Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
Más filtros

Publication year range
1.
Antimicrob Agents Chemother ; : e0156323, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647294

RESUMEN

EVER206 (also known as SPR206) is a novel polymyxin analog that has shown in vitro potency and in vivo efficacy against multidrug-resistant (MDR) Gram-negative pathogens. This randomized, double-blinded, placebo-controlled, Phase I study evaluated the safety, tolerability, and pharmacokinetics of EVER206 in healthy Chinese subjects. After single administration of 50-300 mg EVER206, the Cmax ranged from 3.94 to 25.82 mg/L, and the AUC0-inf ranged from 12.42 to 101.67 h·mg/L. The plasma exposure displayed a linear relationship with the dose administered. After administration of 75 and 100 mg of EVER206 every 8 hours (q8 hour), a steady state was achieved on Day 2. The accumulation ratios of Cmax and AUC from Day 1 to Day 7 were in the range of 1.12 to 1.3. The elimination half-lives ranged from 2.86 to 4.32 hours in the single-ascending-dose (SAD) study and 4.71 to 6.18 hours in the multiple-ascending-dose (MAD) study. The urinary excretion of unchanged EVER206 increased with the dose, with the mean cumulative fraction ranging from 23.70% to 47.10%. EVER206 was safe and well-tolerated in Chinese healthy subjects. No severe treatment emerging adverse events (TEAEs), serious adverse events, or TEAEs leading to discontinuation were reported. The results of the present study demonstrated a similar safety profile of EVER206 with data reported in an earlier study on SPR206-101. The exposure of EVER206 in Chinese healthy subjects was higher than that in Australian healthy subjects. These results could enable further clinical development of EVER206 in Chinese patients with severe MDR Gram-negative pathogen infections.CLINICAL TRIALSThis study was registered at the Chinese Clinical Trial Registry under identifier ChiCTR2200056692.

2.
Pulm Pharmacol Ther ; 86: 102315, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009240

RESUMEN

OBJECTIVES: The aim of this study was to evaluate the efficacy and safety of inhaled antibiotics for adults with pneumonia by meta-analysis. METHODS: Literature retrieval was completed through five databases (PubMed, Embase, Cochrane Library, Web of Science and Scopus) by the deadline of May 31, 2024. The process of study selection and data extraction were performed independently by two reviewers. The quality of observational studies and randomized controlled trial (RCT) studies were evaluated by Newcastle Ottawa scale and Jadad scale, respectively. The primary outcomes included mortality, clinical cure, and microbiological cure. Secondary outcomes were recurrence and renal impairment. RESULTS: There were 30 studies were analyzed, including 12 RCT studies and 18 observational studies. Inhaled antibiotics did not significantly reduce mortality in RCT studies (odds ratio (OR) = 1.06, 95 % confidence interval (CI): 0.80-1.41). Inhaled antibiotics were associated with higher rates of clinical cure (OR = 1.47 95%CI: 0.82-2.66 in RCT studies and OR = 2.09, 95%CI: 1.36-3.21 in observational studies) and microbiological cure (OR = 7.00 in RCT studies and OR = 2.20 in observational studies). Subgroup analysis showed patients received inhaled antibiotics combined with intravenous administration and inhaled amikacin had better improvements of mortality, clinical cure and microbiological cure. Inhaled antibiotics were not associated with recurrence. The pooled OR of renal impairment were 0.65 (95%CI: 0.27-1.13; I-squared = 43.5 %, P = 0.124) and 0.63(95%CI: 0.26-1.11; I-squared = 69.0 %, P = 0.110) in RCT studies and observational studies, respectively. CONCLUSIONS: Inhaled antibiotics decreased risk of renal impairment and achieved significant improvements of clinical and microbiological cure in patients with pneumoniae.

3.
Eur J Clin Microbiol Infect Dis ; 43(7): 1407-1417, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733425

RESUMEN

PURPOSE: To evaluate the performance of the rapid colorimetric polymyxin B microelution (RCPEm) in determining polymyxin B resistance directly from Enterobacterales-positive blood cultures. METHODS: A set volume of positive blood culture bottles (diluted 1:10) was inoculated into a glucose-broth-phenol red solution (NP solution), where a polymyxin B disk was previously eluted (final concentration of 3 µg/mL). Test was read each 1 h for up to 4 h. Color change from red/orange to yellow indicated resistant isolates. Results were compared to the reference method, broth microdilution (BMD), performed from colonies grown on solid media from the same blood culture bottle. RESULTS: One hundred fifty-two Enterobacterales-positive blood cultures were evaluated, 22.4% (34/152) of them resistant to polymyxin B (including 6.6% with borderline MICs). When performing directly from positive blood cultures (RCPEm-BC), specificity and sensitivity were 99.1% and 94.1%, respectively. Of note, 79.4% (27/34) of truly resistant isolates required 3 h of incubation, compared to the 18 ± 2 h incubation that microtiter plates of BMD demand before reading can be performed. CONCLUSIONS: RCPEm directly from blood cultures has great potential to be part of the routine of clinical microbiology laboratories to establish polymyxin B susceptibility, impacting outcome of patients with bloodstream infections caused by carbapenem-resistant Enterobacterales.


Asunto(s)
Antibacterianos , Cultivo de Sangre , Colorimetría , Pruebas de Sensibilidad Microbiana , Polimixina B , Polimixina B/farmacología , Humanos , Colorimetría/métodos , Pruebas de Sensibilidad Microbiana/métodos , Antibacterianos/farmacología , Cultivo de Sangre/métodos , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/aislamiento & purificación , Sensibilidad y Especificidad , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/diagnóstico , Farmacorresistencia Bacteriana , Bacteriemia/microbiología , Bacteriemia/diagnóstico
4.
Infection ; 52(1): 19-28, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37878197

RESUMEN

OBJECTIVE: Carbapenem-resistant Enterobacteriaceae (CRE) pose a significant threat to human health and have emerged as a major public health concern. We aimed to compare the efficacy and the safety of ceftazidime-avibactam (CAZ-AVI) and polymyxin in the treatment of CRE infections. METHODS: A systematic review and meta-analysis was performed by searching the databases of EMBASE, PubMed, and the Cochrane Library. Published studies on the use of CAZ-AVI and polymyxin in the treatment of CRE infections were collected from the inception of the database until March 2023. Two investigators independently screened the literature according to the inclusion and exclusion criteria, evaluated the methodological quality of the included studies and extracted the data. The meta-analysis was performed using RevMan 5.4 software. RESULTS: Ten articles with 833 patients were included (CAZ-AVI 325 patients vs Polymyxin 508 patients). Compared with the patients who received polymyxin-based therapy, the patients who received CAZ-AVI therapy had significantly lower 30-days mortality (RR = 0.49; 95% CI 0.01-2.34; I2 = 22%; P < 0.00001), higher clinical cure rate (RR = 2.70; 95% CI 1.67-4.38; I2 = 40%; P < 0.00001), and higher microbial clearance rate (RR = 2.70; 95% CI 2.09-3.49; I2 = 0%; P < 0.00001). However, there was no statistically difference in the incidence of acute kidney injury between patients who received CAZ-AVI and polymyxin therapy (RR = 1.38; 95% CI 0.69-2.77; I2 = 22%; P = 0.36). In addition, among patients with CRE bloodstream infection, those who received CAZ-AVI therapy had significantly lower mortality than those who received polymyxin therapy (RR = 0.44; 95% CI 0.27-0.69, I2 = 26%, P < 0.00004). CONCLUSIONS: Compared to polymyxin, CAZ-AVI demonstrated superior clinical efficacy in the treatment of CRE infections, suggesting that CAZ-AVI may be a superior option for CRE infections.


Asunto(s)
Compuestos de Azabiciclo , Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Enterobacteriaceae , Humanos , Antibacterianos/uso terapéutico , Polimixinas/uso terapéutico , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Ceftazidima/uso terapéutico , Combinación de Medicamentos
5.
Crit Care ; 28(1): 49, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373973

RESUMEN

BACKGROUND: Nebulisation of antibiotics is a promising treatment for ventilator-associated pneumonia (VAP) caused by multidrug-resistant organisms. Ensuring effective antibiotic concentrations at the site of infection in the interstitial space fluid is crucial for clinical outcomes. Current assessment methods, such as epithelial lining fluid and tissue homogenates, have limitations in providing longitudinal pharmacokinetic data. MAIN BODY: Lung microdialysis, an invasive research technique predominantly used in animals, involves inserting probes into lung parenchyma to measure antibiotic concentrations in interstitial space fluid. Lung microdialysis offers unique advantages, such as continuous sampling, regional assessment of antibiotic lung concentrations and avoidance of bronchial contamination. However, it also has inherent limitations including the cost of probes and assay development, the need for probe calibration and limited applicability to certain antibiotics. As a research tool in VAP, lung microdialysis necessitates specialist techniques and resource-intensive experimental designs involving large animals undergoing prolonged mechanical ventilation. However, its potential impact on advancing our understanding of nebulised antibiotics for VAP is substantial. The technique may enable the investigation of various factors influencing antibiotic lung pharmacokinetics, including drug types, delivery devices, ventilator settings, interfaces and disease conditions. Combining in vivo pharmacokinetics with in vitro pharmacodynamic simulations can become feasible, providing insights to inform nebulised antibiotic dose optimisation regimens. Specifically, it may aid in understanding and optimising the nebulisation of polymyxins, effective against multidrug-resistant Gram-negative bacteria. Furthermore, lung microdialysis holds promise in exploring novel nebulisation therapies, including repurposed antibiotic formulations, bacteriophages and immunomodulators. The technique's potential to monitor dynamic biochemical changes in pneumonia, such as cytokines, metabolites and inflammation/infection markers, opens avenues for developing theranostic tools tailored to critically ill patients with VAP. CONCLUSION: In summary, lung microdialysis can be a potential transformative tool, offering real-time insights into nebulised antibiotic pharmacokinetics. Its potential to inform optimal dosing regimen development based on precise target site concentrations and contribute to development of theranostic tools positions it as key player in advancing treatment strategies for VAP caused by multidrug-resistant organisms. The establishment of international research networks, exemplified by LUMINA (lung microdialysis applied to nebulised antibiotics), signifies a proactive step towards addressing complexities and promoting multicentre experimental studies in the future.


Asunto(s)
Antibacterianos , Neumonía Asociada al Ventilador , Animales , Humanos , Microdiálisis , Neumonía Asociada al Ventilador/tratamiento farmacológico , Neumonía Asociada al Ventilador/microbiología , Pulmón/metabolismo , Respiración Artificial
6.
Crit Care ; 28(1): 239, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004760

RESUMEN

BACKGROUND: The optimal administration of polymyxins for treating multidrug-resistant gram-negative bacterial (MDR-GNB) pneumonia remains unclear. This study aimed to systematically assess the efficacy and safety of three polymyxin-containing regimens by conducting a comprehensive network meta-analysis. METHODS: We comprehensively searched nine databases. Overall mortality was the primary outcome, whereas the secondary outcomes encompassed microbial eradication rate, clinical success, acute kidney injury, and incidence of bronchospasm. Extracted study data were analyzed by pairwise and network meta-analyses. Version 2 of the Cochrane risk-of-bias tool and the Risk of Bias in Nonrandomized Studies of Interventions (ROBINS-I) assessment tool were used to assess the risk of bias in randomized trials and cohort studies, respectively. RESULTS: This study included 19 observational studies and 3 randomized controlled trials (RCTs), encompassing 3318 patients. Six studies with high risk of bias were excluded from the primary analysis. In the pairwise meta-analysis, compared to the intravenous (IV) polymyxin-containing regimen, the intravenous plus inhaled (IV + IH) polymyxin-containing regimen showed a significant decrease in overall mortality, while no statistically significant difference was found in the inhaled (IH) polymyxin-containing regimen. The network meta-analysis indicated that the IV + IH polymyxin-containing regimen had significantly lower overall mortality (OR 0.67; 95% confidence interval [CI] 0.50-0.88), higher clinical success rate (OR 1.90; 95% CI 1.20-3.00), better microbial eradication rate (OR 2.70; 95% CI 1.90-3.90) than the IV polymyxin-containing regimen, and significantly better microbial eradication rate when compared with the IH polymyxin-containing regimen (OR 2.30; 95% CI 1.30-4.20). Furthermore, compared with IV + IH and IV polymyxin-containing regimens, the IH polymyxin-containing regimen showed a significant reduction in acute kidney injury. CONCLUSIONS: Our study indicates that among the three administration regimens, the IV + IH polymyxin-containing regimen may be the most effective for treating MDR-GNB pneumonia, with a significantly lower overall mortality compared to the IV regimen and a considerably higher microbial eradication rate compared to the IH regimen. The IH regimen may be considered superior to the IV regimen due to its substantially lower incidence of acute kidney injury, even though the reduction in overall mortality was not significant.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Infecciones por Bacterias Gramnegativas , Polimixinas , Humanos , Antibacterianos/uso terapéutico , Antibacterianos/administración & dosificación , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/mortalidad , Metaanálisis en Red , Polimixinas/uso terapéutico , Polimixinas/administración & dosificación
7.
Ann Clin Microbiol Antimicrob ; 23(1): 60, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965559

RESUMEN

BACKGROUND: Gram-negative bacteria (GNB) are becoming increasingly resistant to a wide variety of antibiotics. There are currently limited treatments for GNB, and the combination of antibiotics with complementary mechanisms has been reported to be a feasible strategy for treating GNB infection. The inability to cross the GNB outer membrane (OM) is an important reason that a broad spectrum of Gram-positive only class of antibiotics (GPOAs) is lacking. Polymyxins may help GPOAs to permeate by disrupting OM of GNB. OBJECTIVE: To identify what kind of GPOAs can be aided to broaden their anti-GNB spectrum by polymyxins, we systematically investigated the synergy of eight GPOAs in combination with colistin (COL) and polymyxin B (PMB) against GNB in vitro. METHODS: The synergistic effect of COL or PMB and GPOAs combinations against GNB reference strains and clinical isolates were determined by checkerboard tests. The killing kinetics of the combinations were assessed using time-kill assays. RESULTS: In the checkerboard tests, polymyxins-GPOAs combinations exert synergistic effects characterized by species and strain specificity. The synergistic interactions on P. aeruginosa strains are significantly lower than those on strains of A. baumannii, K. pneumoniae and E. coli. Among all the combinations, COL has shown the best synergistic effect in combination with dalbavancin (DAL) or oritavancin (ORI) versus almost all of the strains tested, with FICIs from 0.16 to 0.50 and 0.13 to < 0.28, respectively. In addition, the time-kill assays demonstrated that COL/DAL and COL/ORI had sustained bactericidal activity. CONCLUSIONS: Our results indicated that polymyxins could help GPOAs to permeate the OM of specific GNB, thus showed synergistic effects and bactericidal effects in the in vitro assays. In vivo combination studies should be further conducted to validate the results of this study.


Asunto(s)
Antibacterianos , Colistina , Sinergismo Farmacológico , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana , Polimixina B , Polimixinas , Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Polimixinas/farmacología , Polimixina B/farmacología , Humanos , Colistina/farmacología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos
8.
Foodborne Pathog Dis ; 21(8): 521-524, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38804146

RESUMEN

Plasmid-mediated colistin resistance is an emerging One Health challenge at the human-food-environment interface. In this study, 12 colistin-resistant Escherichia coli carrying mcr-1.1 gene were characterized using whole-genome sequencing. This is the first report from locally produced chicken meat in the United Arab Emirates. The characterized isolates harbored virulence-associated factors ranging from 4 to 17 genes per isolate. The multilocus sequence type 1011 was identified in 5 (41.6%) isolates. Six (50.0%) of the isolates harbored blaCTX-M-55. All of the E. coli isolates contained Incl2 plasmids. This study highlights for the first time chicken meat as a potential reservoir of mcr-1.1 carrying E. coli in the UAE. This study has implications for food safety and underscores the need for comprehensive surveillance strategies to monitor the spread of colistin resistance. Results presented in this short communication address knowledge gaps on the epidemiology of plasmid-mediated colistin resistance in the Middle East food production chain.


Asunto(s)
Antibacterianos , Pollos , Colistina , Farmacorresistencia Bacteriana , Proteínas de Escherichia coli , Escherichia coli , Carne , Plásmidos , Animales , Colistina/farmacología , Emiratos Árabes Unidos/epidemiología , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/efectos de los fármacos , Plásmidos/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Carne/microbiología , Proteínas de Escherichia coli/genética , Secuenciación Completa del Genoma , Genómica , Microbiología de Alimentos , Pruebas de Sensibilidad Microbiana , Humanos , Tipificación de Secuencias Multilocus , Factores de Virulencia/genética , Genoma Bacteriano
9.
Antimicrob Agents Chemother ; 67(11): e0050523, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37823647

RESUMEN

SPR206 is a novel polymyxin derivative with potent in vitro activity against susceptible and multidrug-resistant strains of Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Enterobacter species. SPR206 is eliminated renally. The safety, tolerability, and pharmacokinetics (PK) of SPR206 were evaluated in healthy subjects with normal renal function (Cohort 1) and subjects with varying degrees of renal impairment (RI) (Cohorts 2-4) or end-stage renal disease (ESRD) on hemodialysis (HD) (Cohort 5). Subjects in Cohorts 1-4 received a 100-mg intravenous (IV) dose of SPR206. Subjects in Cohort 5 received a 100-mg IV dose within 2 h after HD on day 1 and 1 h before HD on day 5. Safety and PK analyses included 37 subjects. Mostly mild but no serious treatment-related adverse events were reported. Systemic exposure to SPR206 increased as renal function decreased, with mean area under the concentration-time curve from time 0 to the last quantifiable concentration (AUC0-last) values 39% to 239% greater in subjects with RI vs healthy subjects. Mean plasma clearance (CL) of SPR206 decreased with decreasing renal function (29% to 76% lower vs healthy subjects). In subjects with ESRD, AUC0-last decreased by 51%, and CL increased by 92% for dialyzed vs nondialyzed conditions. SPR206 was excreted in urine within 12 h in healthy subjects and subjects with mild RI (Cohort 2) but was prolonged in those with moderate and severe RI (Cohorts 3 and 4, respectively). In summary, SPR206 was generally safe and well tolerated, and the PK of SPR206 was well characterized in subjects with RI.


Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal , Humanos , Fallo Renal Crónico/tratamiento farmacológico , Diálisis Renal , Administración Intravenosa , Tasa de Depuración Metabólica , Área Bajo la Curva
10.
Antimicrob Agents Chemother ; : e0050023, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37314343

RESUMEN

With limited and often toxic treatment options, carbapenem-resistant Gram-negative infections are associated with significant mortality. Cefepime-zidebactam is a promising antibiotic option undergoing a phase 3 trial that has activity against diverse antibiotic-resistant mechanisms in Gram-negative pathogens due to its ß-lactam enhancer mechanism, mediating multiple PBP binding. We report a case of disseminated infection caused by a New Delhi metallo-ß-lactamase-producing, extensively drug-resistant Pseudomonas aeruginosa isolate in a patient with acute T-cell leukemia, successfully managed with cefepime-zidebactam as a salvage therapy.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Infecciones por Pseudomonas , Adulto , Humanos , Pseudomonas aeruginosa/metabolismo , Infecciones por Pseudomonas/tratamiento farmacológico , Terapia Recuperativa , Cefalosporinas/uso terapéutico , Antibacterianos/uso terapéutico , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Compuestos de Azabiciclo/uso terapéutico , Pruebas de Sensibilidad Microbiana
11.
Eur J Clin Microbiol Infect Dis ; 42(6): 669-679, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36973378

RESUMEN

Colistin is a last resort drug for the treatment of multiple drug-resistant (MDR) Gram-negative bacterial infections. Rapid methods to detect resistance are highly desirable. Here, we evaluated the performance of a commercially available MALDI-TOF MS-based assay for colistin resistance testing in Escherichia coli at two different sites. Ninety clinical E. coli isolates were provided by France and tested in Germany and UK using a MALDI-TOF MS-based colistin resistance assay. Lipid A molecules of the bacterial cell membrane were extracted using the MBT Lipid Xtract Kit™ (RUO; Bruker Daltonics, Germany). Spectra acquisition and evaluation were performed by the MBT HT LipidART Module of MBT Compass HT (RUO; Bruker Daltonics) on a MALDI Biotyper® sirius system (Bruker Daltonics) in negative ion mode. Phenotypic colistin resistance was determined by broth microdilution (MICRONAUT MIC-Strip Colistin, Bruker Daltonics) and used as a reference. Comparing the results of the MALDI-TOF MS-based colistin resistance assay with the data of the phenotypic reference method for the UK, sensitivity and specificity for the detection of colistin resistance were 97.1% (33/34) and 96.4% (53/55), respectively. Germany showed 97.1% (33/34) sensitivity and 100% (55/55) specificity for the detection of colistin resistance by MALDI-TOF MS. Applying the MBT Lipid Xtract™ Kit in combination with MALDI-TOF MS and dedicated software showed excellent performances for E. coli. Analytical and clinical validation studies must be performed to demonstrate the performance of the method as a diagnostic tool.


Asunto(s)
Colistina , Escherichia coli , Humanos , Colistina/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Alemania , Francia
12.
Ann Clin Microbiol Antimicrob ; 22(1): 71, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563615

RESUMEN

BACKGROUND: Fast and accurate detection of polymyxins resistance is necessary as they remain the last resources to treat infections caused by Carbapenem-resistant Enterobacterales in many regions. We evaluated the rapid colorimetric polymyxin B elution (RCPE) and developed its miniaturized version, RCPE microelution (RCPEm), aiming to detect polymyxins resistance among Enterobacterales. METHODS: The methodologies consist of exposing the bacterial population in a solution (NP solution) where polymyxin B disks were previously eluted to obtain a concentration of 2 µg/mL for RCPE and 3 µg/mL for RCPEm. RESULTS: Two hundred sixty-seven Enterobacterales were evaluated, 90 (33.7%) resistant to polymyxin B by broth microdilution. It was observed 0.6% of major error (ME) by RCPE, with a specificity of 99.4%. The miniaturized version (RCPEm) presented the same ME and specificity values, but slightly higher sensitivity (97.8% vs. 95.6%) with 2.2% of very major error (VME). CONCLUSIONS: RCPE and RCPEm proved to be useful alternatives to determine polymyxin B susceptibility in clinical microbiology laboratories, presenting low cost, being easy to perform, and demanding short incubation time.


Asunto(s)
Polimixina B , Polimixinas , Humanos , Polimixinas/farmacología , Polimixina B/farmacología , Antibacterianos/farmacología , Colistina , Pruebas de Sensibilidad Microbiana
13.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36768158

RESUMEN

The self-assembling of nanosized materials is a promising field for research and development. Multiple approaches are applied to obtain inorganic, organic and composite nanomaterials with different functionality. In the present work, self-assembling nanocomplexes (NCs) were prepared on the basis of enzymes and polypeptides followed by the investigation of the influence of low-molecular weight biologically active compounds on the properties of the NCs. For that, the initially possible formation of catalytically active self-assembling NCs of four hydrolytic enzymes with nine effectors was screened via molecular modeling. It allowed the selection of two enzymes (hexahistidine-tagged organophosphorus hydrolase and penicillin acylase) and two compounds (emodin and naringenin) having biological activity. Further, such NCs based on surface-modified enzymes were characterized by a batch of physical and biochemical methods. At least three NCs containing emodin and enzyme (His6-OPH and/or penicillin acylase) have been shown to significantly improve the antibacterial activity of colistin and, to a lesser extent, polymyxin B towards both Gram-positive bacteria (Bacillus subtilis) and Gram-negative bacteria (Escherichia coli).


Asunto(s)
Emodina , Penicilina Amidasa , Antibacterianos/farmacología , Antibacterianos/química , Péptidos/química , Arildialquilfosfatasa/química , Compuestos Orgánicos
14.
J Bacteriol ; 204(2): e0057421, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34843378

RESUMEN

Purcell and colleagues offer new insights into a major mechanism of polymyxin resistance in Gram-negative bacteria (A. B. Purcell, B. J. Voss, and M. S. Trent, J Bacteriol 204:e00498-21, 2022, https://doi.org/10.1128/JB.00498-21). Inactivating a single lipid recycling enzyme causes accumulation of waste lipid by-products that inhibit a key factor responsible for polymyxin resistance.


Asunto(s)
Colistina , Polimixinas , Antibacterianos/farmacología , Colistina/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Polimixinas/farmacología
15.
Antimicrob Agents Chemother ; 66(3): e0207221, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35007136

RESUMEN

Polymyxins are considered as the last resort antibiotics to treat infections caused by multidrug-resistant Gram-negative pathogens. Pseudomonas aeruginosa is an opportunistic pathogen that causes various infections in humans. Proteins involved in lipopolysaccharide modification and maintaining inner and outer membrane integrities have been found to contribute to the bacterial resistance to polymyxins. Oligoribonuclease (Orn) is an exonuclease that regulates the homeostasis of intracellular (3'-5')-cyclic dimeric GMP (c-di-GMP), thereby regulating the production of extracellular polysaccharide in P. aeruginosa. Previously, we demonstrated that Orn affects the bacterial resistance to fluoroquinolone, ß-lactam and aminoglycoside antibiotics. In this study, we found that mutation of orn increased the bacterial survival following polymyxin B treatment in a wild-type P. aeruginosa strain PA14. Overexpression of c-di-GMP degradation enzymes in the orn mutant reduced the bacterial survival. By using a fluorescence labeled polymyxin B, we found that mutation of orn increased the bacterial surface bound polymyxin B. Deletion of the Pel synthesis genes or treatment with a Pel hydrolase reduced the surface bound polymyxin B and bacterial survival. We further demonstrated that Pel binds to extracellular DNA (eDNA), which traps polymyxin B and thus protects the bacterial cells. Collectively, our results revealed a novel defense mechanism against polymyxin in P. aeruginosa.


Asunto(s)
Polimixina B , Pseudomonas aeruginosa , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Exorribonucleasas/genética , Humanos , Polimixina B/farmacología , Polimixinas , Pseudomonas aeruginosa/metabolismo
16.
Microb Pathog ; 167: 105519, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35483557

RESUMEN

In this study, it was evaluated clinical data of 107 patients with bloodstream infection (BSI) by Klebsiella pneumoniae and performed phenotypic and molecular analyzes in 50.5% (54/107) of the samples, those that showed a resistance profile to carbapenemics. The blaKPC gene was present in 90.4% (49/54) of the samples, blaNDM gene in one sample and, in 7.4% (4/54) of the samples, no carbapenemase gene was found. In the similarity analysis, it was found 4 main clones and 11 samples were not genetically related. The median age of the patients was 58 (40-70) years old and 60.7% (65/107) were male. When comparing two groups of patients with BSI due to K. pneumoniae with and without resistance to carbapenems, the variables ICU permanence, renal failure (IR), previous use of antimicrobials, Charlson's comorbidity index (ICCi), some invasive procedures and death showed a statistically significant difference (p < 0.05). And when relating death as a dependent variable, IR, liver failure and patients with BSI XDR or PDR, were predictors of increased mortality. Our study showed a higher mortality rate in patients with BSI due to carbapenem-resistant pneumonia with additional resistance or not to polymyxins.


Asunto(s)
Bacteriemia , Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Klebsiella , Sepsis , Anciano , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriemia/tratamiento farmacológico , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Carbapenémicos/farmacología , Femenino , Humanos , Infecciones por Klebsiella/tratamiento farmacológico , Klebsiella pneumoniae/genética , Masculino , Persona de Mediana Edad , Sepsis/tratamiento farmacológico , beta-Lactamasas/genética
17.
J Appl Microbiol ; 132(1): 8-30, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34152057

RESUMEN

The emergence of polymyxin resistance, due to transferable mcr genes, threatens public and animal health as there are limited therapeutic options. As polymyxin is one of the last-line antibiotics, there is a need to contain the spread of its resistance to conserve its efficacy. Herein, we describe current and emerging polymyxin resistance diagnostics to inform faster clinical diagnostic choices. A literature search in diverse databases for studies published between 2016 and 2020 was performed. English articles evaluating colistin resistance methods/diagnostics were included. Screening resulted in the inclusion of 93 journal articles. Current colistin resistance diagnostics are either phenotypic or molecular. Broth microdilution is currently the only gold standard for determining colistin MICs (minimum inhibitory concentration). Phenotypic methods comprise of agar-based methods such as CHROMagar™ Col-APSE, SuperPolymyxin, ChromID® Colistin R, LBJMR and LB medium; manual MIC-determiners viz., UMIC, MICRONAUT MIC-Strip and ComASP Colistin; automated antimicrobial susceptibility testing systems such as BD Phoenix, MICRONAUT-S, MicroScan, Sensititre and Vitek 2; MCR-detectors such as lateral flow immunoassay (LFI) and chelator-based assays including EDTA- and DPA-based tests, that is, combined disk test, modified colistin broth-disk elution (CBDE), Colispot, and Colistin MAC test as well as biochemical colorimetric tests, that is, Rapid Polymyxin NP test and Rapid ResaPolymyxin NP test. Molecular methods only characterize mobile colistin resistance; they include PCR, LAMP and whole-genome sequencing. Due to the faster turnaround time (≤3 h), improved sensitivity (84%-100%) and specificity (93.3%-100%) of the Rapid ResaPolymyxin NP test and Fastinov® , we recommend this test for initial screening of colistin-resistant isolates. This can be followed by CBDE with EDTA or the LFI as they both have 100% sensitivity and a specificity of ≥94.3% for the rapid screening of mcr genes. However, molecular assays such as LAMP and PCR may be considered in well-equipped clinical laboratories.


Asunto(s)
Farmacorresistencia Bacteriana , Polimixinas , Animales , Antibacterianos/farmacología , Colistina/farmacología , Laboratorios Clínicos , Pruebas de Sensibilidad Microbiana , Polimixinas/farmacología
18.
J Appl Microbiol ; 132(2): 872-889, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34480840

RESUMEN

This systematic review focuses on obtaining the most relevant information from multiple studies that detected a mobilized colistin resistance mcr gene in Salmonella for a better comprehension of its global distribution. A group of strategic and systematic keywords were combined to retrieve research data on the detection frequency of the mcr gene globally from four database platforms (Google Scholar, Science Direct, PubMed and Scielo). Forty-eight studies attended all the eligibility criteria and were selected. China was the country with the highest frequency of Salmonella strains with the mcr gene, and Europe exhibited a wide diversity of countries with positive mcr strains. In addition, animals and humans carried the highest frequency of positive strains for the mcr gene. Salmonella Typhimurium was the most frequent serovar carrying the mcr gene. Apparently, colistin overuse in animal husbandry has increased the selective pressure of antimicrobial resistance, resulting in the emergence of a plasmid-mediated colistin resistance mcr gene in China. The mcr-positive Salmonella strains are recently predominant worldwide, which is probably due to the capacity of this gene to be swiftly horizontally transmissible. The transmission ability of mcr-positive Salmonella strains to humans through the consumption of contaminated animal-based food is a public health concern.


Asunto(s)
Colistina , Farmacorresistencia Bacteriana , Animales , Antibacterianos/farmacología , Colistina/farmacología , Farmacorresistencia Bacteriana/genética , Humanos , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Salmonella typhimurium/genética
19.
Lett Appl Microbiol ; 75(6): 1390-1422, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36000241

RESUMEN

Colistin (also known as polymyxin E), a polymyxin antibiotic discovered in the late 1940s, has recently reemerged as a last-line treatment option for multidrug-resistant infections. However, in recent years, colistin-resistant pathogenic bacteria have been increasingly reported worldwide. Accordingly, the presented review was undertaken to identify, integrate and synthesize current information regarding the detection and transmission of colistin-resistant bacteria across the African continent, in addition to elucidating their molecular mechanisms of resistance. PubMed, Google Scholar and Science Direct were employed for study identification, screening and extraction. Overall, based on the developed literature review protocol and associated inclusion/exclusion criteria, 80 studies published between 2000 and 2021 were included comprising varying bacterial species and hosts. Numerous mechanisms of colistin resistance were reported, including chromosomal mutation(s) and transferable plasmid-mediated colistin resistance (encoded by mcr genes). Perhaps unexpectedly, mcr-variants have exhibited rapid emergence and spread across most African regions. The genetic variant mcr-1 is predominant in humans, animals and the natural environment, and is primarily carried by IncHI2- type plasmid. The highest number of studies reporting the dissemination of colistin-resistant Gram-negative bacteria were conducted in the North African region.


Asunto(s)
Colistina , Farmacorresistencia Bacteriana , Humanos , Animales , Colistina/farmacología , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Plásmidos , Bacterias/genética , Pruebas de Sensibilidad Microbiana
20.
Luminescence ; 37(6): 971-979, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35393741

RESUMEN

Polymyxins (PMS), namely Colistin (CS) and polymyxin B (poly B), are antimicrobial drugs that have been recently used to treat multiresistant Gram-negative bacteria infections and their resurgence, owing to a lack of new antibiotics. A speedy, simple, and ultrasensitive spectrofluorimetric screening of PMS in pharmaceutical formulations and biological fluids was urgently required from this point forwards. A reaction between fluorescamine and the aliphatic amino moiety found in both drugs was performed in a slightly alkaline borate buffer (pH 8.5) resulted in highly fluorescent products measured at λem 460 (after λex 390.5 nm). Linear calibration curves were constructed over the concentration range 70-1800 ng ml-1 and 100 to 1400 ng ml-1 , with slope values of 0.273 and 0.286, correlation coefficients of 0.9998 and 0.9997, and determination coefficient of 0.9997 and 0.9994 for poly B and CS, respectively. The ultrasensitivity of the proposed method was demonstrated by the very low limit of quantification values of 67.56 ng ml-1 and 94.89 ng ml-1 for poly B and CS, respectively. The cited drugs were successfully determined in their intravenous market preparations by the prescribed method. Moreover, due to the high sensitivity, the suggested method was used to assay the investigated drugs in biological fluids.


Asunto(s)
Antibacterianos , Polimixinas , Antibacterianos/farmacología , Colistina/farmacología , Fluorescamina , Bacterias Gramnegativas , Humanos , Preparaciones Farmacéuticas , Espectrometría de Fluorescencia/métodos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda