Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
Annu Rev Genet ; 57: 461-489, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37722686

RESUMEN

Enzymes that phosphorylate, dephosphorylate, and ligate RNA 5' and 3' ends were discovered more than half a century ago and were eventually shown to repair purposeful site-specific endonucleolytic breaks in the RNA phosphodiester backbone. The pace of discovery and characterization of new candidate RNA repair activities in taxa from all phylogenetic domains greatly exceeds our understanding of the biological pathways in which they act. The key questions anent RNA break repair in vivo are (a) identifying the triggers, agents, and targets of RNA cleavage and (b) determining whether RNA repair results in restoration of the original RNA, modification of the RNA (by loss or gain at the ends), or rearrangements of the broken RNA segments (i.e., RNA recombination). This review provides a perspective on the discovery, mechanisms, and physiology of purposeful RNA break repair, highlighting exemplary repair pathways (e.g., tRNA restriction-repair and tRNA splicing) for which genetics has figured prominently in their elucidation.


Asunto(s)
ARN Ligasa (ATP) , ARN , Filogenia , ARN Ligasa (ATP)/genética , ARN Ligasa (ATP)/metabolismo , ARN/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Empalme del ARN/genética
2.
Mol Cell ; 82(2): 420-434.e6, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34951963

RESUMEN

Exon back-splicing-generated circular RNAs, as a group, can suppress double-stranded RNA (dsRNA)-activated protein kinase R (PKR) in cells. We have sought to synthesize immunogenicity-free, short dsRNA-containing RNA circles as PKR inhibitors. Here, we report that RNA circles synthesized by permuted self-splicing thymidylate synthase (td) introns from T4 bacteriophage or by Anabaena pre-tRNA group I intron could induce an immune response. Autocatalytic splicing introduces ∼74 nt td or ∼186 nt Anabaena extraneous fragments that can distort the folding status of original circular RNAs or form structures themselves to provoke innate immune responses. In contrast, synthesized RNA circles produced by T4 RNA ligase without extraneous fragments exhibit minimized immunogenicity. Importantly, directly ligated circular RNAs that form short dsRNA regions efficiently suppress PKR activation 103- to 106-fold higher than reported chemical compounds C16 and 2-AP, highlighting the future use of circular RNAs as potent inhibitors for diseases related to PKR overreaction.


Asunto(s)
Inhibidores de Proteínas Quinasas/farmacología , ARN Circular/farmacología , eIF-2 Quinasa/antagonistas & inhibidores , Células A549 , Bacteriófago T4/enzimología , Bacteriófago T4/genética , Células HEK293 , Células HeLa , Humanos , Inmunidad Innata/efectos de los fármacos , Intrones , Conformación de Ácido Nucleico , Inhibidores de Proteínas Quinasas/inmunología , ARN Ligasa (ATP)/genética , ARN Ligasa (ATP)/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Circular/genética , ARN Circular/inmunología , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , eIF-2 Quinasa/metabolismo
3.
Mol Cell ; 81(12): 2520-2532.e16, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33930333

RESUMEN

The tRNA ligase complex (tRNA-LC) splices precursor tRNAs (pre-tRNA), and Xbp1-mRNA during the unfolded protein response (UPR). In aerobic conditions, a cysteine residue bound to two metal ions in its ancient, catalytic subunit RTCB could make the tRNA-LC susceptible to oxidative inactivation. Here, we confirm this hypothesis and reveal a co-evolutionary association between the tRNA-LC and PYROXD1, a conserved and essential oxidoreductase. We reveal that PYROXD1 preserves the activity of the mammalian tRNA-LC in pre-tRNA splicing and UPR. PYROXD1 binds the tRNA-LC in the presence of NAD(P)H and converts RTCB-bound NAD(P)H into NAD(P)+, a typical oxidative co-enzyme. However, NAD(P)+ here acts as an antioxidant and protects the tRNA-LC from oxidative inactivation, which is dependent on copper ions. Genetic variants of PYROXD1 that cause human myopathies only partially support tRNA-LC activity. Thus, we establish the tRNA-LC as an oxidation-sensitive metalloenzyme, safeguarded by the flavoprotein PYROXD1 through an unexpected redox mechanism.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , ARN Ligasa (ATP)/metabolismo , ARN de Transferencia/metabolismo , Animales , Antioxidantes/fisiología , Dominio Catalítico , Femenino , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NAD/metabolismo , NADP/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/fisiología , ARN Ligasa (ATP)/química , ARN Ligasa (ATP)/genética , Empalme del ARN/genética , Empalme del ARN/fisiología , Respuesta de Proteína Desplegada/fisiología , Proteína 1 de Unión a la X-Box/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(42): e2408249121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39388274

RESUMEN

ATP-grasp superfamily enzymes contain a hand-like ATP-binding fold and catalyze a variety of reactions using a similar catalytic mechanism. More than 30 protein families are categorized in this superfamily, and they are involved in a plethora of cellular processes and human diseases. Here, we identify C12orf29 (RLIG1) as an atypical ATP-grasp enzyme that ligates RNA. Human RLIG1 and its homologs autoadenylate on an active site Lys residue as part of a reaction intermediate that specifically ligates RNA halves containing a 5'-phosphate and a 3'-hydroxyl. RLIG1 binds tRNA in cells and can ligate tRNA within the anticodon loop in vitro. Transcriptomic analyses of Rlig1 knockout mice revealed significant alterations in global tRNA levels in the brains of female mice, but not in those of male mice. Furthermore, crystal structures of a RLIG1 homolog from Yasminevirus bound to nucleotides revealed a minimal and atypical RNA ligase fold with a conserved active site architecture that participates in catalysis. Collectively, our results identify RLIG1 as an RNA ligase and suggest its involvement in tRNA biology.


Asunto(s)
Dominio Catalítico , Ratones Noqueados , ARN Ligasa (ATP) , ARN de Transferencia , Animales , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Ratones , ARN Ligasa (ATP)/metabolismo , ARN Ligasa (ATP)/genética , ARN Ligasa (ATP)/química , Humanos , Femenino , Masculino , Cristalografía por Rayos X , Modelos Moleculares
5.
Proc Natl Acad Sci U S A ; 121(38): e2407325121, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39269776

RESUMEN

The acquisition of new RNA functions through evolutionary processes was essential for the diversification of RNA-based primordial biology and its subsequent transition to modern biology. However, the mechanisms by which RNAs access new functions remain unclear. Do RNA enzymes need completely new folds to support new but related functions, or is reoptimization of the active site sufficient? What are the roles of neutral and adaptive mutations in evolutionary innovation? Here, we address these questions experimentally by focusing on the evolution of substrate specificity in RNA-catalyzed RNA assembly. We use directed in vitro evolution to show that a ligase ribozyme that uses prebiotically relevant 5'-phosphorimidazole-activated substrates can be evolved to catalyze ligation with substrates that are 5'-activated with the biologically relevant triphosphate group. Interestingly, despite catalyzing a related reaction, the new ribozyme folds into a completely new structure and exhibits promiscuity by catalyzing RNA ligation with both triphosphate and phosphorimidazole-activated substrates. Although distinct in sequence and structure, the parent phosphorimidazolide ligase and the evolved triphosphate ligase ribozymes can be connected by a series of point mutations where the intermediate sequences retain at least some ligase activity. The existence of a quasi-neutral pathway between these distinct ligase ribozymes suggests that neutral drift is sufficient to enable the acquisition of new substrate specificity, thereby providing opportunities for subsequent adaptive optimization. The transition from RNA-catalyzed RNA assembly using phosphorimidazole-activated substrates to triphosphate-activated substrates may have foreshadowed the later evolution of the protein enzymes that use monomeric triphosphates (nucleoside triphosphates, NTPs) for RNA synthesis.


Asunto(s)
Imidazoles , ARN Ligasa (ATP) , ARN Catalítico , ARN Catalítico/metabolismo , ARN Catalítico/química , ARN Catalítico/genética , Especificidad por Sustrato , Imidazoles/metabolismo , Imidazoles/química , ARN Ligasa (ATP)/metabolismo , ARN Ligasa (ATP)/química , ARN Ligasa (ATP)/genética , Evolución Molecular , Conformación de Ácido Nucleico , Dominio Catalítico
6.
RNA ; 30(4): 354-366, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38307611

RESUMEN

Some eukaryotic pre-tRNAs contain an intron that is removed by a dedicated set of enzymes. Intron-containing pre-tRNAs are cleaved by tRNA splicing endonuclease, followed by ligation of the two exons and release of the intron. Fungi use a "heal and seal" pathway that requires three distinct catalytic domains of the tRNA ligase enzyme, Trl1. In contrast, humans use a "direct ligation" pathway carried out by RTCB, an enzyme completely unrelated to Trl1. Because of these mechanistic differences, Trl1 has been proposed as a promising drug target for fungal infections. To validate Trl1 as a broad-spectrum drug target, we show that fungi from three different phyla contain Trl1 orthologs with all three domains. This includes the major invasive human fungal pathogens, and these proteins can each functionally replace yeast Trl1. In contrast, species from the order Mucorales, including the pathogens Rhizopus arrhizus and Mucor circinelloides, have an atypical Trl1 that contains the sealing domain but lacks both healing domains. Although these species contain fewer tRNA introns than other pathogenic fungi, they still require splicing to decode three of the 61 sense codons. These sealing-only Trl1 orthologs can functionally complement defects in the corresponding domain of yeast Trl1 and use a conserved catalytic lysine residue. We conclude that Mucorales use a sealing-only enzyme together with unidentified nonorthologous healing enzymes for their heal and seal pathway. This implies that drugs that target the sealing activity are more likely to be broader-spectrum antifungals than drugs that target the healing domains.


Asunto(s)
Mucorales , Proteínas de Saccharomyces cerevisiae , Humanos , ARN Ligasa (ATP)/genética , ARN Ligasa (ATP)/metabolismo , Saccharomyces cerevisiae/genética , ARN de Transferencia/química , Proteínas de Saccharomyces cerevisiae/genética , Precursores del ARN/metabolismo , Empalme del ARN , Mucorales/genética , Mucorales/metabolismo
7.
RNA ; 30(4): 367-380, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238085

RESUMEN

Fungal Trl1 is an essential trifunctional tRNA splicing enzyme that heals and seals tRNA exons with 2',3'-cyclic-PO4 and 5'-OH ends. Trl1 is composed of C-terminal cyclic phosphodiesterase and central polynucleotide kinase end-healing domains that generate the 3'-OH,2'-PO4 and 5'-PO4 termini required for sealing by an N-terminal ATP-dependent ligase domain. Trl1 enzymes are present in many human fungal pathogens and are promising targets for antifungal drug discovery because their domain structures and biochemical mechanisms are unique compared to the mammalian RtcB-type tRNA splicing enzyme. Here we report that Mucorales species (deemed high-priority human pathogens by WHO) elaborate a noncanonical tRNA splicing apparatus in which a monofunctional RNA ligase enzyme is encoded separately from any end-healing enzymes. We show that Mucor circinelloides RNA ligase (MciRNL) is active in tRNA splicing in vivo in budding yeast in lieu of the Trl1 ligase domain. Biochemical and kinetic characterization of recombinant MciRNL underscores its requirement for a 2'-PO4 terminus in the end-joining reaction, whereby the 2'-PO4 enhances the rates of RNA 5'-adenylylation (step 2) and phosphodiester synthesis (step 3) by ∼125-fold and ∼6200-fold, respectively. In the canonical fungal tRNA splicing pathway, the splice junction 2'-PO4 installed by RNA ligase is removed by a dedicated NAD+-dependent RNA 2'-phosphotransferase Tpt1. Here we identify and affirm by genetic complementation in yeast the biological activity of Tpt1 orthologs from three Mucorales species. Recombinant M. circinelloides Tpt1 has vigorous NAD+-dependent RNA 2'-phosphotransferase activity in vitro.


Asunto(s)
Mucorales , Animales , Humanos , Mucorales/genética , Mucorales/metabolismo , NAD/metabolismo , ARN/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN Ligasa (ATP)/genética , ARN Ligasa (ATP)/metabolismo , Saccharomyces cerevisiae/metabolismo , Ligasas , Polinucleótido 5'-Hidroxil-Quinasa/química , Empalme del ARN , Mamíferos/genética
8.
RNA ; 30(10): 1306-1314, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013577

RESUMEN

Fungal RNA ligase (LIG) is an essential tRNA splicing enzyme that joins 3'-OH,2'-PO4 and 5'-PO4 RNA ends to form a 2'-PO4,3'-5' phosphodiester splice junction. Sealing entails three divalent cation-dependent adenylate transfer steps. First, LIG reacts with ATP to form a covalent ligase-(lysyl-Nζ)-AMP intermediate and displace pyrophosphate. Second, LIG transfers AMP to the 5'-PO4 RNA terminus to form an RNA-adenylate intermediate (A5'pp5'RNA). Third, LIG directs the attack of an RNA 3'-OH on AppRNA to form the splice junction and displace AMP. A defining feature of fungal LIG vis-à-vis canonical polynucleotide ligases is the requirement for a 2'-PO4 to synthesize a 3'-5' phosphodiester bond. Fungal LIG consists of an N-terminal adenylyltransferase domain and a unique C-terminal domain. The C-domain of Chaetomium thermophilum LIG (CthLIG) engages a sulfate anion thought to be a mimetic of the terminal 2'-PO4 Here, we interrogated the contributions of the C-domain and the conserved sulfate ligands (His227, Arg334, Arg337) to ligation of a pRNA2'p substrate. We find that the C-domain is essential for end-joining but dispensable for ligase adenylylation. Mutations H227A, R334A, and R337A slowed the rate of step 2 RNA adenylation by 420-fold, 120-fold, and 60-fold, respectively, vis-à-vis wild-type CthLIG. An R334A-R337A double-mutation slowed step 2 by 580-fold. These results fortify the case for the strictly conserved His-Arg-Arg triad as the enforcer of the 2'-PO4 end-specificity of fungal tRNA ligases and as a target for small molecule interdiction of fungal tRNA splicing.


Asunto(s)
Chaetomium , ARN Ligasa (ATP) , ARN Ligasa (ATP)/metabolismo , ARN Ligasa (ATP)/química , ARN Ligasa (ATP)/genética , Cinética , Chaetomium/enzimología , Chaetomium/genética , Chaetomium/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Fosfatos/metabolismo , Fosfatos/química , Modelos Moleculares , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/química , ARN de Hongos/metabolismo , ARN de Hongos/química , ARN de Hongos/genética , Especificidad por Sustrato , Empalme del ARN
9.
Nucleic Acids Res ; 52(7): 3924-3937, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38421610

RESUMEN

RNA ligases are important enzymes in molecular biology and are highly useful for the manipulation and analysis of nucleic acids, including adapter ligation in next-generation sequencing of microRNAs. Thermophilic RNA ligases belonging to the RNA ligase 3 family are gaining attention for their use in molecular biology, for example a thermophilic RNA ligase from Methanobacterium thermoautotrophicum is commercially available for the adenylation of nucleic acids. Here we extensively characterise a newly identified RNA ligase from the thermophilic archaeon Palaeococcus pacificus (PpaRnl). PpaRnl exhibited significant substrate adenylation activity but low ligation activity across a range of oligonucleotide substrates. Mutation of Lys92 in motif I to alanine, resulted in an enzyme that lacked adenylation activity, but demonstrated improved ligation activity with pre-adenylated substrates (ATP-independent ligation). Subsequent structural characterisation revealed that in this mutant enzyme Lys238 was found in two alternate positions for coordination of the phosphate tail of ATP. In contrast mutation of Lys238 in motif V to glycine via structure-guided engineering enhanced ATP-dependent ligation activity via an arginine residue compensating for the absence of Lys238. Ligation activity for both mutations was higher than the wild-type, with activity observed across a range of oligonucleotide substrates with varying sequence and secondary structure.


Asunto(s)
ARN Ligasa (ATP) , ARN Ligasa (ATP)/metabolismo , ARN Ligasa (ATP)/genética , ARN Ligasa (ATP)/química , Especificidad por Sustrato , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/química , Planococcaceae/enzimología , Planococcaceae/genética , Ingeniería de Proteínas , Mutación , Modelos Moleculares , Adenosina Trifosfato/metabolismo , Oligonucleótidos/metabolismo , Oligonucleótidos/genética
10.
Development ; 149(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36111596

RESUMEN

Larval terminal cells of the Drosophila tracheal system generate extensive branched tubes, requiring a huge increase in apical membrane. We discovered that terminal cells compromised for apical membrane expansion - mTOR-vATPase axis and apical polarity mutants - were invaded by the neighboring stalk cell. The invading cell grows and branches, replacing the original single intercellular junction between stalk and terminal cell with multiple intercellular junctions. Here, we characterize disjointed, a mutation in the same phenotypic class. We find that disjointed encodes Drosophila Archease, which is required for the RNA ligase (RtcB) function that is essential for tRNA maturation and for endoplasmic reticulum stress-regulated nonconventional splicing of Xbp1 mRNA. We show that the steady-state subcellular localization of Archease is principally nuclear and dependent upon TOR-vATPase activity. In tracheal cells mutant for Rheb or vATPase loci, Archease localization shifted dramatically from nucleus to cytoplasm. Further, we found that blocking tRNA maturation by knockdown of tRNAseZ also induced compensatory branching. Taken together, these data suggest that the TOR-vATPase axis promotes apical membrane growth in part through nuclear localization of Archease, where Archease is required for tRNA maturation.


Asunto(s)
Proteínas de Drosophila , ARN Ligasa (ATP) , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , ARN Ligasa (ATP)/genética , ARN Ligasa (ATP)/metabolismo , ARN Mensajero/genética , ARN de Transferencia/genética , Serina-Treonina Quinasas TOR/genética , Tráquea/metabolismo
11.
Cell Mol Life Sci ; 80(12): 352, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935993

RESUMEN

To be functional, some RNAs require a processing step involving splicing events. Each splicing event necessitates an RNA ligation step. RNA ligation is a process that can be achieved with various intermediaries such as self-catalysing RNAs, 5'-3' and 3'-5' RNA ligases. While several types of RNA ligation mechanisms occur in human, RtcB is the only 3'-5' RNA ligase identified in human cells to date. RtcB RNA ligation activity is well known to be essential for the splicing of XBP1, an essential transcription factor of the unfolded protein response; as well as for the maturation of specific intron-containing tRNAs. As such, RtcB is a core factor in protein synthesis and homeostasis. Taking advantage of the high homology between RtcB orthologues in archaea, bacteria and eukaryotes, this review will provide an introduction to the structure of RtcB and the mechanism of 3'-5' RNA ligation. This analysis is followed by a description of the mechanisms regulating RtcB activity and localisation, its known partners and its various functions from bacteria to human with a specific focus on human cancer.


Asunto(s)
ARN Ligasa (ATP) , Factores de Transcripción , Humanos , ARN Ligasa (ATP)/genética , ARN Ligasa (ATP)/química , ARN Ligasa (ATP)/metabolismo , Factores de Transcripción/metabolismo , ARN/metabolismo , Respuesta de Proteína Desplegada , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Empalme del ARN/genética
12.
Nucleic Acids Res ; 50(13): 7560-7569, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35819229

RESUMEN

5'-Adenylated oligonucleotides (AppOligos) are widely used for single-stranded DNA/RNA ligation in next-generation sequencing (NGS) applications such as microRNA (miRNA) profiling. The ligation between an AppOligo adapter and target molecules (such as miRNA) no longer requires ATP, thereby minimizing potential self-ligations and simplifying library preparation procedures. AppOligos can be produced by chemical synthesis or enzymatic modification. However, adenylation via chemical synthesis is inefficient and expensive, while enzymatic modification requires pre-phosphorylated substrate and additional purification. Here we cloned and characterized the Pfu RNA ligase encoded by the PF0353 gene in the hyperthermophilic archaea Pyrococcus furiosus. We further engineered fusion enzymes containing both Pfu RNA ligase and T4 polynucleotide kinase. One fusion enzyme, 8H-AP, was thermostable and can directly catalyze 5'-OH-terminated DNA substrates to adenylated products. The newly discovered Pfu RNA ligase and the engineered fusion enzyme may be useful tools for applications using AppOligos.


Asunto(s)
Adenosina Monofosfato/química , Técnicas Genéticas , MicroARNs , Oligonucleótidos/química , Polinucleótido 5'-Hidroxil-Quinasa , ADN/química , ADN Ligasas/metabolismo , ADN de Cadena Simple , Polinucleótido 5'-Hidroxil-Quinasa/genética , Pyrococcus furiosus/enzimología , ARN Ligasa (ATP)/metabolismo
13.
Proc Natl Acad Sci U S A ; 117(11): 5741-5748, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123094

RESUMEN

The hypothesized central role of RNA in the origin of life suggests that RNA propagation predated the advent of complex protein enzymes. A critical step of RNA replication is the template-directed synthesis of a complementary strand. Two experimental approaches have been extensively explored in the pursuit of demonstrating protein-free RNA synthesis: template-directed nonenzymatic RNA polymerization using intrinsically reactive monomers and ribozyme-catalyzed polymerization using more stable substrates such as biological 5'-triphosphates. Despite significant progress in both approaches in recent years, the assembly and copying of functional RNA sequences under prebiotic conditions remains a challenge. Here, we explore an alternative approach to RNA-templated RNA copying that combines ribozyme catalysis with RNA substrates activated with a prebiotically plausible leaving group, 2-aminoimidazole (2AI). We applied in vitro selection to identify ligase ribozymes that catalyze phosphodiester bond formation between a template-bound primer and a phosphor-imidazolide-activated oligomer. Sequencing revealed the progressive enrichment of 10 abundant sequences from a random sequence pool. Ligase activity was detected in all 10 RNA sequences; all required activation of the ligator with 2AI and generated a 3'-5' phosphodiester bond. We propose that ribozyme catalysis of phosphodiester bond formation using intrinsically reactive RNA substrates, such as imidazolides, could have been an evolutionary step connecting purely nonenzymatic to ribozyme-catalyzed RNA template copying during the origin of life.


Asunto(s)
Imidazoles/química , Origen de la Vida , ARN Ligasa (ATP)/química , ARN Catalítico/química , Imidazoles/metabolismo , Polimerizacion , ARN Ligasa (ATP)/metabolismo , ARN Catalítico/metabolismo
14.
Mol Cell ; 54(6): 975-986, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24813946

RESUMEN

RNA-specific polynucleotide kinases of the Clp1 subfamily are key components of various RNA maturation pathways. However, the structural basis explaining their substrate specificity and the enzymatic mechanism is elusive. Here, we report crystal structures of Clp1 from Caenorhabditis elegans (ceClp1) in a number of nucleotide- and RNA-bound states along the reaction pathway. The combined structural and biochemical analysis of ceClp1 elucidates the RNA specificity and lets us derive a general model for enzyme catalysis of RNA-specific polynucleotide kinases. We identified an RNA binding motif referred to as "clasp" as well as a conformational switch that involves the essential Walker A lysine (Lys127) and regulates the enzymatic activity of ceClp1. Structural comparison with other P loop proteins, such as kinases, adenosine triphosphatases (ATPases), and guanosine triphosphatases (GTPases), suggests that the observed conformational switch of the Walker A lysine is a broadly relevant mechanistic feature.


Asunto(s)
Caenorhabditis elegans/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , ARN Ligasa (ATP)/ultraestructura , Proteínas de Unión al ARN/química , Adenosina Trifosfatasas/ultraestructura , Animales , Sitios de Unión/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans , Catálisis , Cristalografía por Rayos X , GTP Fosfohidrolasas/ultraestructura , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/ultraestructura , Estructura Terciaria de Proteína , ARN/biosíntesis , ARN Ligasa (ATP)/genética , ARN Ligasa (ATP)/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/ultraestructura , Especificidad por Sustrato
15.
Nucleic Acids Res ; 48(10): 5603-5615, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32315072

RESUMEN

Naegleria gruberi RNA ligase (NgrRnl) exemplifies the Rnl5 family of adenosine triphosphate (ATP)-dependent polynucleotide ligases that seal 3'-OH RNA strands in the context of 3'-OH/5'-PO4 nicked duplexes. Like all classic ligases, NgrRnl forms a covalent lysyl-AMP intermediate. A two-metal mechanism of lysine adenylylation was established via a crystal structure of the NgrRnl•ATP•(Mn2+)2 Michaelis complex. Here we conducted an alanine scan of active site constituents that engage the ATP phosphates and the metal cofactors. We then determined crystal structures of ligase-defective NgrRnl-Ala mutants in complexes with ATP/Mn2+. The unexpected findings were that mutations K170A, E227A, K326A and R149A (none of which impacted overall enzyme structure) triggered adverse secondary changes in the active site entailing dislocations of the ATP phosphates, altered contacts to ATP, and variations in the numbers and positions of the metal ions that perverted the active sites into off-pathway states incompatible with lysine adenylylation. Each alanine mutation elicited a distinctive off-pathway distortion of the ligase active site. Our results illuminate a surprising plasticity of the ligase active site in its interactions with ATP and metals. More broadly, they underscore a valuable caveat when interpreting mutational data in the course of enzyme structure-function studies.


Asunto(s)
Alanina , Sustitución de Aminoácidos , Lisina/química , ARN Ligasa (ATP)/química , ARN Ligasa (ATP)/genética , Adenosina Monofosfato/química , Adenosina Trifosfato/química , Dominio Catalítico , Lisina/metabolismo , Manganeso/química , Modelos Moleculares , Naegleria/enzimología , ARN Ligasa (ATP)/metabolismo
16.
Genes Dev ; 28(14): 1556-61, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25030695

RESUMEN

In eukaryotes and archaea, tRNA splicing generates free intron molecules. Although ∼ 600,000 introns are produced per generation in yeast, they are barely detectable in cells, indicating efficient turnover of introns. Through a genome-wide search for genes involved in tRNA biology in yeast, we uncovered the mechanism for intron turnover. This process requires healing of the 5' termini of linear introns by the tRNA ligase Rlg1 and destruction by the cytoplasmic tRNA quality control 5'-to-3' exonuclease Xrn1, which has specificity for RNAs with 5' monophosphate.


Asunto(s)
Citoplasma/metabolismo , Exorribonucleasas/metabolismo , Intrones , ARN de Transferencia/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Genoma Fúngico , Mutación , Fosforilación , ARN Ligasa (ATP)/genética , ARN Ligasa (ATP)/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
J Am Chem Soc ; 143(21): 8154-8163, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34028252

RESUMEN

Threose nucleic acid (TNA) has been considered a potential RNA progenitor in evolution due to its chemical simplicity and base pairing property. Catalytic TNA sequences with RNA ligase activities might have facilitated the transition to the RNA world. Here we report the isolation of RNA ligase TNA enzymes by in vitro selection. The identified TNA enzyme T8-6 catalyzes the formation of a 2'-5' phosphoester bond between a 2',3'-diol and a 5'-triphosphate group, with a kobs of 1.1 × 10-2 min-1 (40 mM Mg2+, pH 9.0). For efficient reaction, T8-6 requires UA|GA at the ligation junction and tolerates variations at other substrate positions. Functional RNAs such as hammerhead ribozyme can be prepared by T8-6-catalyzed ligation, with site-specific introduction of a 2'-5' linkage. Together, this work provides experimental support for TNA as a plausible pre-RNA genetic polymer and also offers an alternative molecular tool for biotechnology.


Asunto(s)
Ácidos Nucleicos/metabolismo , ARN Ligasa (ATP)/metabolismo , Tetrosas/metabolismo , Conformación de Ácido Nucleico , Ácidos Nucleicos/química , ARN Ligasa (ATP)/química , Tetrosas/química
18.
Anal Chem ; 93(3): 1801-1810, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33382236

RESUMEN

Circular single-stranded (ss) DNA is an essential element in rolling circle amplification and many DNA nanotechnology constructions. It is commonly synthesized from linear ssDNA by a ligase, which nevertheless suffers from low and inconsistent efficiency due to the simultaneous formation of concatemeric byproducts. Here, we design an intramolecular terminal hybridization strategy to program the ring formation catalytic process of CircLigase, a thermostable RNA ligase 1 that can ligate ssDNA in an intramolecular fashion. With the enthalpy gained from the programmed hybridization to override disfavored entropic factors associated with end coupling, we broke the limit of natural CircLigase on circularization of ssDNA, realizing over 75% yields of byproduct-free monomeric rings on a series of hundred-to-half-kilo-based linear DNAs. We found that this hybridization strategy can be twisted from intra- to intermolecular to also program CircLigase to efficiently and predominantly join one ssDNA strand to another. We focused on DNA rings premade by CircLigase and demonstrated their utility in elevating the preparation, quantity, and quality of DNA topologies. We expect that the new insights on engineering CircLigase will further promote the development of nucleic acid biotechnology and nanotechnology.


Asunto(s)
ADN/metabolismo , ARN Ligasa (ATP)/metabolismo , Proteínas Virales/metabolismo , Biocatálisis , ADN/análisis
19.
RNA ; 25(1): 82-89, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30309880

RESUMEN

Many approaches exist to detect RNA using complementary oligonucleotides. DNA ligation-based techniques can improve discrimination of subtle sequence variations, but they have been difficult to implement for direct RNA analysis due to the infidelity and inefficiency of most DNA ligases on RNA. In this report, we have systematically studied if ribonucleotide substitutions in padlock probes can provide higher catalytic efficiencies for Chlorella virus DNA ligase (PBCV-1 DNA ligase) and T4 RNA ligase 2 (T4Rnl2) on RNA. We provide broad characterization of end-joining fidelity for both enzymes in RNA-templated 3'-OH RNA/5'-pDNA chimeric probe ligation. Both ligases showed increased ligation efficiency toward chimeric substrates on RNA. However, end-joining fidelity of PBCV-1 DNA ligase remained poor, while T4Rnl2 showed a somewhat better end-joining fidelity compared to PBCV-1 DNA ligase. The recently presented invader padlock (iLock) probes overcome the poor end-joining fidelity of PBCV-1 DNA ligase by the requirement of target-dependent 5' flap removal prior to ligation. Here we show that two particular ribonucleotide substitutions greatly improve the activation and ligation rate of chimeric iLock probes on RNA. We characterized the end-joining efficiency and fidelity of PBCV-1 DNA ligase and T4Rnl2 with chimeric iLock probes on RNA and found that both enzymes exhibit high ligation fidelities for single nucleotide polymorphisms on RNA. Finally, we applied the chimeric probe concept to directly differentiate between human and mouse ACTB mRNA in situ, demonstrating chimeric padlock and iLock probes as superior to their DNA equivalents.


Asunto(s)
Técnicas de Sonda Molecular , Sondas de Oligonucleótidos/genética , ARN/análisis , ARN/genética , Actinas/genética , Animales , Secuencia de Bases , ADN Ligasas/metabolismo , Humanos , Ratones , ARN Ligasa (ATP)/metabolismo , ARN Mensajero/análisis , ARN Mensajero/genética , Especificidad de la Especie , Especificidad por Sustrato , Proteínas Virales/metabolismo
20.
Nucleic Acids Res ; 47(22): 11826-11838, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31722405

RESUMEN

Fungal tRNA ligase (Trl1) rectifies RNA breaks with 2',3'-cyclic-PO4 and 5'-OH termini. Trl1 consists of three catalytic modules: an N-terminal ligase (LIG) domain; a central polynucleotide kinase (KIN) domain; and a C-terminal cyclic phosphodiesterase (CPD) domain. Trl1 enzymes found in all human fungal pathogens are untapped targets for antifungal drug discovery. Here we report a 1.9 Å crystal structure of Trl1 KIN-CPD from the pathogenic fungus Candida albicans, which adopts an extended conformation in which separate KIN and CPD domains are connected by an unstructured linker. CPD belongs to the 2H phosphotransferase superfamily by dint of its conserved central concave ß sheet and interactions of its dual HxT motif histidines and threonines with phosphate in the active site. Additional active site motifs conserved among the fungal CPD clade of 2H enzymes are identified. We present structures of the Candida Trl1 KIN domain at 1.5 to 2.0 Å resolution-as apoenzyme and in complexes with GTP•Mg2+, IDP•PO4, and dGDP•PO4-that highlight conformational switches in the G-loop (which recognizes the guanine base) and lid-loop (poised over the nucleotide phosphates) that accompany nucleotide binding.


Asunto(s)
Dominio Catalítico , Guanosina Trifosfato/metabolismo , ARN Ligasa (ATP)/química , ARN Ligasa (ATP)/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Candida albicans , Dominio Catalítico/genética , Cristalografía por Rayos X , Modelos Moleculares , Nucleotidasas/química , Polinucleótido 5'-Hidroxil-Quinasa/química , Unión Proteica , Conformación Proteica , Pliegue de Proteína , ARN Ligasa (ATP)/genética , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda