Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 17.766
Filtrar
Más filtros

Publication year range
1.
Nature ; 629(8014): 1041-1046, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720078

RESUMEN

Electrocaloric1,2 and electrostrictive3,4 effects concurrently exist in dielectric materials. Combining these two effects could achieve the lightweight, compact localized thermal management that is promised by electrocaloric refrigeration5. Despite a handful of numerical models and schematic presentations6,7, current electrocaloric refrigerators still rely on external accessories to drive the working bodies8-10 and hence result in a low device-level cooling power density and coefficient of performance (COP). Here we report an electrocaloric thin-film device that uses the electro-thermomechanical synergy provided by polymeric ferroelectrics. Under one-time a.c. electric stimulation, the device is thermally and mechanically cycled by the working body itself, resulting in an external-driver-free, self-cycling, soft refrigerator. The prototype offers a directly measured cooling power density of 6.5 W g-1 and a peak COP exceeding 58 under a zero temperature span. Being merely a 30-µm-thick polymer film, the device achieved a COP close to 24 under a 4 K temperature span in an open ambient environment (32% thermodynamic efficiency). Compared with passive cooling, the thin-film refrigerator could immediately induce an additional 17.5 K temperature drop against an electronic chip. The soft, polymeric refrigerator can sense, actuate and pump heat to provide automatic localized thermal management.


Asunto(s)
Polímeros , Refrigeración , Termodinámica , Refrigeración/instrumentación , Polímeros/química , Frío , Electricidad , Diseño de Equipo , Estimulación Eléctrica , Temperatura
2.
Nature ; 604(7905): 287-291, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35418635

RESUMEN

Thermophotovoltaics (TPVs) convert predominantly infrared wavelength light to electricity via the photovoltaic effect, and can enable approaches to energy storage1,2 and conversion3-9 that use higher temperature heat sources than the turbines that are ubiquitous in electricity production today. Since the first demonstration of 29% efficient TPVs (Fig. 1a) using an integrated back surface reflector and a tungsten emitter at 2,000 °C (ref. 10), TPV fabrication and performance have improved11,12. However, despite predictions that TPV efficiencies can exceed 50% (refs. 11,13,14), the demonstrated efficiencies are still only as high as 32%, albeit at much lower temperatures below 1,300 °C (refs. 13-15). Here we report the fabrication and measurement of TPV cells with efficiencies of more than 40% and experimentally demonstrate the efficiency of high-bandgap tandem TPV cells. The TPV cells are two-junction devices comprising III-V materials with bandgaps between 1.0 and 1.4 eV that are optimized for emitter temperatures of 1,900-2,400 °C. The cells exploit the concept of band-edge spectral filtering to obtain high efficiency, using highly reflective back surface reflectors to reject unusable sub-bandgap radiation back to the emitter. A 1.4/1.2 eV device reached a maximum efficiency of (41.1 ± 1)% operating at a power density of 2.39 W cm-2 and an emitter temperature of 2,400 °C. A 1.2/1.0 eV device reached a maximum efficiency of (39.3 ± 1)% operating at a power density of 1.8 W cm-2 and an emitter temperature of 2,127 °C. These cells can be integrated into a TPV system for thermal energy grid storage to enable dispatchable renewable energy. This creates a pathway for thermal energy grid storage to reach sufficiently high efficiency and sufficiently low cost to enable decarbonization of the electricity grid.


Asunto(s)
Electricidad , Calor , Rayos Infrarrojos , Temperatura
3.
Nature ; 598(7880): 308-314, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34646000

RESUMEN

Estimates of global economic damage caused by carbon dioxide (CO2) emissions can inform climate policy1-3. The social cost of carbon (SCC) quantifies these damages by characterizing how additional CO2 emissions today impact future economic outcomes through altering the climate4-6. Previous estimates have suggested that large, warming-driven increases in energy expenditures could dominate the SCC7,8, but they rely on models9-11 that are spatially coarse and not tightly linked to data2,3,6,7,12,13. Here we show that the release of one ton of CO2 today is projected to reduce total future energy expenditures, with most estimates valued between -US$3 and -US$1, depending on discount rates. Our results are based on an architecture that integrates global data, econometrics and climate science to estimate local damages worldwide. Notably, we project that emerging economies in the tropics will dramatically increase electricity consumption owing to warming, which requires critical infrastructure planning. However, heating reductions in colder countries offset this increase globally. We estimate that 2099 annual global electricity consumption increases by about 4.5 exajoules (7 per cent of current global consumption) per one-degree-Celsius increase in global mean surface temperature (GMST), whereas direct consumption of other fuels declines by about 11.3 exajoules (7 per cent of current global consumption) per one-degree-Celsius increase in GMST. Our finding of net savings contradicts previous research7,8, because global data indicate that many populations will remain too poor for most of the twenty-first century to substantially increase energy consumption in response to warming. Importantly, damage estimates would differ if poorer populations were given greater weight14.


Asunto(s)
Dióxido de Carbono/economía , Cambio Climático/economía , Cambio Climático/estadística & datos numéricos , Fuentes Generadoras de Energía/economía , Fuentes Generadoras de Energía/estadística & datos numéricos , Factores Socioeconómicos , Temperatura , Aire Acondicionado/economía , Aire Acondicionado/estadística & datos numéricos , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Electricidad , Calefacción/economía , Calefacción/estadística & datos numéricos , Historia del Siglo XXI , Actividades Humanas , Pobreza/economía , Pobreza/estadística & datos numéricos , Ciencias Sociales
4.
Proc Natl Acad Sci U S A ; 121(9): e2313192121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38386706

RESUMEN

Enzymes catalyze biochemical reactions through precise positioning of substrates, cofactors, and amino acids to modulate the transition-state free energy. However, the role of conformational dynamics remains poorly understood due to poor experimental access. This shortcoming is evident with Escherichia coli dihydrofolate reductase (DHFR), a model system for the role of protein dynamics in catalysis, for which it is unknown how the enzyme regulates the different active site environments required to facilitate proton and hydride transfer. Here, we describe ligand-, temperature-, and electric-field-based perturbations during X-ray diffraction experiments to map the conformational dynamics of the Michaelis complex of DHFR. We resolve coupled global and local motions and find that these motions are engaged by the protonated substrate to promote efficient catalysis. This result suggests a fundamental design principle for multistep enzymes in which pre-existing dynamics enable intermediates to drive rapid electrostatic reorganization to facilitate subsequent chemical steps.


Asunto(s)
Aminoácidos , Electricidad , Catálisis , Escherichia coli , Conformación Molecular , Tetrahidrofolato Deshidrogenasa
5.
Proc Natl Acad Sci U S A ; 121(22): e2320338121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768355

RESUMEN

Electric school buses have been proposed as an alternative to reduce the health and climate impacts of the current U.S. school bus fleet, of which a substantial share are highly polluting old diesel vehicles. However, the climate and health benefits of electric school buses are not well known. As they are substantially more costly than diesel buses, assessing their benefits is needed to inform policy decisions. We assess the health benefits of electric school buses in the United States from reduced adult mortality and childhood asthma onset risks due to exposure to ambient fine particulate matter (PM2.5). We also evaluate climate benefits from reduced greenhouse-gas emissions. We find that replacing the average diesel bus in the U.S. fleet in 2017 with an electric bus yields $84,200 in total benefits. Climate benefits amount to $40,400/bus, whereas health benefits amount to $43,800/bus due to 4.42*10-3 fewer PM2.5-attributable deaths ($40,000 of total) and 7.42*10-3 fewer PM2.5-attributable new childhood asthma cases ($3,700 of total). However, health benefits of electric buses vary substantially by driving location and model year (MY) of the diesel buses they replace. Replacing old, MY 2005 diesel buses in large cities yields $207,200/bus in health benefits and is likely cost-beneficial, although other policies that accelerate fleet turnover in these areas deserve consideration. Electric school buses driven in rural areas achieve small health benefits from reduced exposure to ambient PM2.5. Further research assessing benefits of reduced exposure to in-cabin air pollution among children riding buses would be valuable to inform policy decisions.


Asunto(s)
Contaminación del Aire , Vehículos a Motor , Material Particulado , Instituciones Académicas , Emisiones de Vehículos , Humanos , Estados Unidos , Emisiones de Vehículos/prevención & control , Material Particulado/efectos adversos , Asma/epidemiología , Asma/etiología , Asma/mortalidad , Niño , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/efectos adversos , Electricidad , Adulto
6.
PLoS Biol ; 21(1): e3001973, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36716309

RESUMEN

Transcranial electrical stimulation (tES) is one of the oldest and yet least understood forms of brain stimulation. The idea that a weak electrical stimulus, applied outside the head, can meaningfully affect neural activity is often regarded as mysterious. Here, we argue that the direct effects of tES are not so mysterious: Extensive data from a wide range of model systems shows it has appreciable effects on the activity of individual neurons. Instead, the real mysteries are how tES interacts with the brain's own activity and how these dynamics can be controlled to produce desirable therapeutic effects. These are challenging problems, akin to repairing a complex machine while it is running, but they are not unique to tES or even neuroscience. We suggest that models of coupled oscillators, a common tool for studying interactions in other fields, may provide valuable insights. By combining these tools with our growing, interdisciplinary knowledge of brain dynamics, we are now in a good position to make progress in this area and meet the high demand for effective neuromodulation in neuroscience and psychiatry.


Asunto(s)
Neurociencias , Estimulación Transcraneal de Corriente Directa , Encéfalo/fisiología , Electricidad , Neuronas/fisiología
7.
PLoS Biol ; 21(3): e3001970, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862663

RESUMEN

It is possible to generate small amounts of electrical power directly from photosynthetic microorganisms-arguably the greenest of green energy. But will it have useful applications, and what are the hurdles if so?


Asunto(s)
Electricidad , Fotosíntesis
8.
Proc Natl Acad Sci U S A ; 120(11): e2213112120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36881617

RESUMEN

The standard model of pore formation was introduced more than fifty years ago, and it has been since, despite some refinements, the cornerstone for interpreting experiments related to pores in membranes. A central prediction of the model concerning pore opening under an electric field is that the activation barrier for pore formation is lowered proportionally to the square of the electric potential. However, this has only been scarcely and inconclusively confronted to experiments. In this paper, we study the electropermeability of model lipid membranes composed of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) containing different fractions of POPC-OOH, the hydroperoxidized form of POPC, in the range 0 to 100 mol %. By measuring ion currents across a 50-µm-diameter black lipid membrane (BLM) with picoampere and millisecond resolution, we detect hydroperoxidation-induced changes to the intrinsic bilayer electropermeability and to the probability of opening angstrom-size or larger pores. Our results over the full range of lipid compositions show that the energy barrier to pore formation is lowered linearly by the absolute value of the electric field, in contradiction with the predictions of the standard model.


Asunto(s)
Electricidad , Fosforilcolina , Transporte Iónico , Membranas , Lípidos
9.
Proc Natl Acad Sci U S A ; 120(40): e2305292120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37751551

RESUMEN

Failure of contextual retrieval can lead to false recall, wherein people retrieve an item or experience that occurred in a different context or did not occur at all. Whereas the hippocampus is thought to play a crucial role in memory retrieval, we lack understanding of how the hippocampus supports retrieval of items related to a target context while disregarding related but irrelevant information. Using direct electrical recordings from the human hippocampus, we investigate the neural process underlying contextual misattribution of false memories. In two large datasets, we characterize key physiological differences between correct and false recalls that emerge immediately prior to vocalization. By differentiating between false recalls that share high or low contextual similarity with the target context, we show that low-frequency activity (6 to 18 Hz) in the hippocampus tracks similarity between the current and retrieved context. Applying multivariate decoding methods, we were able to reliably predict the contextual source of the to-be-recalled item. Our findings elucidate one of the hallmark features of episodic memory: our ability to distinguish between memories that were formed on different occasions.


Asunto(s)
Memoria Episódica , Recuerdo Mental , Humanos , Electricidad , Hipocampo
10.
Proc Natl Acad Sci U S A ; 120(28): e2300395120, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37410866

RESUMEN

The western United States has experienced severe drought in recent decades, and climate models project increased drought risk in the future. This increased drying could have important implications for the region's interconnected, hydropower-dependent electricity systems. Using power-plant level generation and emissions data from 2001 to 2021, we quantify the impacts of drought on the operation of fossil fuel plants and the associated impacts on greenhouse gas (GHG) emissions, air quality, and human health. We find that under extreme drought, electricity generation from individual fossil fuel plants can increase up to 65% relative to average conditions, mainly due to the need to substitute for reduced hydropower. Over 54% of this drought-induced generation is transboundary, with drought in one electricity region leading to net imports of electricity and thus increased pollutant emissions from power plants in other regions. These drought-induced emission increases have detectable impacts on local air quality, as measured by proximate pollution monitors. We estimate that the monetized costs of excess mortality and GHG emissions from drought-induced fossil generation are 1.2 to 2.5x the reported direct economic costs from lost hydro production and increased demand. Combining climate model estimates of future drying with stylized energy-transition scenarios suggests that these drought-induced impacts are likely to remain large even under aggressive renewables expansion, suggesting that more ambitious and targeted measures are needed to mitigate the emissions and health burden from the electricity sector during drought.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Gases de Efecto Invernadero , Estados Unidos , Humanos , Contaminantes Atmosféricos/análisis , Sequías , Contaminación del Aire/análisis , Combustibles Fósiles , Electricidad
11.
Proc Natl Acad Sci U S A ; 120(34): e2301061120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37582122

RESUMEN

Household electrification is thought to be an important part of a carbon-neutral future and could also have additional benefits to adopting households such as improved air quality. However, the effectiveness of specific electrification policies in reducing total emissions and boosting household livelihoods remains a crucial open question in both developed and developing countries. We investigated a transition of more than 750,000 households from gas to electric cookstoves-one of the most popular residential electrification strategies-in Ecuador following a program that promoted induction stoves and assessed its impacts on electricity consumption, greenhouse gas emissions, and health. We estimate that the program resulted in a 5% increase in total residential electricity consumption between 2015 and 2021. By offsetting a commensurate amount of cooking gas combustion, we find that the program likely reduced national greenhouse gas emissions, thanks in part to the country's electricity grid being 80% hydropower in later parts of the time period. Increased induction stove uptake was also associated with declines in all-cause and respiratory-related hospitalizations nationwide. These findings suggest that, when the electricity grid is largely powered by renewables, gas-to-induction cooking transitions represent a promising way of amplifying the health and climate cobenefits of net-carbon-zero policies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Culinaria , Electricidad , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/prevención & control , Contaminación del Aire Interior/análisis , Carbono , Gases de Efecto Invernadero , Clima
12.
Nature ; 572(7769): 373-377, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31261374

RESUMEN

Net anthropogenic emissions of carbon dioxide (CO2) must approach zero by mid-century (2050) in order to stabilize the global mean temperature at the level targeted by international efforts1-5. Yet continued expansion of fossil-fuel-burning energy infrastructure implies already 'committed' future CO2 emissions6-13. Here we use detailed datasets of existing fossil-fuel energy infrastructure in 2018 to estimate regional and sectoral patterns of committed CO2 emissions, the sensitivity of such emissions to assumed operating lifetimes and schedules, and the economic value of the associated infrastructure. We estimate that, if operated as historically, existing infrastructure will cumulatively emit about 658 gigatonnes of CO2 (with a range of 226 to 1,479 gigatonnes CO2, depending on the lifetimes and utilization rates assumed). More than half of these emissions are predicted to come from the electricity sector; infrastructure in China, the USA and the 28 member states of the European Union represents approximately 41 per cent, 9 per cent and 7 per cent of the total, respectively. If built, proposed power plants (planned, permitted or under construction) would emit roughly an extra 188 (range 37-427) gigatonnes CO2. Committed emissions from existing and proposed energy infrastructure (about 846 gigatonnes CO2) thus represent more than the entire carbon budget that remains if mean warming is to be limited to 1.5 degrees Celsius (°C) with a probability of 66 to 50 per cent (420-580 gigatonnes CO2)5, and perhaps two-thirds of the remaining carbon budget if mean warming is to be limited to less than 2 °C (1,170-1,500 gigatonnes CO2)5. The remaining carbon budget estimates are varied and nuanced14,15, and depend on the climate target and the availability of large-scale negative emissions16. Nevertheless, our estimates suggest that little or no new CO2-emitting infrastructure can be commissioned, and that existing infrastructure may need to be retired early (or be retrofitted with carbon capture and storage technology) in order to meet the Paris Agreement climate goals17. Given the asset value per tonne of committed emissions, we suggest that the most cost-effective premature infrastructure retirements will be in the electricity and industry sectors, if non-emitting alternatives are available and affordable4,18.


Asunto(s)
Dióxido de Carbono/análisis , Electricidad , Combustibles Fósiles/provisión & distribución , Calentamiento Global/prevención & control , Objetivos , Cooperación Internacional/legislación & jurisprudencia , Temperatura , Atmósfera/química , Combustibles Fósiles/economía , Calentamiento Global/economía , Gas Natural/provisión & distribución
13.
Proc Natl Acad Sci U S A ; 119(32): e2209056119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914139

RESUMEN

Contact electrification between water and a solid surface is crucial for physicochemical processes at water-solid interfaces. However, the nature of the involved processes remains poorly understood, especially in the initial stage of the interface formation. Here we report that H2O2 is spontaneously produced from the hydroxyl groups on the solid surface when contact occurred. The density of hydroxyl groups affects the H2O2 yield. The participation of hydroxyl groups in H2O2 generation is confirmed by mass spectrometric detection of 18O in the product of the reaction between 4-carboxyphenylboronic acid and 18O-labeled H2O2 resulting from 18O2 plasma treatment of the surface. We propose a model for H2O2 generation based on recombination of the hydroxyl radicals produced from the surface hydroxyl groups in the water-solid contact process. Our observations show that the spontaneous generation of H2O2 is universal on the surfaces of soil and atmospheric fine particles in a humid environment.


Asunto(s)
Electricidad , Peróxido de Hidrógeno , Radical Hidroxilo , Agua , Atmósfera/química , Humedad , Peróxido de Hidrógeno/síntesis química , Peróxido de Hidrógeno/química , Radical Hidroxilo/química , Espectrometría de Masas , Isótopos de Oxígeno/análisis , Isótopos de Oxígeno/química , Tamaño de la Partícula , Suelo/química , Agua/química
14.
Proc Natl Acad Sci U S A ; 119(52): e2205429119, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36538483

RESUMEN

Given the dire consequences of climate change and the war in Ukraine, decarbonization of electrical power systems around the world must be accomplished, while avoiding recurring blackouts. A good understanding of performance and reliability of different power sources underpins this endeavor. As an energy transition involves different societal sectors, we must adopt a simple and efficient way of communicating the transition's key indicators. Capacity factor (CF) is a direct measure of the efficacy of a power generation system and of the costs of power produced. Since the year 2000, the explosive expansion of solar PV and wind power made their CFs more reliable. Knowing the long-time average CFs of different electricity sources allows one to calculate directly the nominal capacity required to replace the current fossil fuel mix for electricity generation or expansion to meet future demand. CFs are straightforwardly calculated, but they are rooted in real performance, not in modeling or wishful thinking. Based on the current average CFs, replacing 1 W of fossil electricity generation capacity requires installation of 4 W solar PV or 2 W of wind power. An expansion of the current energy mix requires installing 8.8 W of solar PV or 4.3 W of wind power.


Asunto(s)
Humanos , Reproducibilidad de los Resultados , Viento , Combustibles Fósiles , Electricidad , Energía Renovable
15.
Nano Lett ; 24(15): 4485-4492, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38578031

RESUMEN

Confining DNA in nanochannels is an important approach to studying its structure and transportation dynamics. Graphene nanochannels are particularly attractive for studying DNA confinement due to their atomic flatness, precise height control, and excellent mechanical strength. Here, using femtosecond laser etching and wetting transfer, we fabricate graphene nanochannels down to less than 4.3 nm in height, with the length-to-height ratios up to 103. These channels exhibit high stability, low noise, and self-cleaning ability during the long-term ionic current recording. We report a clear linear relationship between DNA length and the residence time in the channel and further utilize this relationship to differentiate DNA fragments based on their lengths, ranging widely from 200 bps to 48.5 kbps. The graphene nanochannel presented here provides a potential platform for label-free analyses and reveals fundamental insights into the conformational dynamics of DNA and proteins in confined space.


Asunto(s)
Grafito , Electricidad , Conductividad Eléctrica , Proteínas , ADN/química
16.
J Am Chem Soc ; 146(10): 6983-6991, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38415598

RESUMEN

Molecular dynamics (MD) simulations are frequently carried out for proteins to investigate the role of electrostatics in their biological function. The choice of force field (FF) can significantly alter the MD results, as the simulated local electrostatic interactions lack benchmarking in the absence of appropriate experimental methods. We recently reported that the transition dipole moment (TDM) of the popular nitrile vibrational probe varies linearly with the environmental electric field, overcoming well-known hydrogen bonding (H-bonding) issues for the nitrile frequency and, thus, enabling the unambiguous measurement of electric fields in proteins (J. Am. Chem. Soc. 2022, 144 (17), 7562-7567). Herein, we utilize this new strategy to enable comparisons of experimental and simulated electric fields in protein environments. Specifically, previously determined TDM electric fields exerted onto nitrile-containing o-cyanophenylalanine residues in photoactive yellow protein are compared with MD electric fields from the fixed-charge AMBER FF and the polarizable AMOEBA FF. We observe that the electric field distributions for H-bonding nitriles are substantially affected by the choice of FF. As such, AMBER underestimates electric fields for nitriles experiencing moderate field strengths; in contrast, AMOEBA robustly recapitulates the TDM electric fields. The FF dependence of the electric fields can be partly explained by the presence of additional negative charge density along the nitrile bond axis in AMOEBA, which is due to the inclusion of higher-order multipole parameters; this, in turn, begets more head-on nitrile H-bonds. We conclude by discussing the implications of the FF dependence for the simulation of nitriles and proteins in general.


Asunto(s)
Nitrilos , Proteínas , Nitrilos/química , Electricidad , Simulación de Dinámica Molecular , Electricidad Estática
17.
J Am Chem Soc ; 146(15): 10699-10707, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38518116

RESUMEN

Ultralow temperature-tolerant electronic skins (e-skins) can endow polar robots with tactile feedback for exploring in extremely cold polar environments. However, it remains a challenge to develop e-skins that enable sensitive touch sensation and self-healing at ultralow temperatures. Herein, we describe the development of a sensitive robotic hand e-skin that can stretch, self-heal, and sense at temperatures as low as -78 °C. The elastomeric substrate of this e-skin is based on poly(dimethylsiloxane) supramolecular polymers and multistrength dynamic H-bonds, in particular with quadruple H-bonding motifs (UPy). The structure-performance relationship of the elastomer at ultralow temperatures is investigated. The results show that elastomers with side-chain UPy units exhibit higher stretchability (∼3257%) and self-healing efficiency compared to those with main-chain UPy units. This is attributed to the lower binding energy variation and lower potential well. Based on the elastomer with side-chain UPy and man-made electric ink, a sensitive robotic hand e-skin for usage at -78 °C is constructed to precisely sense the shape of objects and specific symbols, and its sensation can completely self-recover after being damaged. The findings of this study contribute to the concept of using robotic hands with e-skins in polar environments that make human involvement limited, dangerous, or impossible.


Asunto(s)
Elastómeros , Dispositivos Electrónicos Vestibles , Humanos , Elastómeros/química , Elasticidad , Piel , Electricidad
18.
Small ; 20(15): e2306655, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009791

RESUMEN

Flexible sensors are highly flexible, malleable, and capable of adapting todifferent shapes, surfaces, and environments, which opens a wide range ofpotential applications in the field of human-machine interface (HMI). Inparticular, flexible pressure sensors as a crucial member of the flexiblesensor family, are widely used in wearable devices, health monitoringinstruments, robots and other fields because they can achieve accuratemeasurement and convert the pressure into electrical signals. The mostintuitive feeling that flexible sensors bring to people is the change ofhuman-machine interface interaction, from the previous rigid interaction suchas keyboard and mouse to flexible interaction such as smart gloves, more inline with people's natural control habits. Many advanced flexible pressuresensors have emerged through extensive research and development, and to adaptto various fields of application. Researchers have been seeking to enhanceperformance of flexible pressure sensors through improving materials, sensingmechanisms, fabrication methods, and microstructures. This paper reviews the flexible pressure sensors in HMI in recent years, mainlyincluding the following aspects: current cutting-edge flexible pressuresensors; sensing mechanisms, substrate materials and active materials; sensorfabrication, performances, and their optimization methods; the flexiblepressure sensors for various HMI applications and their prospects.


Asunto(s)
Electricidad , Dispositivos Electrónicos Vestibles , Humanos
19.
Small ; 20(9): e2305951, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37817356

RESUMEN

Conductive microfibers play a significant role in the flexibility, stretchability, and conductivity of electronic skin (e-skin). Currently, the fabrication of conductive microfibers suffers from either time-consuming and complex operations or is limited in complex fabrication environments. Thus, it presents a one-step method to prepare conductive hydrogel microfibers based on microfluidics for the construction of ultrastretchable e-skin. The microfibers are achieved with conductive MXene cores and hydrogel shells, which are solidified with the covalent cross-linking between sodium alginate and calcium chloride, and mechanically enhanced by the complexation reaction of poly(vinyl alcohol) and sodium hydroxide. The microfiber conductivities are tailorable by adjusting the flow rate and concentration of core and shell fluids, which is essential to more practical applications in complex scenarios. More importantly, patterned e-skin based on conductive hydrogel microfibers can be constructed by combining microfluidics with 3D printing technology. Because of the great advantages in mechanical and electrical performance of the microfibers, the achieved e-skin shows impressive stretching and sensitivity, which also demonstrate attractive application values in motion monitoring and gesture recognition. These characteristics indicate that the ultrastretchable e-skin based on conductive hydrogel microfibers has great potential for applications in health monitoring, wearable devices, and smart medicine.


Asunto(s)
Hidrogeles , Piel , Conductividad Eléctrica , Electricidad , Alginatos
20.
Nat Mater ; 22(7): 873-879, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37231245

RESUMEN

The interconversion between electrical and mechanical energies is pivotal to ferroelectrics to enable their applications in transducers, actuators and sensors. Ferroelectric polymers exhibit a giant electric-field-induced strain (>4.0%), markedly exceeding the actuation strain (≤1.7%) of piezoelectric ceramics and crystals. However, their normalized elastic energy densities remain orders of magnitude smaller than those of piezoelectric ceramics and crystals, severely limiting their practical applications in soft actuators. Here we report the use of electro-thermally induced ferroelectric phase transition in percolative ferroelectric polymer nanocomposites to achieve high strain performance in electric-field-driven actuation materials. We demonstrate a strain of over 8% and an output mechanical energy density of 11.3 J cm-3 at an electric field of 40 MV m-1 in the composite, outperforming the benchmark relaxor single-crystal ferroelectrics. This approach overcomes the trade-off between mechanical modulus and electro-strains in conventional piezoelectric polymer composites and opens up an avenue for high-performance ferroelectric actuators.


Asunto(s)
Electricidad , Nanocompuestos , Polímeros
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda