Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2314359121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38557166

RESUMEN

Suction is a highly evolved biological adhesion strategy for soft-body organisms to achieve strong grasping on various objects. Biological suckers can adaptively attach to dry complex surfaces such as rocks and shells, which are extremely challenging for current artificial suction cups. Although the adaptive suction of biological suckers is believed to be the result of their soft body's mechanical deformation, some studies imply that in-sucker mucus secretion may be another critical factor in helping attach to complex surfaces, thanks to its high viscosity. Inspired by the combined action of biological suckers' soft bodies and mucus secretion, we propose a multiscale suction mechanism which successfully achieves strong adaptive suction on dry complex surfaces which are both highly curved and rough, such as a stone. The proposed multiscale suction mechanism is an organic combination of mechanical conformation and regulated water seal. Multilayer soft materials first generate a rough mechanical conformation to the substrate, reducing leaking apertures to micrometres (~10 µm). The remaining micron-sized apertures are then sealed by regulated water secretion from an artificial fluidic system based on the physical model, thereby the suction cup achieves long suction longevity on complex surfaces but minimal overflow. We discuss its physical principles and demonstrate its practical application as a robotic gripper on a wide range of complex dry surfaces. We believe the presented multiscale adaptive suction mechanism is a powerful unique adaptive suction strategy which may be instrumental in the development of versatile soft adhesion.


Asunto(s)
Robótica , Agua , Succión , Diseño de Equipo
2.
Nano Lett ; 24(9): 2885-2893, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38407034

RESUMEN

Soft robots with magnetic responsiveness exhibit diverse motion modes and programmable shape transformations. While the fixed magnetization configuration facilitates coupling control of robot posture and motion, it limits individual posture control to some extent. This poses a challenge in independently controlling the robot's transformation and motion, restricting its versatile applications. This research introduces a multifunctional helical robot responsive to both light and magnetism, segregating posture control from movements. Light fields assist in robot shaping, achieving a 78% maximum diameter shift. Magnetic fields guide helical robots in multimodal motions, encompassing rotation, flipping, rolling, and spinning-induced propulsion. By controlling multimodal locomotion and shape transformation on demand, helical robots gain enhanced flexibility. This innovation allows them to tightly grip and wirelessly transport designated payloads, showcasing potential applications in drug delivery, soft grippers, and chemical reaction platforms. The unique combination of structural design and control methods holds promise for intelligent robots in the future.

3.
Sensors (Basel) ; 23(13)2023 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-37447943

RESUMEN

In this study, a comprehensive approach for sensing object stiffness through the pincer grasping of soft pneumatic grippers (SPGs) is presented. This study was inspired by the haptic sensing of human hands that allows us to perceive object properties through grasping. Many researchers have tried to imitate this capability in robotic grippers. The association between gripper performance and object reaction must be determined for this purpose. However, soft pneumatic actuators (SPA), the main components of SPGs, are extremely compliant. SPA compliance makes the determination of the association challenging. Methodologically, the connection between the behaviors of grasped objects and those of SPAs was clarified. A new concept of SPA modeling was then introduced. A method for stiffness sensing through SPG pincer grasping was developed based on this connection, and demonstrated on four samples. This method was validated through compression testing on the same samples. The results indicate that the proposed method yielded similar stiffness trends with slight deviations in compression testing. A main limitation in this study was the occlusion effect, which leads to dramatic deviations when grasped objects greatly deform. This is the first study to enable stiffness sensing and SPG grasping to be carried out in the same attempt. This study makes a major contribution to research on soft robotics by progressing the role of sensing for SPG grasping and object classification by offering an efficient method for acquiring another effective class of classification input. Ultimately, the proposed framework shows promise for future applications in inspecting and classifying visually indistinguishable objects.


Asunto(s)
Mano , Robótica , Humanos , Diseño de Equipo , Presión , Robótica/métodos , Fuerza de la Mano
4.
Sensors (Basel) ; 22(7)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35408370

RESUMEN

The magnetorheological elastomer is promising material for applications in soft robotics. Its properties like reactive to external magnetic field and softness allow to construct an attractive devices. This work presents a construction of soft gripper assembled with magnetorheological elastomers. The work describes the detailed molding process of magnetorheological elastomers. Further, the electromechanical properties of magnetorheological elastomers are shown using a simple beam. Finally, the soft gripper is constructed and analyzed with the series of experiments.


Asunto(s)
Elastómeros , Robótica , Campos Magnéticos
5.
Sensors (Basel) ; 21(9)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066680

RESUMEN

Soft grippers have experienced a growing interest due to their considerable flexibility that allows them to grasp a variety of objects, in contrast to hard grippers, which are designed for a specific item. One of their most remarkable characteristics is the ability to manipulate soft objects without damaging them. This, together with their wide range of applications and the use of novels materials and technologies, renders them a very robust device. In this paper, we present a comparison of different technologies for soft robotics grippers. We fabricated and tested four grippers. Two use pneumatic actuation (the gripper with chambered fingers and the jamming gripper), while the other two employ electromechanical actuation (the tendon driver gripper and the gripper with passive structure). For the experiments, a group of twelve objects with different mechanical and geometrical properties have been selected. Furthermore, we analyzed the effect of the environmental conditions on the grippers, by testing each object in three different environments: normal, humid, and dusty. The aim of this comparative study is to show the different performances of different grippers tested under the same conditions. Our findings indicate that we can highlight that the mechanical gripper with a passive structure shows greater robustness.


Asunto(s)
Robótica , Diseño de Equipo , Dedos , Fuerza de la Mano
6.
Proc Natl Acad Sci U S A ; 114(22): E4344-E4353, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28507143

RESUMEN

For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ∼26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

7.
Soft Robot ; 11(1): 157-170, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37819714

RESUMEN

The remarkable interaction capabilities of soft robots within various environments have captured substantial attention from researchers. In recent years, bionics has provided a rich inspiration for the design of soft robots. Nevertheless, predicting the locomotion of soft actuators and determining material layouts solely based on intuition or experience remain a formidable challenge. Previous actuators predominantly targeted separate applications, leading to elevated costs and diminished interchangeability. The objective of this article is to extract the common requirements of diverse application domains and develop a versatile compliant actuator. A mathematical model of the compliant mechanism is proposed under the framework of topology optimization, resulting in an optimal distribution of both structure and material. Through comparison with empirical and semioptimal designs, the results show that the proposed versatile actuator has the advantages of both stiffness and flexibility. We propose an associative design strategy for soft grippers and walking robots. The soft gripper can perfectly complete adaptive grasping of objects with varying sizes, shapes, and masses. The successful in-water gripping experiment underscores the robust cross-medium operational capabilities of the soft gripper. Notably, our experimental results show that the walking robot can move quickly for 5 cycles in 8.25 s and can guarantee the control accuracy of continuous motion. Moreover, the robot swiftly switches walking directions within a mere 0.45 s. The optimization and design strategy presented in this article can furnish novel insights for shaping the next generation of soft robots.

8.
Soft Robot ; 11(3): 494-507, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38386775

RESUMEN

The bending stiffness modulation mechanism for soft grippers has gained considerable attention to improve grasping versatility, capacity, and stability. However, lateral stability is usually ignored or hard to achieve at the same time with good bending stiffness modulation performance. Therefore, this article presents a bioinspired bidirectional stiffening soft actuator (BISA), enabling compliant and stable performance. BISA combines the air tendon actuation (ATA) and a bone-like structure (BLS). The ATA is the main actuation of the BISA, and the bending stiffness can be modulated with a maximum stiffness of about 0.7 N/mm and a maximum magnification of three times when the bending angle is 45°. Inspired by the morphological structure of the phalanx, the lateral stiffness can be modulated by changing the pulling force of the BLS. The actuator with BLSs can improve the lateral stiffness by about 3.9 times compared to the one without BLSs. The maximum lateral stiffness can reach 0.46 N/mm. And the lateral stiffness can be modulated by decoupling about 1.3 times (e.g., from 0.35 to 0.46 N/mm when the bending angle is 45°). The test results show that the influence of the rigid structures on bending is small with about 1.5 mm maximum position errors of the distal point of the actuator in different pulling forces. The advantages brought by the proposed method enable versatile four-finger grasping. The performance of this gripper is characterized and demonstrated on multiscale, multiweight, and multimodal grasping tasks.


Asunto(s)
Diseño de Equipo , Fuerza de la Mano , Fuerza de la Mano/fisiología , Humanos , Robótica/instrumentación , Fenómenos Biomecánicos/fisiología , Biomimética/instrumentación , Tendones/fisiología
9.
Soft Robot ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662447

RESUMEN

Soft grippers have shown their ability to grasp fragile and irregularly shaped objects, but they often require external mechanisms for actuation, limiting their use in large-scale situations. Their limited capacity to handle loads and deformations also restricts their customized grasping capabilities. To address these issues, a model-based soft gripper with adaptable stiffness was proposed. The proposed actuator comprises a silicone chamber with separate units containing hydrogel spheres. These spheres exhibit temperature-triggered swelling and shrinking behaviors. In addition, variable stiffness strips embedded in the units are introduced as the stiffness variation method. The validated finite element method model was used as the model-based design approach to describe the hydrogel behaviors and explore the affected factors on the bending performance. The results demonstrate that the actuator can be programmed to respond in a desired way, and the stiffness variation method enhances bending stiffness significantly. Specifically, a direct correlation exists between the bending angle and hydrogel sphere layers, with a maximum of 128° achieved. In addition, incorporating gap configurations into the chamber membrane results in a maximum threefold increase in the bending angle. Besides, the membrane type minimally impacts the bending angle from 21.3° to 24.6°. In addition, the embedded variable stiffness strips substantially increase stiffness, resulting in a 30-fold rise in bending stiffness. In conclusion, the novel soft gripper actuator enables substantial bending and stiffness control through active actuation, showcasing the potential for enhancing soft gripper performance in complex and multiscale grasping scenarios.

10.
Soft Robot ; 11(2): 230-243, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37768717

RESUMEN

Soft grippers with good passive compliance can effectively adapt to the shape of a target object and have better safe grasping performance than rigid grippers. However, for soft or fragile objects, passive compliance is insufficient to prevent grippers from crushing the target. Thus, to complete nondestructive grasping tasks, precision force sensing and control are immensely important for soft grippers. In this article, we proposed an online learning self-tuning nonlinearity impedance controller for a tactile self-sensing two-finger soft gripper so that its grasping force can be controlled accurately. For the soft gripper, its grasping force is sensed by a liquid lens-based optical tactile sensing unit that contains a self-sensing fingertip and a liquid lens module and has many advantages of a rapid response time (about 0.04 s), stable output, good sensitivity (>0.4985 V/N), resolution (0.03 N), linearity (R2 > 0.96), and low cost (power consumption: 5 mW, preparation cost

11.
Front Robot AI ; 11: 1356692, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863780

RESUMEN

Soft grippers are garnering increasing attention for their adeptness in conforming to diverse objects, particularly delicate items, without warranting precise force control. This attribute proves especially beneficial in unstructured environments and dynamic tasks such as food handling. Human hands, owing to their elevated dexterity and precise motor control, exhibit the ability to delicately manipulate complex food items, such as small or fragile objects, by dynamically adjusting their grasping configurations. Furthermore, with their rich sensory receptors and hand-eye coordination that provide valuable information involving the texture and form factor, real-time adjustments to avoid damage or spill during food handling appear seamless. Despite numerous endeavors to replicate these capabilities through robotic solutions involving soft grippers, matching human performance remains a formidable engineering challenge. Robotic competitions serve as an invaluable platform for pushing the boundaries of manipulation capabilities, simultaneously offering insights into the adoption of these solutions across diverse domains, including food handling. Serving as a proxy for the future transition of robotic solutions from the laboratory to the market, these competitions simulate real-world challenges. Since 2021, our research group has actively participated in RoboSoft competitions, securing victories in the Manipulation track in 2022 and 2023. Our success was propelled by the utilization of a modified iteration of our Retractable Nails Soft Gripper (RNSG), tailored to meet the specific requirements of each task. The integration of sensors and collaborative manipulators further enhanced the gripper's performance, facilitating the seamless execution of complex grasping tasks associated with food handling. This article encapsulates the experiential insights gained during the application of our highly versatile soft gripper in these competition environments.

12.
Adv Mater ; : e2307963, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37971199

RESUMEN

Soft grippers are essential for precise and gentle handling of delicate, fragile, and easy-to-break objects, such as glassware, electronic components, food items, and biological samples, without causing any damage or deformation. This is especially important in industries such as healthcare, manufacturing, agriculture, food handling, and biomedical, where accuracy, safety, and preservation of the objects being handled are critical. This article reviews the use of 3D printing technologies in soft grippers, including those made of functional materials, nonfunctional materials, and those with sensors. 3D printing processes that can be used to fabricate each class of soft grippers are discussed. Available 3D printing technologies that are often used in soft grippers are primarily extrusion-based printing (fused deposition modeling and direct ink writing), jet-based printing (polymer jet), and immersion printing (stereolithography and digital light processing). The materials selected for fabricating soft grippers include thermoplastic polymers, UV-curable polymers, polymer gels, soft conductive composites, and hydrogels. It is conclude that 3D printing technologies revolutionize the way soft grippers are being fabricated, expanding their application domains and reducing the difficulties in customization, fabrication, and production.

13.
Soft Robot ; 10(6): 1070-1082, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37134211

RESUMEN

Inspired by human hands and wrists, an anthropomorphic soft manipulator (ASM) driven by water hydraulics is proposed for underwater operations and exploration. Compared with traditional rigid manipulator, ASM has highly evolved grasping ability with better flexibility and adaptability, while it has better load capacity, grasping ability, and flexibility in comparison with the pneumatic gripper. ASM wrist is composed of rigid-flexible coupling structure with three bellows and a spindle, which generates continuous wrist pitching. The linear elongate characteristics of bellows and pitching performance of ASM wrist are simulated by finite element modeling (FEM) method and tested experimentally. The mathematical model of bending deformation for the water hydraulic soft gripper (WHSG) is established. The bending deformation and contact force of WHSG are simulated by FEM and measured experimentally. The ASM prototype is fabricated, and the grasping experiments in the air and underwater are conducted. It is confirmed that the developed ASM can switch between standard and expanded grasping position to adopt and grasp objects of different shapes and dimensions. And living animals with rough or smooth surfaces such as turtle and carp can also be caught harmlessly. ASM also exhibits preferable adaptability when the objects are out of grasping range or deviating from the grasping center. This study confirms that the developed ASM has enormous application potentials and broader prospects in the field of underwater operation, underwater fishing, underwater sampling, etc.

14.
Micromachines (Basel) ; 14(9)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37763934

RESUMEN

The autonomous manipulation of objects by robotic grippers has made significant strides in enhancing both human daily life and various industries. Within a brief span, a multitude of research endeavours and gripper designs have emerged, drawing inspiration primarily from biological mechanisms. It is within this context that our study takes centre stage, with the aim of conducting a meticulous review of bioinspired grippers. This exploration involved a nuanced classification framework encompassing a range of parameters, including operating principles, material compositions, actuation methods, design intricacies, fabrication techniques, and the multifaceted applications into which these grippers seamlessly integrate. Our comprehensive investigation unveiled gripper designs that brim with a depth of intricacy, rendering them indispensable across a spectrum of real-world scenarios. These bioinspired grippers with a predominant emphasis on animal-inspired solutions have become pivotal tools that not only mirror nature's genius but also significantly enrich various domains through their versatility.

15.
Biomimetics (Basel) ; 8(4)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37622942

RESUMEN

Biologically inspired pneumatic ring-shaped soft grippers have been extensively studied in the field of soft robotics. However, the effect of the number of air chambers on the grasping performance (grasping range and load capacity) of ring-shaped soft grippers has not been studied. In this article, we propose three ring-shaped soft grippers with the same area of inner walls of air chambers and different numbers of air chambers (two-chamber, three-chamber, and four-chamber) for analyzing and comparing their grasping performance. Finite element method (FEM) models and experimental measurements are conducted to compare the deformation of the inner walls of the three ring-shaped soft grippers, the results indicate that the grasping range of the three-chamber ring-shaped soft gripper is larger than that of the two-chamber ring-shaped soft gripper and the four-chamber ring-shaped soft gripper. Then we choose the three-chamber ring-shaped soft gripper to study the relationship between contact force and air pressure by FEM models and experimental measurements. Several groups of experiments are constructed to compare the load capacity of the three ring-shaped soft grippers, the results indicate that the load capacity of the three-chamber ring-shaped soft gripper is higher than that of the two-chamber ring-shaped soft gripper and the four-chamber ring-shaped soft gripper. The above results reveal that the grasping performance of the three-chamber ring-shaped soft gripper is better than that of other two ring-shaped soft grippers. Furthermore, the application experiments indicate that the three ring-shaped soft grippers can grasp various objects with different weights, material properties, and shapes. This study provides a new idea for investigating ring-shaped soft grippers.

16.
Micromachines (Basel) ; 14(7)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37512781

RESUMEN

Nowadays, achieving the stable grasping of objects in robotics requires an increased emphasis on soft interactions. This research introduces a novel gripper design to achieve a more universal object grasping. The key feature of this gripper design was a hybrid mechanism that leveraged the soft structure provided by multiple granular pouches attached to the finger skeletons. To evaluate the performance of the gripper, a series of experiments were conducted using fifteen distinct types of objects, including cylinders, U-shaped brackets, M3 bolts, tape, pyramids, big pyramids, oranges, cakes, coffee sachets, spheres, drink sachets, shelves, pulley gears, aluminium profiles, and flat brackets. Our experimental results demonstrated that our gripper design achieved high success rates in gripping objects weighing less than 210 g. One notable advantage of the granular-tendon gripper was its ability to generate soft interactions during the grasping process while having a skeleton support to provide strength. This characteristic enabled the gripper to adapt effectively to various objects, regardless of their shape and material properties. Consequently, this work presented a promising solution for manipulating a wide range of objects with both stability and soft interaction capabilities, regardless of their individual characteristics.

17.
Soft Robot ; 9(6): 1040-1051, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34883034

RESUMEN

The growing need for soft robots with secure, adaptive, and autonomous functioning in unforeseen environments favors designs with multiple functionalities. This has driven soft robotic grippers to be explored to integrate perceptual capability for augmented multifunctionality. In nature, sea anemones can detect and catch preys of various shapes and sizes effectively with extremely simple bodies because of the efficient coupling of sensing and actuation capability. Inspired by their body structures, we present a bistable gripper with multifunctionality that includes sensing (proprioceptive and exteroceptive) and multimodal gripping (grasping and pinching). The gripper exploits an array of tapered pins on the external surface of a dome membrane for gripping and a set of cylindrical markers on the internal surface of the membrane for optical sensing. The membrane is bistable and can settle in either of two equilibrium states "natural" and "retracted." Gripping functionality is achieved by the centripetal enveloping movement of the pins, along with the passive snap-through process of the membrane. By analyzing the distribution of markers within the view of an embedded camera, sophisticated sensing functionality can be achieved. We first characterized each function separately and then implemented an object handling system, combining the sensing and gripping functionality, to demonstrate the potential for more advanced robotic applications. This work delivers a compact universal gripper design with an efficient and elegant integration of multifunctionality.


Asunto(s)
Robótica , Anémonas de Mar , Animales , Diseño de Equipo , Fuerza de la Mano
18.
Soft Robot ; 9(5): 948-959, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34705563

RESUMEN

Compared with traditional rigid grippers, soft grippers are made of lightweight and soft materials and have the characteristics of flexible contact and strong adaptability, which are widely utilized to grasp fragile objects with complex contours and shapes. In this article, we design and fabricate a three-fingered stiffness-tunable soft gripper by integrating the joint-tuning capability. The soft fingers are composed of an internal bending actuator and an external fiber-jamming jacket, under an actuation of pneumatic pressure. Static and kinematic models are established to detect the bending angle and end trajectory of the internal bending actuator. Meanwhile, the bending angle and blocking force of bending actuator are experimentally measured and are comparably analyzed with the theoretical predictions. Jamming pressure is applied in the stiffness-tunable jacket to explore the variable stiffness and load-carrying capability of the soft finger. By incorporating the stiffness-tunable property, the grasping performance of various weights and types of goods, as well as the maximum grasping force of the soft gripper, is investigated. Finally, by patterning the stiffness-tunable jacket on the bending actuator, the variable curvature bending deformation and joint-tuning capability of the soft finger are achieved. This proposed soft gripper holds great potential applications in soft robotics community.


Asunto(s)
Robótica , Diseño de Equipo , Fuerza de la Mano , Dedos , Fenómenos Mecánicos
19.
Soft Robot ; 9(2): 376-385, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34097551

RESUMEN

A lightweight soft gripper for envelope grasping is proposed. The main component of the gripper is a spherical latex superelastic membrane whose material properties allow a grabbing function to be realized. The grasping process includes the expansion and tightening of the membrane, and it does not require a constant supply of energy. The geometric relationship between the actuator and the target object are analyzed, from which a gripping force model is deduced to estimate the grasping ability. A test-rig was designed to verify the gripping force model experimentally. The gripper can inherently realize shape adaptability and safety. It is easy to manipulate and control for beginners. Moreover, an actuator of only 50 g can grasp and lift various objects, including fragile and irregularly shaped items with a maximum mass >650 g.


Asunto(s)
Robótica , Diseño de Equipo , Estudios de Factibilidad , Fuerza de la Mano , Fenómenos Mecánicos
20.
Soft Robot ; 9(1): 57-71, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33416435

RESUMEN

This study presents the design and test of a novel self-adaptive soft gripper, integrating pneumatic actuators and bistable carbon-fiber reinforced polymer laminates. The morphology was designed using the distinct structural characteristics of bistable structures; and the stable gripping configuration of the gripper was maintained through the bistability without continuous pressure application. The sufficient compliance of bistable structures makes the gripper versatile and adaptable to gripping deformable objects. First, a pneumatic-actuated method was introduced to achieve the reversible shape transition of the bistable structure. Next, three arrangement methods for actuators were analyzed with respect to the bistable transition and curvature, where it was found that the cross-arrangement is optimal. The effects of pneumatic actuators with different geometrical parameters on the response times are discussed, and the results show that the bistable structure can achieve shape transition within milliseconds under low pressure. Furthermore, the numerical and experimental results show good agreement between critical pressures and out-of-plane deformation. Furthermore, the shape retention function of the soft gripper was studied by using it to grasp objects of various sizes even when the pressure was reduced to the initial state. The bistable laminates exhibit sufficient compliance, and the deformed laminates can automatically accommodate the deformation of objects. The relationship between the weight and size of available gripping objects was studied; functional tests confirmed that the proposed soft gripper is versatile and adaptable for gripping objects of various shapes, sizes, and weights. This gripper has immense potential to reduce energy consumption in vacuum environments such as underwater and space.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda