Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell ; 182(5): 1093-1108.e18, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32810437

RESUMEN

In plants, pathogen effector-triggered immunity (ETI) often leads to programmed cell death, which is restricted by NPR1, an activator of systemic acquired resistance. However, the biochemical activities of NPR1 enabling it to promote defense and restrict cell death remain unclear. Here we show that NPR1 promotes cell survival by targeting substrates for ubiquitination and degradation through formation of salicylic acid-induced NPR1 condensates (SINCs). SINCs are enriched with stress response proteins, including nucleotide-binding leucine-rich repeat immune receptors, oxidative and DNA damage response proteins, and protein quality control machineries. Transition of NPR1 into condensates is required for formation of the NPR1-Cullin 3 E3 ligase complex to ubiquitinate SINC-localized substrates, such as EDS1 and specific WRKY transcription factors, and promote cell survival during ETI. Our analysis of SINCs suggests that NPR1 is centrally integrated into the cell death or survival decisions in plant immunity by modulating multiple stress-responsive processes in this quasi-organelle.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Supervivencia Celular/inmunología , Inmunidad de la Planta/inmunología , Arabidopsis/inmunología , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/inmunología , Ácido Salicílico/inmunología , Ácido Salicílico/metabolismo , Ubiquitinación/inmunología
2.
Cell ; 182(5): 1109-1124.e25, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32841601

RESUMEN

Chloroplasts are crucial players in the activation of defensive hormonal responses during plant-pathogen interactions. Here, we show that a plant virus-encoded protein re-localizes from the plasma membrane to chloroplasts upon activation of plant defense, interfering with the chloroplast-dependent anti-viral salicylic acid (SA) biosynthesis. Strikingly, we have found that plant pathogens from different kingdoms seem to have convergently evolved to target chloroplasts and impair SA-dependent defenses following an association with membranes, which relies on the co-existence of two subcellular targeting signals, an N-myristoylation site and a chloroplast transit peptide. This pattern is also present in plant proteins, at least one of which conversely activates SA defenses from the chloroplast. Taken together, our results suggest that a pathway linking plasma membrane to chloroplasts and activating defense exists in plants and that such pathway has been co-opted by plant pathogens during host-pathogen co-evolution to promote virulence through suppression of SA responses.


Asunto(s)
Membrana Celular/inmunología , Cloroplastos/inmunología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/inmunología , Transducción de Señal/inmunología , Proteínas de Arabidopsis/inmunología , Interacciones Huésped-Patógeno/inmunología , Ácido Salicílico/inmunología , Virulencia/inmunología
3.
Nature ; 565(7741): 650-653, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651637

RESUMEN

Fungi-induced plant diseases affect global food security and plant ecology. The biotrophic fungus Ustilago maydis causes smut disease in maize (Zea mays) plants by secreting numerous virulence effectors that reprogram plant metabolism and immune responses1,2. The secreted fungal chorismate mutase Cmu1 presumably affects biosynthesis of the plant immune signal salicylic acid by channelling chorismate into the phenylpropanoid pathway3. Here we show that one of the 20 maize-encoded kiwellins (ZmKWL1) specifically blocks the catalytic activity of Cmu1. ZmKWL1 hinders substrate access to the active site of Cmu1 through intimate interactions involving structural features that are specific to fungal Cmu1 orthologues. Phylogenetic analysis suggests that plant kiwellins have a versatile scaffold that can specifically counteract pathogen effectors such as Cmu1. We reveal the biological activity of a member of the kiwellin family, a widely conserved group of proteins that have previously been recognized only as important human allergens.


Asunto(s)
Antígenos de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Ustilago/metabolismo , Ustilago/patogenicidad , Factores de Virulencia/metabolismo , Zea mays/metabolismo , Zea mays/microbiología , Corismato Mutasa/antagonistas & inhibidores , Corismato Mutasa/química , Corismato Mutasa/metabolismo , Ácido Corísmico/metabolismo , Modelos Moleculares , Filogenia , Enfermedades de las Plantas/inmunología , Ácido Salicílico/inmunología , Ustilago/enzimología , Zea mays/inmunología
4.
Plant J ; 106(4): 896-912, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33837606

RESUMEN

An important aspect of plant-virus interaction is the way viruses dynamically move over long distances and how plant immunity modulates viral systemic movement. Salicylic acid (SA), a well-characterized hormone responsible for immune responses against virus, is activated through different transcription factors including TGA and WRKY. In tobamoviruses, evidence suggests that capsid protein (CP) is required for long-distance movement, although its precise role has not been fully characterized yet. Previously, we showed that the CP of Tobacco Mosaic Virus (TMV)-Cg negatively modulates the SA-mediated defense. In this study, we analyzed the impact of SA-defense mechanism on the long-distance transport of a truncated version of TMV (TMV ∆CP virus) that cannot move to systemic tissues. The study showed that the negative modulation of NPR1 and TGA10 factors allows the long-distance transport of TMV ∆CP virus. Moreover, we observed that the stabilization of DELLA proteins promotes TMV ∆CP systemic movement. We also characterized a group of genes, part of a network modulated by CP, involved in TMV ∆CP long-distance transport. Altogether, our results indicate that CP-mediated downregulation of SA signaling pathway is required for the virus systemic movement, and this role of CP may be linked to its ability to stabilize DELLA proteins.


Asunto(s)
Proteínas de la Cápside/metabolismo , Interacciones Huésped-Patógeno , Nicotiana/virología , Enfermedades de las Plantas/virología , Ácido Salicílico/inmunología , Transducción de Señal , Virus del Mosaico del Tabaco/fisiología , Proteínas de la Cápside/genética , Regulación hacia Abajo , Movimiento , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/inmunología , Nicotiana/fisiología , Virus del Mosaico del Tabaco/genética
5.
Plant Cell Environ ; 44(6): 1716-1727, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33495996

RESUMEN

Salicylic acid (SA) plays pivotal role in plant defense against biotrophic and hemibiotrophic pathogens. Tremendous progress has been made in the field of SA biosynthesis and SA signaling pathways over the past three decades. Among the key immune players in SA signaling pathway, NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) functions as a master regulator of SA-mediated plant defense. The function of NPR1 as an SA receptor has been controversial; however, after years of arguments among several laboratories, NPR1 has finally been proven as one of the SA receptors. The function of NPR1 is strictly regulated via post-translational modifications and transcriptional regulation that were recently found. More recent advances in NPR1 biology, including novel functions of NPR1 and the structure of SA receptor proteins, have brought this field forward immensely. Therefore, based on these recent discoveries, this review acts to provide a full picture of how NPR1 functions in plant immunity and how NPR1 gene and NPR1 protein are regulated at multiple levels. Finally, we also discuss potential challenges in future studies of SA signaling pathway.


Asunto(s)
Inmunidad de la Planta/fisiología , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Proteínas de Arabidopsis/inmunología , Regulación de la Expresión Génica de las Plantas , Fosforilación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ácido Salicílico/inmunología , Sumoilación , Ubiquitinación
6.
Nature ; 523(7561): 472-6, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26098366

RESUMEN

Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism's metabolic activities. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant's redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/metabolismo , Relojes Circadianos/fisiología , Inmunidad de la Planta/inmunología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/inmunología , Ritmo Circadiano/fisiología , Oscuridad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Oxidación-Reducción/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Pseudomonas syringae/fisiología , Ácido Salicílico/inmunología , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Transcripción Genética/genética
7.
PLoS Genet ; 13(5): e1006639, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28472137

RESUMEN

Plant immunity protects plants from numerous potentially pathogenic microbes. The biological network that controls plant inducible immunity must function effectively even when network components are targeted and disabled by pathogen effectors. Network buffering could confer this resilience by allowing different parts of the network to compensate for loss of one another's functions. Networks rich in buffering rely on interactions within the network, but these mechanisms are difficult to study by simple genetic means. Through a network reconstitution strategy, in which we disassemble and stepwise reassemble the plant immune network that mediates Pattern-Triggered-Immunity, we have resolved systems-level regulatory mechanisms underlying the Arabidopsis transcriptome response to the immune stimulant flagellin-22 (flg22). These mechanisms show widespread evidence of interactions among major sub-networks-we call these sectors-in the flg22-responsive transcriptome. Many of these interactions result in network buffering. Resolved regulatory mechanisms show unexpected patterns for how the jasmonate (JA), ethylene (ET), phytoalexin-deficient 4 (PAD4), and salicylate (SA) signaling sectors control the transcriptional response to flg22. We demonstrate that many of the regulatory mechanisms we resolved are not detectable by the traditional genetic approach of single-gene null-mutant analysis. Similar to potential pathogenic perturbations, null-mutant effects on immune signaling can be buffered by the network.


Asunto(s)
Proteínas de Arabidopsis/genética , Hidrolasas de Éster Carboxílico/genética , Flagelina/genética , Interacciones Huésped-Patógeno/genética , Inmunidad de la Planta/genética , Transcriptoma/genética , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/inmunología , Hidrolasas de Éster Carboxílico/inmunología , Ciclopentanos/inmunología , Ciclopentanos/metabolismo , Etilenos/inmunología , Etilenos/metabolismo , Flagelina/inmunología , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes/inmunología , Interacciones Huésped-Patógeno/inmunología , Oxilipinas/inmunología , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Ácido Salicílico/inmunología , Ácido Salicílico/metabolismo , Transducción de Señal , Transcriptoma/inmunología
8.
Mol Plant Microbe Interact ; 32(1): 95-106, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30253116

RESUMEN

In the present study, we investigated the induced systemic resistance (ISR) activated by the beneficial fungus Trichoderma atroviride in maize plants, and the early immunological responses triggered after challenge with the ear rot pathogen Fusarium verticillioides. By transcriptional analysis, we were able to identify the gene core set specifically modulated in silks of maize plants expressing ISR. Our results showed that the main transcriptional reprogramming falls into genes involved in five main functional categories: cell structure or cell wall, amino acid and protein metabolism, stress responses, signaling, and transport. Among these ISR-related genes, it is important to highlight novel findings regarding hormone metabolism and signaling. The expression of hormone-dependent genes was in good agreement with the abscisic acid, jasmonic acid, and salicylic acid (SA) levels detected in the plants under study. The experimental design allowed the identification of novel regulatory elements related to a heightened state of defense in silks and suggests that steroids and SA are central components of a master regulatory network controlling the immunity of silks during ISR. The results presented also provide evidence about the molecular mechanisms used by maize silks against F. verticillioides to counteract pathogenic development and host invasion, including pathogenesis-related genes, plant cell-wall reinforcement, fungal cell-wall-degrading enzymes and secondary metabolism.


Asunto(s)
Ácido Salicílico , Transducción de Señal , Zea mays , Fusarium/inmunología , Regulación de la Expresión Génica de las Plantas/inmunología , Ácido Salicílico/inmunología , Transducción de Señal/inmunología , Zea mays/inmunología , Zea mays/microbiología
9.
J Sci Food Agric ; 99(4): 1780-1786, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30226928

RESUMEN

BACKGROUND: To promote sustainable agriculture and healthy food, research that contributes towards a new generation of eco-friendly phytosanitary compounds is increasingly encouraged. The plant hormone salicylic acid (SA) is known for its ability to induce resistance in plants against a wide range of pathogens, whereas pyroglutamic acid (PGA), a constrained analogue of γ-aminobutyric acid, has never been studied in the context of plant protection. RESULTS: The present study investigated for the first time the protection efficacy of SA and PGA and five new conjugated derivatives against Zymoseptoria tritici, the main pathogen in wheat crops. SA and four derivatives showed significant disease severity reductions in planta (up to 49%). In vitro assays revealed that some molecules, including SA, displayed a small direct antifungal activity, whereas others, such as PGA, showed no effect. This finding suggests that, especially for molecules without any direct activity, the mode of action relies mainly on the induction of plant resistance. CONCLUSION: Further investigations are needed to identify the defence pathways involved in plant resistance mechanisms elicited or primed by the molecules. The manufacture of these products was easily achieved on a scale of tens of grams of raw materials, and is easily scalable. The synthetic pathway is simple, short and inexpensive. For all of these reasons, the production of the target molecules is attractive for producers, whereas the prospect of a generation of non-polluting compounds with lasting efficiency against Z. tritici in wheat comes at a key moment for the sustainability of agriculture. © 2018 Society of Chemical Industry.


Asunto(s)
Ascomicetos/fisiología , Enfermedades de las Plantas/inmunología , Ácido Pirrolidona Carboxílico/inmunología , Ácido Salicílico/inmunología , Triticum/inmunología , Resistencia a la Enfermedad , Enfermedades de las Plantas/microbiología , Ácido Pirrolidona Carboxílico/química , Ácido Salicílico/química , Triticum/microbiología
10.
Curr Issues Mol Biol ; 26: 55-64, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28879856

RESUMEN

Global crop production is highly threatened due to pathogen invasion. The huge quantity of pesticides application, although harmful to the environment and human health, is carried out to prevent the crop losses worldwide, every year. Therefore, understanding the molecular mechanisms of pathogenicity and plant resistance against pathogen is important. The resistance against pathogens is regulated by three important phytohormones viz. salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). Here we review possible role of CRISPR technology to understand the plant pathogenicity by mutating genes responsible for pathogen invasion or up-regulating the phytohormones genes or resistant genes. Thus hormone biosynthesis genes, receptor and feeding genes of pathogens could be important targets for modifications using CRISPR/Cas9 following multiplexing tool box strategy in order to edit multiple genes simultaneously to produce super plants. Here we put forward our idea thatthe genes would be either mutated in case of plant receptor protein targets of pathogens or up-regulation of resistant genes or hormone biosynthesis genes will be better choice for resistance against pathogens.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Productos Agrícolas/genética , Resistencia a la Enfermedad/genética , Endonucleasas/genética , Edición Génica/métodos , Genoma de Planta , Animales , Bacterias/genética , Bacterias/metabolismo , Bacterias/patogenicidad , Proteínas Bacterianas/metabolismo , Proteína 9 Asociada a CRISPR , Productos Agrícolas/inmunología , Productos Agrícolas/microbiología , Productos Agrícolas/parasitología , Ciclopentanos/inmunología , Ciclopentanos/metabolismo , Endonucleasas/metabolismo , Etilenos/biosíntesis , Etilenos/inmunología , Hongos/genética , Hongos/metabolismo , Hongos/patogenicidad , Mutación , Nematodos/genética , Nematodos/metabolismo , Nematodos/patogenicidad , Oxilipinas/inmunología , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Reguladores del Crecimiento de las Plantas/biosíntesis , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Ácido Salicílico/inmunología , Ácido Salicílico/metabolismo
11.
Funct Integr Genomics ; 16(2): 153-69, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26801786

RESUMEN

The Asian rice gall midge, Orseolia oryzae, is a serious insect pest causing extensive yield loss. Interaction between the gall midge and rice genotypes is known to be on a gene-for-gene basis. Here, we report molecular basis of HR- (hypersensitive reaction-negative) type of resistance in Aganni (an indica rice variety possessing gall midge resistance gene Gm8) through the construction and analysis of a suppressive subtraction hybridization (SSH) cDNA library. In all, 2,800 positive clones were sequenced and analyzed. The high-quality ESTs were assembled into 448 non-redundant gene sequences. Homology search with the NCBI databases, using BlastX and BlastN, revealed that 73% of the clones showed homology to genes with known function and majority of ESTs belonged to the gene ontology category 'biological process'. Validation of 27 putative candidate gall midge resistance genes through real-time PCR, following gall midge infestation, in contrasting parents and their derived pre-NILs (near isogenic lines) revealed induction of specific genes related to defense and metabolism. Interestingly, four genes, belonging to families of leucine-rich repeat (LRR), heat shock protein (HSP), pathogenesis related protein (PR), and NAC domain-containing protein, implicated in conferring HR+ type of resistance, were found to be up-regulated in Aganni. Two of the reactive oxygen intermediates (ROI)-scavenging-enzyme-coding genes Cytosolic Ascorbate Peroxidase1, 2 (OsAPx1 and OsAPx2) were found up-regulated in Aganni in incompatible interaction possibly suppressing HR. We suggest that Aganni has a deviant form of inducible, salicylic acid (SA)-mediated resistance but without HR.


Asunto(s)
Resistencia a la Enfermedad/genética , Biblioteca de Genes , Genes de Plantas , Oryza/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Animales , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/inmunología , Secuencia de Bases , Clonación Molecular , Dípteros/crecimiento & desarrollo , Dípteros/patogenicidad , Resistencia a la Enfermedad/inmunología , Etiquetas de Secuencia Expresada , Ontología de Genes , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/inmunología , Interacciones Huésped-Parásitos , Proteínas Repetidas Ricas en Leucina , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Oryza/inmunología , Oryza/parasitología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/inmunología , Proteínas/genética , Proteínas/inmunología , Ácido Salicílico/inmunología , Ácido Salicílico/metabolismo , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Técnicas de Hibridación Sustractiva
12.
PLoS Genet ; 8(1): e1002448, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22291601

RESUMEN

Recent studies have revealed an important role for hormones in plant immunity. We are now beginning to understand the contribution of crosstalk among different hormone signaling networks to the outcome of plant-pathogen interactions. Cytokinins are plant hormones that regulate development and responses to the environment. Cytokinin signaling involves a phosphorelay circuitry similar to two-component systems used by bacteria and fungi to perceive and react to various environmental stimuli. In this study, we asked whether cytokinin and components of cytokinin signaling contribute to plant immunity. We demonstrate that cytokinin levels in Arabidopsis are important in determining the amplitude of immune responses, ultimately influencing the outcome of plant-pathogen interactions. We show that high concentrations of cytokinin lead to increased defense responses to a virulent oomycete pathogen, through a process that is dependent on salicylic acid (SA) accumulation and activation of defense gene expression. Surprisingly, treatment with lower concentrations of cytokinin results in increased susceptibility. These functions for cytokinin in plant immunity require a host phosphorelay system and are mediated in part by type-A response regulators, which act as negative regulators of basal and pathogen-induced SA-dependent gene expression. Our results support a model in which cytokinin up-regulates plant immunity via an elevation of SA-dependent defense responses and in which SA in turn feedback-inhibits cytokinin signaling. The crosstalk between cytokinin and SA signaling networks may help plants fine-tune defense responses against pathogens.


Asunto(s)
Arabidopsis/inmunología , Citocininas/inmunología , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas/inmunología , Inmunidad de la Planta/inmunología , Ácido Salicílico/inmunología , Ácido Salicílico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histidina Quinasa , Interacciones Huésped-Patógeno/inmunología , Mutación , Oomicetos/inmunología , Oomicetos/patogenicidad , Plantas Modificadas Genéticamente , Proteínas Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal
13.
BMC Plant Biol ; 13: 102, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23856002

RESUMEN

BACKGROUND: Pathogen infection triggers a large-scale transcriptional reprogramming in plants, and the speed of this reprogramming affects the outcome of the infection. Our understanding of this process has significantly benefited from mutants that display either delayed or accelerated defense gene induction. In our previous work we demonstrated that the Arabidopsis Elongator complex subunit 2 (AtELP2) plays an important role in both basal immunity and effector-triggered immunity (ETI), and more recently showed that AtELP2 is involved in dynamic changes in histone acetylation and DNA methylation at several defense genes. However, the function of other Elongator subunits in plant immunity has not been characterized. RESULTS: In the same genetic screen used to identify Atelp2, we found another Elongator mutant, Atelp3-10, which mimics Atelp2 in that it exhibits a delay in defense gene induction following salicylic acid treatment or pathogen infection. Similarly to AtELP2, AtELP3 is required for basal immunity and ETI, but not for systemic acquired resistance (SAR). Furthermore, we demonstrate that both the histone acetyltransferase and radical S-adenosylmethionine domains of AtELP3 are essential for its function in plant immunity. CONCLUSION: Our results indicate that the entire Elongator complex is involved in basal immunity and ETI, but not in SAR, and support that Elongator may play a role in facilitating the transcriptional induction of defense genes through alterations to their chromatin.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Histona Acetiltransferasas/química , Histona Acetiltransferasas/metabolismo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Histona Acetiltransferasas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Estructura Terciaria de Proteína , Pseudomonas syringae/fisiología , S-Adenosilmetionina/inmunología , Ácido Salicílico/inmunología
14.
J Exp Bot ; 64(2): 637-50, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23264518

RESUMEN

Three phytohormone molecules - ethylene (ET), jasmonic acid (JA) and salicylic acid (SA) - play key roles in mediating disease response to necrotrophic fungal pathogens. This study investigated the roles of the ET, JA, and SA pathways as well as their crosstalk during the interaction between tomato (Solanum lycopersicum) plants and a necrotrophic fungal pathogen Alternaria alternata f. sp. lycopersici (AAL). Both the ET and JASMONIC ACID INSENSITIVE1 (JAI1) receptor-dependent JA signalling pathways are necessary for susceptibility, while SA response promotes resistance to AAL infection. In addition, the role of JA in susceptibility to AAL is partly dependent on ET biosynthesis and perception, while the SA pathway enhances resistance to AAL and antagonizes the ET response. Based on these results, it is proposed that ET, JA, and SA each on their own can influence the susceptibility of tomato to AAL. Furthermore, the functions of JA and SA in susceptibility to the pathogen are correlated with the enhanced or decreased action of ET, respectively. This study has revealed the functional relationship among the three key hormone pathways in tomato defence against AAL.


Asunto(s)
Alternaria/fisiología , Ciclopentanos/inmunología , Etilenos/inmunología , Oxilipinas/inmunología , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/inmunología , Ácido Salicílico/inmunología , Transducción de Señal , Solanum lycopersicum/inmunología , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/inmunología
15.
Microb Ecol ; 65(3): 661-70, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23242136

RESUMEN

Plant growth-promoting bacteria (PGPB) affect plant cellular processes in various ways. The endophytic bacterial strain Enterobacter radicincitans DSM 16656 has been shown to improve plant growth and yield in various agricultural and vegetable crops. Besides its ability to fix atmospheric nitrogen, produce phytohormones, and solubilize phosphate compounds, the strain is highly competitive against native endophytic organisms and colonizes the endorhizosphere in high numbers. Here, we show that E. radicincitans inoculation of the noncrop plant Arabidopsis thaliana promotes plant growth. Furthermore, high performance liquid chromatography (HPLC) analysis revealed that bacterial inoculation slightly decreased amounts of aliphatic glucosinolates in plant leaves in a fast-growing stage but increased these compounds in an older phase where growth is mostly completed. This effect seems to correlate with developmental stage and depends on the nitrogen requirement. Additionally, nitrogen deficiency studies with seedlings grown on medium containing different nitrogen concentrations suggest that plant nitrogen demand can influence the intensity of plant growth enhancement by E. radicincitans. This endophyte seems not to activate stress-inducible mitogen-activated protein kinases (MAPKs). Analyzing transcription of the defense-related genes PR1, PR2, PR5, and PDF1.2 by quantitative real time polymerase chain reaction (qPCR) revealed that E. radicincitans DSM 16656 is able to induce priming via salicylic acid (SA) or jasmonate (JA)/ethylene (ET) signaling pathways to protect plants against potential pathogen attack.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Endófitos/fisiología , Enterobacter/fisiología , Glucosinolatos/inmunología , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Ciclopentanos/inmunología , Etilenos/inmunología , Regulación de la Expresión Génica de las Plantas , Oxilipinas/inmunología , Reguladores del Crecimiento de las Plantas/inmunología , Ácido Salicílico/inmunología
17.
Proc Natl Acad Sci U S A ; 107(41): 17527-32, 2010 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-20876120

RESUMEN

Neonicotinoid insecticides control crop pests based on their action as agonists at the insect nicotinic acetylcholine receptor, which accepts chloropyridinyl- and chlorothiazolyl-analogs almost equally well. In some cases, these compounds have also been reported to enhance plant vigor and (a)biotic stress tolerance, independent of their insecticidal function. However, this mode of action has not been defined. Using Arabidopsis thaliana, we show that the neonicotinoid compounds, imidacloprid (IMI) and clothianidin (CLO), via their 6-chloropyridinyl-3-carboxylic acid and 2-chlorothiazolyl-5-carboxylic acid metabolites, respectively, induce salicylic acid (SA)-associated plant responses. SA is a phytohormone best known for its role in plant defense against pathogens and as an inducer of systemic acquired resistance; however, it can also modulate abiotic stress responses. These neonicotinoids effect a similar global transcriptional response to that of SA, including genes involved in (a)biotic stress response. Furthermore, similar to SA, IMI and CLO induce systemic acquired resistance, resulting in reduced growth of a powdery mildew pathogen. The action of CLO induces the endogenous synthesis of SA via the SA biosynthetic enzyme ICS1, with ICS1 required for CLO-induced accumulation of SA, expression of the SA marker PR1, and fully enhanced resistance to powdery mildew. In contrast, the action of IMI does not induce endogenous synthesis of SA. Instead, IMI is further bioactivated to 6-chloro-2-hydroxypyridinyl-3-carboxylic acid, which is shown here to be a potent inducer of PR1 and inhibitor of SA-sensitive enzymes. Thus, via different mechanisms, these chloropyridinyl- and chlorothiazolyl-neonicotinoids induce SA responses associated with enhanced stress tolerance.


Asunto(s)
Arabidopsis/inmunología , Ascomicetos/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Guanidinas/farmacología , Imidazoles/farmacología , Insecticidas/farmacología , Nitrocompuestos/farmacología , Ácido Salicílico/inmunología , Tiazoles/farmacología , Arabidopsis/microbiología , Cromatografía Líquida de Alta Presión , Regulación de la Expresión Génica de las Plantas/inmunología , Guanidinas/química , Guanidinas/inmunología , Imidazoles/química , Imidazoles/inmunología , Insecticidas/química , Insecticidas/inmunología , Espectrometría de Masas , Estructura Molecular , Neonicotinoides , Nitrocompuestos/química , Nitrocompuestos/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ácido Salicílico/metabolismo , Tiazoles/química , Tiazoles/inmunología
18.
Commun Agric Appl Biol Sci ; 78(3): 459-65, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-25151821

RESUMEN

Our work aimed at a global investigation of the lipid metabolism during the induction of resistance in wheat (Triticum aestivum) against powdery mildew (Blumeria graminis f.sp. tritici). More specifically, the effect of salicylic acid, known as playing a key role in the activation of defence reactions against pathogens in plants, has been investigated. After salicylic acid infiltration, accumulation of phosphatidic acid was observed that could be due to the phospholipase C pathway since an up-regulation of a phospholipase C-encoding gene expression as well as an accumulation of diacylglycerol were observed. The phosphatidic acid accumulation could also result from the phospholipase D pathway since a reduction of phosphatidylethanolamine content occurred. The response to salicylic acid at the octadecanoid pathway level was also investigated: both a lipoxygenase-encoding gene expression and lipoxygenase enzymatic activity were induced by salicylic acid simultaneously with a decrease of the linolenic acid content. Finally, a lipid transfer protein-encoding gene expression was also up-regulated upon salicylic acid infiltration. These observations indicate that lipid metabolism could be considered as a marker of elicitation in wheat.


Asunto(s)
Ascomicetos/fisiología , Lípidos/inmunología , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/inmunología , Biomarcadores/química , Resistencia a la Enfermedad , Lípidos/química , Lipooxigenasa/genética , Lipooxigenasa/inmunología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Ácido Salicílico/inmunología , Triticum/química , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/inmunología
19.
PLoS Genet ; 5(7): e1000545, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19578402

RESUMEN

Resistance (R) protein-associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non-race-specific disease resistance 1 (NDR1), phytoalexin deficient 4 (PAD4), senescence associated gene 101 (SAG101), and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA-synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Arabidopsis/inmunología , Proteínas de Unión al ADN/inmunología , Inmunidad Innata , Enfermedades de las Plantas/inmunología , Ácido Salicílico/inmunología , Ácido Salicílico/metabolismo , Transducción de Señal , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carmovirus/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Enfermedades de las Plantas/virología
20.
New Phytol ; 189(3): 678-687, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21087262

RESUMEN

The perennial plant model species Populus trichocarpa has received considerable attention in the last 5 yr because of its potential use as a bioenergy crop. The completion of its genome sequence revealed extensive homologies with the herbaceous annual species Arabidopsis thaliana. This review highlights the similarities and differences at the qualitative defence response components level, notably in putative NBS-LRR protein content and downstream defence regulators. With almost a twofold NBS-LRR gene complement compared with A. thaliana, P. trichocarpa also encodes some putative R-proteins with unusual architectures and possible DNA-binding capacity. P. trichocarpa also possesses all the known main components characteristic of TIR-NB-LRR and CC-NB-LRR signalling. However, very little has been done with regard to the components involved in the poplar qualitative response to pathogens. In addition, the relationship between plant-biotroph perception/signalling and the role of salicylic acid, an important defence compound, remains uncertain. This review aims to identify the genomic components present in poplar that could potentially participate in the qualitative response and highlights where efforts should be devoted to obtain a better understanding of the poplar qualitative defence response.


Asunto(s)
Genes de Plantas/inmunología , Genoma de Planta/inmunología , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Proteínas de Plantas/inmunología , Populus/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Populus/inmunología , Ácido Salicílico/inmunología , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda