligand complexes.


Asunto(s)
Antivirales/farmacología , Benzofuranos/farmacología , Tratamiento Farmacológico de COVID-19 , Ciclopropanos/farmacología , Endorribonucleasas/antagonistas & inhibidores , Imidazoles/farmacología , Lactamas Macrocíclicas/farmacología , Prolina/análogos & derivados , SARS-CoV-2/efectos de los fármacos , Sulfonamidas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , COVID-19/virología , Reposicionamiento de Medicamentos , Endorribonucleasas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida , Prolina/farmacología , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo
15.
J Virol ; 94(11)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188729

RESUMEN

Coronaviruses (CoVs) encode multiple interferon (IFN) antagonists that modulate the host response to virus replication. Here, we evaluated the host transcriptional response to infection with murine coronaviruses encoding independent mutations in one of two different viral antagonists, the deubiquitinase (DUB) within nonstructural protein 3 or the endoribonuclease (EndoU) within nonstructural protein 15. We used transcriptomics approaches to compare the scope and kinetics of the host response to the wild-type (WT), DUBmut, and EndoUmut viruses in infected macrophages. We found that the EndoUmut virus activates a focused response that predominantly involves type I interferons and interferon-related genes, whereas the WT and DUBmut viruses more broadly stimulate upregulation of over 2,800 genes, including networks associated with activating the unfolded protein response (UPR) and the proinflammatory response associated with viral pathogenesis. This study highlights the role of viral interferon antagonists in shaping the kinetics and magnitude of the host response during virus infection and demonstrates that inactivating a dominant viral antagonist, the coronavirus endoribonuclease, dramatically alters the host response in macrophages.IMPORTANCE Macrophages are an important cell type during coronavirus infections because they "notice" the infection and respond by inducing type I interferons, which limits virus replication. In turn, coronaviruses encode proteins that mitigate the cell's ability to signal an interferon response. Here, we evaluated the host macrophage response to two independent mutant coronaviruses, one with reduced deubiquitinating activity (DUBmut) and the other containing an inactivated endoribonuclease (EndoUmut). We observed a rapid, robust, and focused response to the EndoUmut virus, which was characterized by enhanced expression of interferon and interferon-related genes. In contrast, wild-type virus and the DUBmut virus elicited a more limited interferon response and ultimately activated over 2,800 genes, including players in the unfolded protein response and proinflammatory pathways associated with progression of significant disease. This study reveals that EndoU activity substantially contributes to the ability of coronaviruses to evade the host innate response and to replicate in macrophages.


Asunto(s)
Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Coronavirus/fisiología , Endorribonucleasas/metabolismo , Interferones/metabolismo , Macrófagos/metabolismo , Macrófagos/virología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Animales , Biología Computacional , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Citocinas/metabolismo , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Ratones , Modelos Biológicos , Mutación , ARN Viral , Respuesta de Proteína Desplegada
16.
J Virol ; 94(17)2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32554697

RESUMEN

Coronaviruses (CoVs) have repeatedly emerged from wildlife hosts and infected humans and livestock animals to cause epidemics with significant morbidity and mortality. CoVs infect various organs, including respiratory and enteric systems, as exemplified by newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The constellation of viral factors that contribute to developing enteric disease remains elusive. Here, we investigated CoV interferon antagonists for their contribution to enteric pathogenesis. Using an infectious clone of an enteric CoV, porcine epidemic diarrhea virus (icPEDV), we generated viruses with inactive versions of interferon antagonist nonstructural protein 1 (nsp1), nsp15, and nsp16 individually or combined into one virus designated icPEDV-mut4. Interferon-responsive PK1 cells were infected with these viruses and produced higher levels of interferon responses than were seen with wild-type icPEDV infection. icPEDV-mut4 elicited robust interferon responses and was severely impaired for replication in PK1 cells. To evaluate viral pathogenesis, piglets were infected with either icPEDV or icPEDV-mut4. While the icPEDV-infected piglets exhibited clinical disease, the icPEDV-mut4-infected piglets showed no clinical symptoms and exhibited normal intestinal pathology at day 2 postinfection. icPEDV-mut4 replicated in the intestinal tract, as revealed by detection of viral RNA in fecal swabs, with sequence analysis documenting genetic stability of the input strain. Importantly, icPEDV-mut4 infection elicited IgG and neutralizing antibody responses to PEDV. These results identify nsp1, nsp15, and nsp16 as virulence factors that contribute to the development of PEDV-induced diarrhea in swine. Inactivation of these CoV interferon antagonists is a rational approach for generating candidate vaccines to prevent disease and spread of enteric CoVs, including SARS-CoV-2.IMPORTANCE Emerging coronaviruses, including SARS-CoV-2 and porcine CoVs, can infect enterocytes, cause diarrhea, and be shed in the feces. New approaches are needed to understand enteric pathogenesis and to develop vaccines and therapeutics to prevent the spread of these viruses. Here, we exploited a reverse genetic system for an enteric CoV, porcine epidemic diarrhea virus (PEDV), and outline an approach of genetically inactivating highly conserved viral factors known to limit the host innate immune response to infection. Our report reveals that generating PEDV with inactive versions of three viral interferon antagonists, nonstructural proteins 1, 15, and 16, results in a highly attenuated virus that does not cause diarrhea in animals and elicits a neutralizing antibody response in virus-infected animals. This strategy may be useful for generating live attenuated vaccine candidates that prevent disease and fecal spread of enteric CoVs, including SARS-CoV-2.


Asunto(s)
Infecciones por Coronavirus/inmunología , Coronavirus/inmunología , Interferones/inmunología , Virus de la Diarrea Epidémica Porcina/inmunología , Vacunas Atenuadas/inmunología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Betacoronavirus/inmunología , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/prevención & control , Diarrea/patología , Diarrea/virología , Modelos Animales de Enfermedad , Endorribonucleasas/antagonistas & inhibidores , Heces/virología , Íleon/patología , Inmunidad Innata , Yeyuno/patología , Pandemias , Neumonía Viral/inmunología , Virus de la Diarrea Epidémica Porcina/genética , ARN Viral , ARN Polimerasa Dependiente del ARN , SARS-CoV-2 , Porcinos , Enfermedades de los Porcinos/virología , Células Vero , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología
17.
Arch Biochem Biophys ; 700: 108771, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33485847

RESUMEN

In the current study, a structure-based virtual screening paradigm was used to screen a small molecular database against the Non-structural protein 15 (Nsp15) endoribonuclease of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 is the causative agent of the recent outbreak of coronavirus disease 2019 (COVID-19) which left the entire world locked down inside the home. A multi-step molecular docking study was performed against antiviral specific compounds (~8722) collected from the Asinex antiviral database. The less or non-interacting molecules were wiped out sequentially in the molecular docking. Further, MM-GBSA based binding free energy was estimated for 26 compounds which shows a high affinity towards the Nsp15. The drug-likeness and pharmacokinetic parameters of all 26 compounds were explored, and five molecules were found to have an acceptable pharmacokinetic profile. Overall, the Glide-XP docking score and Prime-MM-GBSA binding free energy of the selected molecules were explained strong interaction potentiality towards the Nsp15 endoribonuclease. The dynamic behavior of each molecule with Nsp15 was assessed using conventional molecular dynamics (MD) simulation. The MD simulation information was strongly favors the Nsp15 and each identified ligand stability in dynamic condition. Finally, from the MD simulation trajectories, the binding free energy was estimated using the MM-PBSA method. Hence, the proposed final five molecules might be considered as potential Nsp15 modulators for SARS-CoV-2 inhibition.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Endorribonucleasas/antagonistas & inhibidores , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Antivirales/química , Antivirales/farmacocinética , COVID-19/metabolismo , Bases de Datos de Compuestos Químicos , Evaluación Preclínica de Medicamentos , Endorribonucleasas/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Humanos , Técnicas In Vitro , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Interfaz Usuario-Computador , Proteínas no Estructurales Virales/química
18.
Intervirology ; 64(2): 55-68, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33454715

RESUMEN

BACKGROUND: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) epidemic has resulted in thousands of infections and deaths worldwide. Several therapies are currently undergoing clinical trials for the treatment of SARS-CoV-2 infection. However, the development of new drugs and the repositioning of existing drugs can only be achieved after the identification of potential therapeutic targets within structures, as this strategy provides the most precise solution for developing treatments for sudden epidemic infectious diseases. SUMMARY: In the current investigation, crystal and cryo-electron microscopy structures encoded by the SARS-CoV-2 genome were systematically examined for the identification of potential drug targets. These structures include nonstructural proteins (Nsp-9; Nsp-12; and Nsp-15), nucleocapsid (N) proteins, and the main protease (Mpro). Key Message: The structural information reveals the presence of many potential alternative therapeutic targets, primarily involved in interaction between N protein and Nsp3, forming replication-transcription complexes (RTCs) which might be a potential drug target for effective control of current SARS-CoV-2 pandemic. RTCs consist of 16 nonstructural proteins (Nsp1-16) that play the most essential role in the synthesis of viral RNA. Targeting the physical linkage between the envelope and single-stranded positive RNA, a process facilitated by matrix proteins may provide a good alternative strategy. Our current study provides useful information for the development of new lead compounds against SARS-CoV-2 infections.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Proteínas de Unión al ARN/química , SARS-CoV-2/metabolismo , Antivirales/química , Antivirales/farmacología , COVID-19/virología , Humanos , Modelos Moleculares , Terapia Molecular Dirigida , ARN Viral/química , ARN Viral/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , SARS-CoV-2/genética
19.
Proc Natl Acad Sci U S A ; 114(21): E4251-E4260, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28484023

RESUMEN

Coronaviruses are positive-sense RNA viruses that generate double-stranded RNA (dsRNA) intermediates during replication, yet evade detection by host innate immune sensors. Here we report that coronavirus nonstructural protein 15 (nsp15), an endoribonuclease, is required for evasion of dsRNA sensors. We evaluated two independent nsp15 mutant mouse coronaviruses, designated N15m1 and N15m3, and found that these viruses replicated poorly and induced rapid cell death in mouse bone marrow-derived macrophages. Infection of macrophages with N15m1, which expresses an unstable nsp15, or N15m3, which expresses a catalysis-deficient nsp15, activated MDA5, PKR, and the OAS/RNase L system, resulting in an early, robust induction of type I IFN, PKR-mediated apoptosis, and RNA degradation. Immunofluorescence imaging of nsp15 mutant virus-infected macrophages revealed significant dispersal of dsRNA early during infection, whereas in WT virus-infected cells, the majority of the dsRNA was associated with replication complexes. The loss of nsp15 activity also resulted in greatly attenuated disease in mice and stimulated a protective immune response. Taken together, our findings demonstrate that coronavirus nsp15 is critical for evasion of host dsRNA sensors in macrophages and reveal that modulating nsp15 stability and activity is a strategy for generating live-attenuated vaccines.


Asunto(s)
Coronavirus/genética , Coronavirus/inmunología , Macrófagos/inmunología , ARN Bicatenario/genética , Proteínas no Estructurales Virales/genética , Animales , Apoptosis/genética , Apoptosis/inmunología , Línea Celular , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Cricetinae , Endorribonucleasas/metabolismo , Activación Enzimática/genética , Inmunidad Innata/inmunología , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Helicasa Inducida por Interferón IFIH1/metabolismo , Macrófagos/virología , Ratones , Proteínas no Estructurales Virales/inmunología
20.
Molecules ; 25(23)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271751

RESUMEN

SARS-CoV-2 is a positive-stranded RNA virus that bundles its genomic material as messenger-sense RNA in infectious virions and replicates these genomes through RNA intermediates. Several virus-encoded nonstructural proteins play a key role during the viral life cycle. Endoribonuclease NSP15 is vital for the replication and life cycle of the virus, and is thus considered a compelling druggable target. Here, we performed a combination of multiscoring virtual screening and molecular docking of a library of 1624 natural compounds (Nuclei of Bioassays, Ecophysiology and Biosynthesis of Natural Products (NuBBE) database) on the active sites of NSP15 (PDB:6VWW). After sequential high-throughput screening by LibDock and GOLD, docking optimization by CDOCKER, and final scoring by calculating binding energies, top-ranked compounds NuBBE-1970 and NuBBE-242 were further investigated via an indepth molecular-docking and molecular-dynamics simulation of 60 ns, which revealed that the binding of these two compounds with active site residues of NSP15 was sufficiently strong and stable. The findings strongly suggest that further optimization and clinical investigations of these potent compounds may lead to effective SARS-CoV-2 treatment.


Asunto(s)
Antivirales/farmacología , Endorribonucleasas/química , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas no Estructurales Virales/química , Antivirales/química , Antivirales/farmacocinética , Dominio Catalítico , Endorribonucleasas/metabolismo , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas no Estructurales Virales/metabolismo , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda