Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Sci Technol ; 56(3): 1594-1604, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35061386

RESUMEN

Water uptake by thin organic films and organic particles on glass substrates at 80% relative humidity was investigated using atomic force microscopy-infrared (AFM-IR) spectroscopy. Glass surfaces exposed to kitchen cooking activities show a wide variability of coverages from organic particles and organic thin films. Water uptake, as measured by changes in the volume of the films and particles, was also quite variable. A comparison of glass surfaces exposed to kitchen activities to model systems shows that they can be largely represented by oxidized oleic acid and carboxylate groups on long and medium hydrocarbon chains (i.e., fatty acids). Overall, we demonstrate that organic particles and thin films that cover glass surfaces can take up water under indoor-relevant conditions but that the water content is not uniform. The spatial heterogeneity of the changes in these aged glass surfaces under dry (5%) and wet (80%) conditions is quite marked, highlighting the need for studies at the nano- and microscale.


Asunto(s)
Culinaria , Agua , Vidrio , Microscopía de Fuerza Atómica/métodos , Espectrofotometría Infrarroja , Agua/química
2.
Molecules ; 24(13)2019 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-31252565

RESUMEN

The emission properties of three 4-azafluorenone and five new α-carboline fluorophores in both solution and thin solid films were investigated. Fluorescence of the azafluorenone is clearly enhanced in thin solid films due to the presence of phenyl/biphenyl rotors, and these derivatives can be classified as green Aggregation-Induced Emission luminogens (AIEgens) with a non-emissive heteroaromatic core structure. Compared to azafluorenones, emission of α-carbolines is hypsochromically shifted to the blue region of the electromagnetic spectrum, and most of these derivatives exhibit strong violet-blue fluorescence in both solution and thin solid film layers. Further, the effective mobility and electroluminescence of new α-carbolines were investigated in prepared organic field-effect transistors and organic light-emitting diodes, respectively.


Asunto(s)
Carbolinas/síntesis química , Fluorenos/síntesis química , Colorantes Fluorescentes/síntesis química , Carbolinas/química , Fluorenos/química , Colorantes Fluorescentes/química , Estructura Molecular , Soluciones
3.
Macromol Rapid Commun ; 39(18): e1800391, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30073723

RESUMEN

Organic dipolar molecules are an emerging class of light harvesters useful in electronic applications and have captured new urgency with the design and synthesis of new molecular structures for device testing. However, research has not evolved beyond the cyclical thin film preparation-device testing-chemical structural modification approach. Without an understanding of polymorphism, molecular photophysics at the interface or metastable morphologies that regulate charge carrier dynamics, it is not obvious a priori if a new molecular structure will produce a suitable thin film morphology for superior device performance without developing structure-function relationships that consider morphology and photophysics. Dipolar, light harvesting molecules are synthesized with a covalent, para-functionalized triphenylamine donor (D) and acceptor (A) in π-conjugated structures, D-A1 and D-A1 -A2 , that have previously achieved 9.6% power conversion efficiency in thermally evaporated organic solar cell devices with C70 . Solution processing and morphological manipulation are hypothesized to reduce ultrafast radiative charge recombination, unique to dipolar structures, that prevents full charge separation to the fullerene. The photophysics of the D-A interface using femtosecond transient absorption spectroscopy is explained, and microscopy data reveal a newly discovered, supramolecular amorphous polymer metastable state presented as a transient absorption assisted strategy for photofunctional polymorph design.


Asunto(s)
Compuestos de Anilina/síntesis química , Luz , Polímeros/síntesis química , Compuestos de Anilina/química , Estructura Molecular , Polímeros/química , Espectrofotometría Ultravioleta
4.
Chemistry ; 23(57): 14316-14322, 2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-28815774

RESUMEN

When chromophores are brought into close proximity, noncovalent interactions (π-π/CH-π) can lead to the formation of excitonically coupled states, which bestow new photophysical properties upon the aggregates. Because the properties of the new states not only depend on the strength of intermolecular interactions, but also on the relative orientation, supramolecular assemblies, where these parameters can be varied in a deliberate fashion, provide novel possibilities for the control of photophysical properties. This work reports that core-substituted naphthalene diimides (cNDIs) can be incorporated into surface-mounted metal- organic structures/frameworks (SURMOFs) to yield optical properties strikingly different from conventional aggregates of such molecules, for example, formed in solution or by crystallization. Organic linkers are used, based on cNDIs, well-known organic chromophores with numerous applications in different optoelectronic devices, to fabricate MOF thin films on transparent substrates. A thorough characterization of the properties of these highly ordered chromophoric assemblies reveals the presence of non-emissive excited states in the crystalline material. Structural modulations provide further insights into the nature of the coupling that gives rise to an excited-state energy level in the periodic structure.

5.
J Synchrotron Radiat ; 23(Pt 5): 1110-7, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27577764

RESUMEN

A compact high-speed X-ray atomic force microscope has been developed for in situ use in normal-incidence X-ray experiments on synchrotron beamlines, allowing for simultaneous characterization of samples in direct space with nanometric lateral resolution while employing nanofocused X-ray beams. In the present work the instrument is used to observe radiation damage effects produced by an intense X-ray nanobeam on a semiconducting organic thin film. The formation of micrometric holes induced by the beam occurring on a timescale of seconds is characterized.

6.
J Synchrotron Radiat ; 23(Pt 3): 729-34, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27140152

RESUMEN

Dynamical scattering effects are observed in grazing-incidence X-ray diffraction experiments using an organic thin film of 2,2':6',2''-ternaphthalene grown on oxidized silicon as substrate. Here, a splitting of all Bragg peaks in the out-of-plane direction (z-direction) has been observed, the magnitude of which depends both on the incidence angle of the primary beam and the out-of-plane angle of the scattered beam. The incident angle was varied between 0.09° and 0.25° for synchrotron radiation of 10.5 keV. This study reveals comparable intensities of the split peaks with a maximum for incidence angles close to the critical angle of total external reflection of the substrate. This observation is rationalized by two different scattering pathways resulting in diffraction peaks at different positions at the detector. In order to minimize the splitting, the data suggest either using incident angles well below the critical angle of total reflection or angles well above, which sufficiently attenuates the contributions from the second scattering path. This study highlights that the refraction of X-rays in (organic) thin films has to be corrected accordingly to allow for the determination of peak positions with sufficient accuracy. Based thereon, a reliable determination of the lattice constants becomes feasible, which is required for crystallographic structure solutions from thin films.

7.
J Cryst Growth ; 447: 73-79, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30093733

RESUMEN

The pigment 6,6'-dibromoindigo (Tyrian purple) shows strong intermolecular hydrogen bonds and the film formation is, therefore, expected to be influenced by the polar character of the substrate surface. Thin films of Tyrian purple were prepared by physical vapor deposition on a variety of substrates with different surface energies: from highly polar silicon dioxide surfaces to hydrophobic polymer surfaces. The crystallographic properties were investigated by X-ray diffraction techniques such as X-ray reflectivity and grazing incidence X-ray diffraction. In all cases, crystallites with "standing" molecules relative to the substrate surface were observed independently of the substrate surface energy. In the case of polymer surfaces, additional crystallites are formed containing "lying" molecules with their aromatic planes parallel to the substrate surface. Small differences in the crystallographic lattice constants were observed as a function of substrate surface energy, the corresponding small changes in the molecular packing are explained by a variation of the hydrogen bond geometries. This work reveals that despite the limited influence of the surface energy on the molecular orientation, the crystalline packing of Tyrian purple within thin films is altered and slightly different structures form.

8.
Front Chem ; 12: 1355350, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38380395

RESUMEN

Energy dissipation and the transfer rate of adsorbed molecules do not only determine the rates of chemical reactions but are also a key factor that often dictates the growth of organic thin films. Here, we present a study of the surface dynamical motion of cobalt phthalocyanine (CoPc) on Ag(100) in reciprocal space based on the helium spin-echo technique in comparison with previous scanning tunnelling microscopy studies. It is found that the activation energy for lateral diffusion changes from 150 meV at 45-50 K to ≈100 meV at 250-350 K, and that the process goes from exclusively single jumps at low temperatures to predominantly long jumps at high temperatures. We thus illustrate that while the general diffusion mechanism remains similar, upon comparing the diffusion process over widely divergent time scales, indeed different jump distributions and a decrease of the effective diffusion barrier are found. Hence a precise molecular-level understanding of dynamical processes and thin film formation requires following the dynamics over the entire temperature scale relevant to the process. Furthermore, we determine the diffusion coefficient and the atomic-scale friction of CoPc and establish that the molecular motion on Ag(100) corresponds to a low friction scenario as a consequence of the additional molecular degrees of freedom.

9.
Adv Mater ; 36(8): e2306665, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37738605

RESUMEN

The initiated chemical vapor deposition (iCVD) technique is an all-dry method for designing organic and hybrid polymers. Unlike methods utilizing liquids or line-of-sight arrival, iCVD provides conformal surface modification over intricate geometries. Uniform, high-purity, and pinhole-free iCVD films can be grown with thicknesses ranging from >15 µm to <5 nm. The mild conditions permit damage-free growth directly onto flexible substrates, 2D materials, and liquids. Novel iCVD polymer morphologies include nanostructured surfaces, nanoporosity, and shaped particles. The well-established fundamentals of iCVD facilitate the systematic design and optimization of polymers and copolymers. The functional groups provide fine-tuning of surface energy, surface charge, and responsive behavior. Further reactions of the functional groups in the polymers can yield either surface modification, compositional gradients through the layer thickness, or complete chemical conversion of the bulk film. The iCVD polymers are integrated into multilayer device structures as desired for applications in sensing, electronics, optics, electrochemical energy storage, and biotechnology. For these devices, hybrids offer higher values of refractive index and dielectric constant. Multivinyl monomers typically produce ultrasmooth and pinhole-free and mechanically deformable layers and robust interfaces which are especially promising for electronic skins and wearable optoelectronics.

10.
Adv Mater ; 35(1): e2203541, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36281793

RESUMEN

Hemispherical image sensors simplify lens designs, reduce optical aberrations, and improve image resolution for compact wide-field-of-view cameras. To achieve hemispherical image sensors, organic materials are promising candidates due to the following advantages: tunability of optoelectronic/spectral response and low-temperature low-cost processes. Here, a photolithographic process is developed to prepare a hemispherical image sensor array using organic thin film photomemory transistors with a density of 308 pixels per square centimeter. This design includes only one photomemory transistor as a single active pixel, in contrast to the conventional pixel architecture, consisting of select/readout/reset transistors and a photodiode. The organic photomemory transistor, comprising light-sensitive organic semiconductor and charge-trapping dielectric, is able to achieve a linear photoresponse (light intensity range, from 1 to 50 W m-2 ), along with a responsivity as high as 1.6 A W-1 (wavelength = 465 nm) for a dark current of 0.24 A m-2 (drain voltage = -1.5 V). These observed values represent the best responsivity for similar dark currents among all the reported hemispherical image sensor arrays to date. A transfer method was further developed that does not damage organic materials for hemispherical organic photomemory transistor arrays. These developed techniques are scalable and are amenable for other high-resolution 3D organic semiconductor devices.

11.
ACS Appl Mater Interfaces ; 14(14): 16830-16838, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35352935

RESUMEN

Crystalline organic semiconducting thin films from the benchmark molecule C8-BTBT-C8 were obtained using physical vapor deposition and various solution-based methods. Utilizing atomic force microscopy and X-ray spectromicroscopy, we illustrate the influence of the underlying growth mechanism and determine the highly preparation-dependent orientation of the thiophene backbone. We observe a continuous trend for crystalline C8-BTBT-C8 thin film domains to extend into the square millimeter-range under near-equilibrium growth conditions. For such well-defined systems, electron diffraction tomography allows us to precisely determine the unit cell directly after film deposition and to reveal an 8° molecular tilt angle with respect to the surface normal. This finding is in almost perfect accordance with the values derived from near-edge X-ray absorption fine structure linear dichroism. Within this work, we shine a light on both the successes and challenges connected to the realization of potent, thiophene-based semiconducting films, paving the way toward square centimeter-sized ultrathin organic crystals and their application in organic circuitry.

12.
Polymers (Basel) ; 13(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810519

RESUMEN

Three novel conjugated polyazomethines have been obtained by polycondensation of diamines consisting of the diimine system, with either 2,5-bis(octyloxy)terephthalaldehyde or 9-(2-ethylhexyl)carbazole-3,6-dicarboxaldehyde. Partial replacement of bulky solubilizing substituents with the smaller side groups has allowed to investigate the effect of supramolecular organization. All obtained compounds have been subsequently identified using the NMR and FTIR spectroscopies and characterized by the thermogravimetric analysis, differential scanning calorimetry, cyclic voltammetry, UV-Vis spectroscopy, and X-ray diffraction. Investigated polymers have shown a good thermal stability and high glass transition temperatures. X-ray measurements have proven that partial replacement of octyloxy side chains with smaller methoxy groups induced a better planarization of macromolecule. Such modification has tuned the LUMO level of this molecule and caused a bathochromic shift of the lowest energy absorption band. On the contrary, imines consisting of N-ethylhexyl substituted carbazole units have not been so clearly affected by alkyl chain length modification. Photovoltaic activity of imines (acting as a donor) in bulk-heterojunction systems has been observed for almost all studied compounds, blended with the fullerene derivative (PCBM) in various weight ratios.

13.
Nanomaterials (Basel) ; 10(12)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261138

RESUMEN

The matrix-assisted pulsed laser evaporation (MAPLE) technique was used for depositing thin films based on a recently developed conjugated polymer, poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)] (DPP-DTT) and fullerene C60 blends. The targets used in the MAPLE process were obtained by freezing chloroform solutions with different DPP-DTT:C60 weight ratios, with the MAPLE deposition being carried at a low laser fluence, varying the number of laser pulses. The structural, morphological, optical, and electrical properties of the DPP-DTT:C60 blend layers deposited by MAPLE were investigated in order to emphasize the influence of the DPP-DTT:C60 weight ratio and the number of laser pulses on these features. The preservation of the chemical structure of both DPP-DTT and C60 during the MAPLE deposition process is confirmed by the presence of their vibrational fingerprints in the FTIR spectra of the organic thin films. The UV-VIS and photoluminescence spectra of the obtained organic layers reveal the absorption bands attributed to DPP-DTT and the emission bands associated with C60, respectively. The morphology of the DPP-DTT:C60 blend films consists of aggregates and fibril-like structures. Regardless the DPP-DTT:C60 weight ratio and the number of laser pulses used during the MAPLE process, the current-voltage characteristics recorded, under illumination, of all structures developed on the MAPLE deposited layers evidenced a photovoltaic cell behavior. The results proved that the MAPLE emerges as a viable technique for depositing thin films based on conjugated polymers featured by a complex structure that can be further used to develop devices for applications in the solar cell area.

14.
Ultramicroscopy ; 184(Pt A): 46-50, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28843906

RESUMEN

Understanding the mechanical properties of organic semiconductors is essential to their electronic and photovoltaic applications. Despite a large volume of research directed toward elucidating the chemical, physical and electronic properties of these materials, little attention has been directed toward understanding their thermo-mechanical behavior. Here, we report the ultrafast imaging of surface acoustic waves (SAWs) on the surface of the Poly(3-hexylthiophene-2,5-diyl) (P3HT) thin film at the picosecond and nanosecond timescales. We then use these images to measure the propagation velocity of SAWs, which we then employ to determine the Young's modulus of P3HT. We further validate our experimental observation by performing a semi-empirical transient thermoelastic finite element analysis. Our findings demonstrate the potential of ultrafast electron microscopy to not only probe charge carrier dynamics in materials as previously reported, but also to measure their mechanical properties with great accuracy. This is particularly important when in situ characterization of stiffness for thin devices and nanomaterials is required.

15.
Beilstein J Nanotechnol ; 8: 892-905, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28503400

RESUMEN

To study the implications of highly space-demanding organic moieties on the properties of self-assembled monolayers (SAMs), triptycyl thiolates and selenolates with and without methylene spacers on Au(111) surfaces were comprehensively studied using ultra-high vacuum infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy and thermal desorption spectroscopy. Due to packing effects, the molecules in all monolayers are substantially tilted. In the presence of a methylene spacer the tilt is slightly less pronounced. The selenolate monolayers exhibit smaller defect densities and therefore are more densely packed than their thiolate analogues. The Se-Au binding energy in the investigated SAMs was found to be higher than the S-Au binding energy.

16.
IUCrJ ; 4(Pt 5): 555-559, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28989712

RESUMEN

Using high-brilliance high-energy synchrotron X-ray radiation, for the first time the total scattering of a thin organic glass film deposited on a strongly scattering inorganic substrate has been measured in transmission mode. The organic thin film was composed of the weakly scattering pharmaceutical substance indomethacin in the amorphous state. The film was 130 µm thick atop a borosilicate glass substrate of equal thickness. The atomic pair distribution function derived from the thin-film measurement is in excellent agreement with that from bulk measurements. This ability to measure the total scattering of amorphous organic thin films in transmission will enable accurate in situ structural studies for a wide range of materials.

17.
Beilstein J Nanotechnol ; 8: 1469-1475, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28900600

RESUMEN

We report on a new approach for the fabrication of ferromagnetic molecular thin films. Co-evaporated films of manganese phthalocyanine (MnPc) and tetracyanoquinodimethane (TCNQ) have been produced by organic molecular beam deposition (OMBD) on rigid (glass, silicon) and flexible (Kapton) substrates kept at room temperature. The MnPc:TCNQ films are found to be entirely amorphous due to the size mismatch of the molecules. However, by annealing while covering the samples highly crystalline MnPc films in the ß-polymorph can be obtained at 60 °C lower than when starting with pure MnPc films. The resulting films exhibit substantial coercivity (13 mT) at 2 K and a Curie temperature of 11.5 K.

18.
ACS Appl Mater Interfaces ; 9(48): 42020-42028, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29135216

RESUMEN

The great majority of electronic and optoelectronic devices depend on interfaces between p-type and n-type semiconductors. Finding matching donor-acceptor systems in molecular semiconductors remains a challenging endeavor because structurally compatible molecules may not necessarily be suitable with respect to their optical and electronic properties, and the large exciton binding energy in these materials may favor bound electron-hole pairs rather than free carriers or charge transfer at an interface. Regardless, interfacial charge-transfer exciton states are commonly considered as an intermediate step to achieve exciton dissociation. The formation efficiency and decay dynamics of such states will strongly depend on the molecular makeup of the interface, especially the relative alignment of donor and acceptor molecules. Structurally well-defined pentacene-perfluoropentacene heterostructures of different molecular orientations are virtually ideal model systems to study the interrelation between molecular packing motifs at the interface and their electronic properties. Comparing the emission dynamics of the heterosystems and the corresponding unitary films enables accurate assignment of every observable emission signal in the heterosystems. These heterosystems feature two characteristic interface-specific luminescence channels at around 1.4 and 1.5 eV that are not observed in the unitary samples. Their emission strength strongly depends on the molecular alignment of the respective donor and acceptor molecules, emphasizing the importance of structural control for device construction.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 173: 800-808, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27810771

RESUMEN

A coordination complex, manganese incorporated benzimidazole, thin films were prepared by chemical bath deposition method. Structural characterization of the deposited films, carried out by Fourier transform infrared spectroscopy, Raman and electron paramagnetic resonance spectral analyses, reveals the distorted tetrahedral environment of the metal ion with bis-benzimidazole ligand. Further the molecular composition of the deposited metal complex was estimated by energy-dispersive X-ray spectroscopy. The prepared thin films were thermally treated to study the effect of annealing temperature on the surface morphology and the results showed that the surface homogeneity of the films increased for thermally treated films up to 150°C. But distortion and voids were observed for the films annealed at 200°C. The Raman analysis reveals the molecular hydrogen bond distortion which leads to the evaporation of the metal complex from the thin film surface with respect to annealing temperature. The linear and nonlinear optical properties of the as prepared and annealed films were studied using ultraviolet-visible transmittance spectroscopy, second harmonic generation and Z-scan analyses. Films annealed at 150°C show a better linear transmittance in the visible region and larger SHG efficiency and third order nonlinear susceptibility when compared with the other samples. Further, the film annealed at 150°C was subjected to optical switching analysis and demonstrated to have an inverted switching behavior.

20.
ACS Appl Mater Interfaces ; 7(43): 23912-9, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26451458

RESUMEN

We report a route to thin-film polymorphs of soluble TiOPc derivatives that exhibit similar near-IR absorptivities as vapor deposited thin-films of the parent TiOPc chromophore (phase-I and phase-II polymorphs) and demonstrate that solution-processed planar and bulk heterojunction solar cells fabricated with one of these derivatives exhibited photoactivity throughout the same near-IR wavelength range without compromising VOC. Solution-processed thin-films of soluble octakis(alkylthio)-substituted TiOPc derivatives 1-3 exhibit absorption extending to 1000 nm. When incorporated into OPV devices, the contributions from the lowest CT excitonic state (QB band) of 1 to device performance were evident in both PHJ and BHJ architectures, indicating sufficient driving force for PIET. This contribution was improved via intimate mixing of donor and acceptor molecules in a BHJ architecture, albeit with a decrease in efficiency. IPCE of the best performing BHJ device revealed a contribution from 1 exceeding that of acceptor PCBM, and extending to 1000 nm.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda