Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Ann Pharmacother ; 54(10): 1001-1009, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32204605

RESUMEN

OBJECTIVE: To review the efficacy and safety of onasemnogene abeparvovec-xioi (Zolgensma) in the treatment of spinal muscular atrophy (SMA). DATA SOURCES: An English-language literature search of PubMed, MEDLINE, and Ovid (1946 to December 2019) was completed using the terms onasemnogene, AVXS-101, and spinal muscular atrophy. Manufacturer prescribing information, article bibliographies, and data from ClinicalTrials.gov were incorporated in the reviewed data. STUDY SELECTION/DATA EXTRACTION: All studies registered on ClinicalTrials.gov were incorporated in the reviewed data. DATA SYNTHESIS: Onasemnogene is the first agent for SMA utilizing gene therapy to directly provide survival motor neuron 1 (SMN1) gene to produce SMN protein. Four publications of 1 clinical trial, 1 comparison study of treatment effects, and 1 combination therapy case series have been published. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE: Onasemnogene is a one time dose approved by the Food and Drug Administration for SMA patients <2 years old who possess mutations in both copies of the SMN1 gene. CONCLUSION: Onasemnogene appears to be an efficacious therapy for younger pediatric patients with SMA type 1. Concerns include drug cost and potential liver toxicity. Long-term benefits and risks have not been determined.


Asunto(s)
Productos Biológicos/uso terapéutico , Terapia Genética/métodos , Proteínas Recombinantes de Fusión/uso terapéutico , Atrofias Musculares Espinales de la Infancia/terapia , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Preescolar , Aprobación de Drogas , Femenino , Humanos , Mutación , Atrofias Musculares Espinales de la Infancia/genética , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis , Estados Unidos , United States Food and Drug Administration
2.
Hum Mol Genet ; 26(5): 932-941, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28062667

RESUMEN

Spinal muscular atrophy (SMA) is a progressive neurodegenerative disease that is the leading genetic cause of infantile death. It is caused by a severe deficiency of the ubiquitously expressed Survival Motor Neuron (SMN) protein. SMA is characterized by α-lower motor neuron loss and muscle atrophy, however, there is a growing list of tissues impacted by a SMN deficiency beyond motor neurons. The non-neuronal defects are observed in the most severe Type I SMA patients and most of the widely used SMA mouse models, however, as effective therapeutics are developed, it is unclear whether additional symptoms will be uncovered in longer lived patients. Recently, the immune system and inflammation has been identified as a contributor to neurodegenerative diseases such as ALS. To determine whether the immune system is comprised in SMA, we analyzed the spleen and immunological components in SMA mice. In this report, we identify: a significant reduction in spleen size in multiple SMA mouse models and a pathological reduction in red pulp and extramedullary hematopoiesis. Additionally, red pulp macrophages, a discrete subset of yolk sac-derived macrophages, were found to be altered in SMA spleens even in pre-symptomatic post-natal day 2 animals. These cells, which are involved in iron metabolism and the phagocytosis of erythrocytes and blood-borne pathogens are significantly reduced prior to the development of the neurodegenerative hallmarks of SMA, implying a differential role of SMN in myeloid cell ontogeny. Collectively, these results demonstrate that SMN deficiency impacts spleen development and suggests a potential role for immunological development in SMA.


Asunto(s)
Desarrollo Embrionario/genética , Inflamación/genética , Atrofia Muscular Espinal/genética , Bazo/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Modelos Animales de Enfermedad , Desarrollo Embrionario/inmunología , Eritrocitos/inmunología , Eritrocitos/metabolismo , Eritrocitos/patología , Hematopoyesis Extramedular , Humanos , Inflamación/inmunología , Inflamación/patología , Hierro/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Neuronas Motoras/inmunología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/inmunología , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Células Mieloides/inmunología , Células Mieloides/metabolismo , Fagocitosis/genética , Fagocitosis/inmunología , Bazo/crecimiento & desarrollo , Bazo/inmunología , Bazo/patología , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis
3.
Nucleic Acids Res ; 45(21): 12214-12240, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28981879

RESUMEN

Spinal muscular atrophy (SMA) is caused by deletions or mutations of the Survival Motor Neuron 1 (SMN1) gene coupled with predominant skipping of SMN2 exon 7. The only approved SMA treatment is an antisense oligonucleotide that targets the intronic splicing silencer N1 (ISS-N1), located downstream of the 5' splice site (5'ss) of exon 7. Here, we describe a novel approach to exon 7 splicing modulation through activation of a cryptic 5'ss (Cr1). We discovered the activation of Cr1 in transcripts derived from SMN1 that carries a pathogenic G-to-C mutation at the first position (G1C) of intron 7. We show that Cr1-activating engineered U1 snRNAs (eU1s) have the unique ability to reprogram pre-mRNA splicing and restore exon 7 inclusion in SMN1 carrying a broad spectrum of pathogenic mutations at both the 3'ss and 5'ss of the exon 7. Employing a splicing-coupled translation reporter, we demonstrate that mRNAs generated by an eU1-induced activation of Cr1 produce full-length SMN. Our findings underscore a wider role for U1 snRNP in splicing regulation and reveal a novel approach for the restoration of SMN exon 7 inclusion for a potential therapy of SMA.


Asunto(s)
Mutación , Sitios de Empalme de ARN , Secuencias Reguladoras de Ácido Ribonucleico , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Línea Celular Tumoral , Células Cultivadas , Exones , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/antagonistas & inhibidores , Humanos , Intrones , Ratones , Atrofia Muscular Espinal/genética , Empalme del ARN , ARN Mensajero/metabolismo , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis
4.
Hum Mol Genet ; 25(18): 4080-4093, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27466204

RESUMEN

Defects in the RNA-binding proteins survival motor neuron (SMN) and TAR DNA-binding protein 43 (TDP-43) cause progressive motor neuron degeneration in spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), respectively. While low levels of SMN protein in motor neurons result in SMA, recent studies implicate abnormal SMN levels and function in ALS pathogenesis. Here, we determine that SMN protein is upregulated early and progressively in spinal and cortical motor neurons of male transgenic mutant TDP-43A315T mice. Cytoplasmic SMN aggregates that contain TDP-43 and HuR were identified in motor neurons of TDP-43A315T mice, consistent with the incorporation of SMN into stress granules. To test the impact of augmenting SMN levels in TDP-43 proteinopathy, we demonstrate that neuronal overexpression of human SMN in TDP-43A315T mice delayed symptom onset and prolonged survival. SMN upregulation also countered motor neuron degeneration, attenuated activation of astrocytes and microglia and restored AMP kinase activation in spinal cords of TDP-43A315T mice. We also reveal that expression of another factor conferring motor neuron vulnerability, androgen receptor (AR), is reduced in spinal cords of male TDP-43A315T mice. These results establish that SMN overexpression in motor neurons slows disease onset and outcome by ameliorating pathological signs in this model of mutant TDP-43-mediated ALS. Further approaches to augment SMN levels using pharmacological or gene therapy agents may therefore be warranted in ALS. Our data also reinforce a novel potential link between ALS and spinal bulbar muscular atrophy (SBMA), another motor neurodegenerative disease mediated by reduced AR function in motor neurons.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Atrofia Muscular Espinal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Citoplasma/genética , Proteínas de Unión al ADN/biosíntesis , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Neuronas Motoras/patología , Atrofia Muscular Espinal/patología , Agregación Patológica de Proteínas/genética , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis
5.
J Biol Chem ; 290(25): 15662-15669, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-25911097

RESUMEN

Reduced expression of SMN causes spinal muscular atrophy, a severe neurodegenerative disease. Despite the importance of maintaining SMN levels, relatively little is known about the mechanisms by which SMN levels are regulated. We show here that Gemin5, the snRNA-binding protein of the SMN complex, binds directly to the SMN mRNA and regulates SMN expression. Gemin5 binds with high specificity, both in vitro and in vivo, to sequence and structural elements in the SMN mRNA 3'-untranslated region that are reminiscent of the snRNP code to which Gemin5 binds on snRNAs. Reduction of Gemin5 redistributes the SMN mRNA from heavy polysomes to lighter polysomes and monosomes, suggesting that Gemin5 functions as an activator of SMN translation. SMN protein is not stoichiometrically present on the SMN mRNA with Gemin5, but the mRNA-binding activity of Gemin5 is dependent on SMN levels, providing a feedback mechanism for SMN to regulate its own expression via Gemin5. This work both reveals a new autoregulatory pathway governing SMN expression, and identifies a new mechanism through which SMN can modulate specific mRNA expression via Gemin5.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas Nucleares/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis , Animales , Células HeLa , Humanos , Ratones , Proteínas Nucleares/genética , Polirribosomas/genética , Polirribosomas/metabolismo , Unión Proteica , Biosíntesis de Proteínas/fisiología , ARN Mensajero/genética , Proteínas de Unión al ARN , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas del Complejo SMN , Proteína 1 para la Supervivencia de la Neurona Motora/genética
6.
Pharmacol Res ; 111: 58-75, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27241020

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease characterized by motor neurons degeneration and muscular atrophy. There is no effective SMA treatment. Loganin is a botanical candidate with anti-inflammatory, anti-oxidant, glucose-lowering and anti-diabetic nephropathy activities. The aim of this study is to investigate the potential protective effects of loganin on SMA using two cellular models, SMN-deficient NSC34 cells and SMA patient fibroblasts, and an animal disease model, SMAΔ7 mice. In SMN-deficient NSC34 cells, loganin increased cell viability, neurite length, and expressions of SMN, Gemin2, SMN-Gemin2 complex, p-Akt, p-GSK-3ß, p-CREB, BDNF and Bcl-2. However, both AG1024 (IGF-1 R antagonist) and IGF-1 R siRNA attenuated the protective effects of loganin on SMN level and cell viability in SMN-deficient NSC34 cells. In SMA patient fibroblasts, loganin up-regulated levels of SMN, FL-SMN2, and Gemins, increased numbers of SMN-containing nuclear gems, modulated splicing factors, and up-regulated p-Akt. Furthermore, in the brain, spinal cord and gastrocnemius muscle of SMAΔ7 mice, loganin up-regulated the expressions of SMN and p-Akt. Results from righting reflex and hind-limb suspension tests indicated loganin improved muscle strength of SMAΔ7 mice; moreover, loganin activated Akt/mTOR signal and inhibited atrogin-1/MuRF-1 signal in gastrocnemius muscle of SMAΔ7 mice. Loganin also increased body weight, but the average lifespan of loganin (20mg/kg/day)-treated SMA mice was 16.80±0.73 days, while saline-treated SMA mice was 10.91±0.96 days. In conclusion, the present results demonstrate that loganin provides benefits to SMA therapeutics via improving SMN restoration, muscle strength and body weight. IGF-1 plays an important role in loganin neuroprotection. Loganin can be therefore a valuable complementary candidate for treatment of neuromuscular diseases via regulation of muscle protein synthesis and neuroprotection.


Asunto(s)
Iridoides/farmacología , Neuronas Motoras/efectos de los fármacos , Atrofia Muscular Espinal/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis , Serina-Treonina Quinasas TOR/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Citoprotección , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Fibroblastos/patología , Predisposición Genética a la Enfermedad , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Neuronas Motoras/enzimología , Neuronas Motoras/patología , Proteínas Musculares/metabolismo , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Atrofia Muscular Espinal/enzimología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatología , Mutación , Degeneración Nerviosa , Fenotipo , Fosforilación , Biosíntesis de Proteínas , Interferencia de ARN , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Factores de Tiempo , Transfección , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Aumento de Peso/efectos de los fármacos
7.
RNA Biol ; 8(4): 600-6, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21654213

RESUMEN

Humans have two nearly identical copies of the Survival Motor Neuron (SMN) gene: SMN1 and SMN2. The two SMN genes code for identical proteins; however, SMN2 predominantly generates a shorter transcript due to skipping of exon 7, the last coding exon. Skipping of SMN2 exon 7 leads to production of a truncated SMN protein that is highly unstable. The inability of SMN2 to compensate for the loss of SMN1 results in spinal muscular atrophy (SMA), the second most prevalent genetic cause of infant mortality. Since SMN2 is almost universally present in SMA patients, correction of SMN2 exon 7 splicing holds the promise for cure. Consistently, SMN2 exon 7 splicing has emerged as one of the best studied splicing systems in humans. The vast amount of recent literature provides a clue that SMN2 exon 7 splicing is regulated by an intron definition mechanism, which does not require cross-exon communication as prerequisite for exon inclusion. Our conclusion is based on the prominent role of intronic cis-elements, some of them have emerged as the frontrunners among potential therapeutic targets of SMA. Further, the widely expressed T-cell-restricted intracellular antigen-1 (TIA1), a member of the Q-rich domain containing RNA-binding proteins, has recently been found to regulate SMN exon 7 splicing by binding to intron 7 sequences away from the 5' ss. These findings make a strong argument for an "intron definition model", according to which regulatory sequences within a downstream intron are capable of enforcing exon inclusion even in the absence of a defined upstream 3' ss of an alternatively spliced exon.


Asunto(s)
Empalme Alternativo , Intrones , Atrofia Muscular Espinal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Exones , Humanos , Modelos Genéticos , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/biosíntesis , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Antígeno Intracelular 1 de las Células T
8.
Neurogenetics ; 11(1): 27-40, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19517146

RESUMEN

Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by motor neuron loss and skeletal muscle atrophy. The loss of function of the smn1 gene, the main supplier of survival motor neuron protein (SMN) protein in human, leads to reduced levels of SMN and eventually to SMA. Here, we ask if the amphibian Xenopus tropicalis can be a good model system to study SMA. Inhibition of the production of SMN using antisense morpholinos leads to caudal muscular atrophy in tadpoles. Of note, early developmental patterning of muscles and motor neurons is unaffected in this system as well as acetylcholine receptors clustering. Muscular atrophy seems to rather result from aberrant pathfinding and growth arrest and/or shortening of motor axons. This event occurs in the absence of neuronal cell bodies apoptosis, a process comparable to that of amyotrophic lateral sclerosis. Xenopus tropicalis is revealed as a complementary animal model for the study of SMA.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Atrofia Muscular Espinal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis , Secuencia de Aminoácidos , Animales , Apoptosis , Secuencia de Bases , Modelos Animales de Enfermedad , Humanos , Hibridación in Situ , Datos de Secuencia Molecular , Oligonucleótidos Antisentido/farmacología , Receptores Colinérgicos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Xenopus
9.
Folia Histochem Cytobiol ; 56(4): 215-221, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30565205

RESUMEN

INTRODUCTION: Spinal muscular atrophy (SMA) is one of the most common genetic causes of death in infants due to a mutation of the motor neuron 1 (SMN1) gene. The SMN1 gene encodes for the multifunctional SMN protein. SMN has been shown to be implicated in pre-mRNA splicing, mRNA transport and translational control. Also other mRNA processing proteins, such as GLE1, Marten (MART3) and Fused in Sarcoma (FUS), have been linked to neurodegenerative diseases. The aim of the study was to determine the expression of SMN, GLE1, MART3 and FUS genes in cell lines of the fibroblasts derived from SMA patients and normal controls. MATERIAL AND METHODS: Total RNA was extracted from purchased fibroblasts acquired from three SMA type I patients and fibroblasts of three age-matched healthy controls. The RNA was then subjected to qPCR analysis using primers specific for the GLE1, MART3, FUS and SMN1 genes vs. GAPDH as internal control gene. RESULTS: SMN1 mRNA levels were at least ×10 lower in fibroblasts of SMA patients compared to controls. Gle1 and MART3 gene expression was ×2 downregulated whereas FUS mRNA levels appeared to be ×3 upregulated in SMA cells when compared to controls. We found a high correlation between FUS gene expression level to the SMN1 at gene expression level of fibroblast cell lines of SMA type I patients (r = 0.994, p < 0.0001). CONCLUSIONS: Our preliminary data show an intriguing expression profile of Gle1, MART3 and FUS genes in SMA, and suggest a critical role of FUS protein in the SMA pathogenesis.


Asunto(s)
Fibroblastos/metabolismo , Regulación de la Expresión Génica , Atrofia Muscular Espinal/metabolismo , Proteínas de Transporte Nucleocitoplasmático/biosíntesis , Proteína FUS de Unión a ARN/biosíntesis , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis , Línea Celular , Fibroblastos/patología , Humanos , Atrofia Muscular Espinal/patología
10.
Hum Gene Ther ; 29(3): 285-298, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29378426

RESUMEN

Neurotropic adeno-associated virus (AAV) serotypes such as AAV9 have been demonstrated to transduce spinal alpha motor neurons when administered intravenously (i.v.) at high doses. This observation led to the recent successful application of i.v. AAV9 delivery to treat infants with spinal muscular atrophy, an inherited deficiency of the survival of motor neuron (SMN) protein characterized by selective death of lower motor neurons. To evaluate the efficiency of motor neuron transduction with an AAV9 variant (AAVhu68) using this approach, three juvenile nonhuman primates (NHPs; aged 14 months) and three piglets (aged 7-30 days) were treated with an i.v. injection of an AAVhu68 vector carrying a human SMN transgene at a dose similar to that employed in the spinal muscular atrophy clinical trial. Administration of 2 × 1014 genome copies per kilogram of body weight resulted in widespread transduction of spinal motor neurons in both species. However, severe toxicity occurred in both NHPs and piglets. All three NHPs exhibited marked transaminase elevations. In two NHPs, the transaminase elevations resolved without clinical sequelae, while one NHP developed acute liver failure and shock and was euthanized 4 days after vector injection. Degeneration of dorsal root ganglia sensory neurons was also observed, although NHPs exhibited no clinically apparent sensory deficits. There was no correlation between clinical findings and T-cell responses to the vector capsid or transgene product in NHPs. Piglets demonstrated no evidence of hepatic toxicity, but within 14 days of vector injection, all three animals exhibited proprioceptive deficits and ataxia, which profoundly impaired ambulation and necessitated euthanasia. These clinical findings correlated with more severe dorsal root ganglia sensory neuron lesions than those observed in NHPs. The liver and sensory neuron findings appear to be a direct consequence of AAV transduction independent of an immune response to the capsid or transgene product. The present results and those of another recent study utilizing a different AAV9 variant and transgene indicate that systemic and sensory neuron toxicity may be general properties of i.v. delivery of AAV vectors at high doses, irrespective of the capsid serotype or transgene. Preclinical and clinical studies involving high systemic doses of AAV vectors should include careful monitoring for similar toxicities.


Asunto(s)
Dependovirus , Vectores Genéticos/efectos adversos , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis , Transgenes , Animales , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Vectores Genéticos/farmacología , Haplorrinos , Humanos , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Porcinos , Factores de Tiempo , Transaminasas/sangre
11.
PLoS One ; 13(9): e0203398, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30188931

RESUMEN

OBJECTIVES: Spinal muscular atrophy (SMA) is a devastating motor neuron disorder caused by homozygous loss of the survival motor neuron 1 (SMN1) gene and insufficient functional SMN protein produced by the SMN2 copy gene. Additional genetic protective modifiers such as Plastin 3 (PLS3) can counteract SMA pathology despite insufficient SMN protein. Recently, Spinraza, an SMN antisense oligonucleotide (ASO) that restores full-length SMN2 transcripts, has been FDA- and EMA-approved for SMA therapy. Hence, the availability of biomarkers allowing a reliable monitoring of disease and therapy progression would be of great importance. Our objectives were (i) to analyse the feasibility of SMN and of six SMA biomarkers identified by the BforSMA study in the Taiwanese SMA mouse model, (ii) to analyse the effect of PLS3 overexpression on these biomarkers, and (iii) to assess the impact of low-dose SMN-ASO therapy on the level of SMN and the six biomarkers. METHODS: At P10 and P21, the level of SMN and six putative biomarkers were compared among SMA, heterozygous and wild type mice, with or without PLS3 overexpression, and with or without presymptomatic low-dose SMN-ASO subcutaneous injection. SMN levels were measured in whole blood by ECL immunoassay and of six SMA putative biomarkers, namely Cartilage Oligomeric Matrix Protein (COMP), Dipeptidyl Peptidase 4 (DPP4), Tetranectin (C-type Lectin Family 3 Member B, CLEC3B), Osteopontin (Secreted Phosphoprotein 1, SPP1), Vitronectin (VTN) and Fetuin A (Alpha 2-HS Glycoprotein, AHSG) in plasma. RESULTS: SMN levels were significantly discernible between SMA, heterozygous and wild type mice. However, no significant differences were measured upon low-dose SMN-ASO treatment compared to untreated animals. Of the six biomarkers, only COMP and DPP4 showed high and SPP1 moderate correlation with the SMA phenotype. PLS3 overexpression neither influenced the SMN level nor the six biomarkers, supporting the hypothesis that PLS3 acts as an independent protective modifier.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Glicoproteínas de Membrana , Proteínas de Microfilamentos , Atrofia Muscular Espinal , Oligodesoxirribonucleótidos Antisentido/farmacología , Proteína 1 para la Supervivencia de la Neurona Motora , Animales , Biomarcadores/metabolismo , Glicoproteínas de Membrana/biosíntesis , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/biosíntesis , Proteínas de Microfilamentos/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/terapia , Proteína 1 para la Supervivencia de la Neurona Motora/antagonistas & inhibidores , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis , Proteína 1 para la Supervivencia de la Neurona Motora/genética
12.
Rev Neurol ; 64(s03): S19-S24, 2017 May 17.
Artículo en Español | MEDLINE | ID: mdl-28524214

RESUMEN

The new treatments of spinal muscular atrophy (SMA) due by SMN1 gene deletions are reviewed. There are several ways to increase the protein SMN, its activity and persistence in the tissues. Neuroprotective drugs as olesoxime or riluzole, and drugs acting by epigenetic mechanisms, as histone deacetylase inhibitors, have shown positive effects in preclinical studies but no clear efficacy in clinical trials. They might give in the future added benefits when used associated to other genetic modifying drugs. The best improvements in murine models of SMA and in clinical trials have been reached with antisense oligonucleotides, drugs that modify the splicing of SMN2, and they are expected to get better in the near future. Nusinersen, a methoxi-ethyl phosphotioate antisense oligonucleotide has recently approved for treatment of patients with SMA type 1 after having proved its efficacy in clinical trial phase 3. The results of nusinersen are reviewed. New modifications of antisense oligonucleotides with better access to brain, spinal cord and peripheral tissues are on the way. There are data of the efficacy of the genetic therapy with SMN1 gene through adenoassociated virus, now in phase 1 trial. A constant feature of these new treatments is that the earlier the treatment, the best are the results, and they are even better in presymptomatic stage. The general standards of care, particularly nutrition and respiratory management are needed in order to reach optimal results with the new therapies.


TITLE: Posibilidades de tratamiento en la atrofia espinal infantil.Se revisan los nuevos tratamientos de la atrofia muscular espinal (AME) producida por delecion del gen SMN1. Se describen las diferentes posibilidades de incrementar la proteina SMN, de su actividad y persistencia en el organismo. Farmacos neuroprotectores, como olesoxime y riluzol, y farmacos que actuan epigeneticamente, como inhibidores de histona deacetilasa, han mostrado cierto efecto positivo en fases preclinicas pero no han conseguido eficacia en los ensayos clinicos. Podrian proporcionar en un futuro un beneficio añadidos a otros farmacos modificadores geneticos. Los mayores cambios en estudios de modelos del raton SMA y en fases clinicas se han encontrado con oligonucleotidos antisentido que modifican el splicing del gen SMN2, y se espera que mejoren en el futuro proximo. Recientemente se ha aprobado el nusinersen, un metoxietilo fosforotioato-oligonucleotido antisentido, para uso en pacientes con AME de tipo I una vez demostrada su eficacia en pacientes en el ensayo en fase 3. Se revisan los resultados de este farmaco. Estan en marcha modificaciones de oligonucleotidos antisentido que amplien la liberacion en el sistema nervioso y en tejidos perifericos. Hay datos que sugieren eficacia de la terapia genica introduciendo el gen SMN1 mediante virus adenoasociados, actualmente en fase clinica 1. Una constante en estos nuevos tratamientos es que los resultados se optimizan en las etapas precoces de la enfermedad y, mejor aun, en estadio presintomatico. Se subraya la importancia de los cuidados generales optimos, especialmente nutricionales y respiratorios, para conseguir los mejores resultados con las nuevas terapias.


Asunto(s)
Atrofias Musculares Espinales de la Infancia/terapia , Terapias en Investigación , Animales , Niño , Ensayos Clínicos como Asunto , Dependovirus/genética , Modelos Animales de Enfermedad , Epigénesis Genética , Eliminación de Gen , Terapia Genética , Vectores Genéticos/uso terapéutico , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Ratones , Ratones Mutantes Neurológicos , Estudios Multicéntricos como Asunto , Fármacos Neuroprotectores/uso terapéutico , Oligonucleótidos/uso terapéutico , Oligonucleótidos Antisentido/uso terapéutico , Cuidados Paliativos , Células Madre Pluripotentes/trasplante , Empalme del ARN , Proteínas Recombinantes/genética , Atrofias Musculares Espinales de la Infancia/genética , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/biosíntesis , Proteína 2 para la Supervivencia de la Neurona Motora/genética
14.
Hum Gene Ther ; 25(7): 619-30, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24617515

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by mutations in survival motor neuron 1 (SMN1). Previously, we showed that central nervous system (CNS) delivery of an adeno-associated viral (AAV) vector encoding SMN1 produced significant improvements in survival in a mouse model of SMA. Here, we performed a dose-response study in SMA mice to determine the levels of SMN in the spinal cord necessary for efficacy, and measured the efficiency of motor neuron transduction in the spinal cord after intrathecal delivery in pigs and nonhuman primates (NHPs). CNS injections of 5e10, 1e10, and 1e9 genome copies (gc) of self-complementary AAV9 (scAAV9)-hSMN1 into SMA mice extended their survival from 17 to 153, 70, and 18 days, respectively. Spinal cords treated with 5e10, 1e10, and 1e9 gc showed that 70-170%, 30-100%, and 10-20% of wild-type levels of SMN were attained, respectively. Furthermore, detectable SMN expression in a minimum of 30% motor neurons correlated with efficacy. A comprehensive analysis showed that intrathecal delivery of 2.5e13 gc of scAAV9-GFP transduced 25-75% of the spinal cord motor neurons in NHPs. Thus, the extent of gene expression in motor neurons necessary to confer efficacy in SMA mice could be obtained in large-animal models, justifying the continual development of gene therapy for SMA.


Asunto(s)
Dependovirus , Vectores Genéticos/farmacología , Inyecciones Espinales , Atrofia Muscular Espinal/terapia , Biosíntesis de Proteínas , Proteína 1 para la Supervivencia de la Neurona Motora , Animales , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Médula Espinal/metabolismo , Médula Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Porcinos
15.
Folia Neuropathol ; 50(4): 390-6, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23319195

RESUMEN

Sporadic amyotrophic lateral sclerosis (sALS) is a neurodegenerative disease leading to degeneration and loss of motoneurons in different structures of the nervous system. Although aetiology of the disease is unknown, it is hypothesized that the survival motor neuron (SMN) protein which protects motoneurons in spinal muscular atrophy, may play a similar role in ALS. Relatively little is known about normal expression and functions of the SMN complex compounds, i.e. SMN protein and the related gemins. Therefore, we have decided to examine the physiological expression of SMN and gemins 2 and 4 in spinal cords of healthy Wistar rats at different age using immunofluorescence and immunohistochemical methods. Our study revealed that (1) in rat spinal cord neurons, the immunoexpression of SMN and gemins 2 and 4 is present through the whole animal lifespan although the reactive cells reveal different intensity of the immunolabeling, (2) both SMN and gemin 2, and SMN and gemin 4 are present in the same motoneurons, (3) immunoexpression of gemin 2 and 4 decreases slightly with aging.


Asunto(s)
Proteínas del Complejo SMN/biosíntesis , Médula Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis , Envejecimiento/fisiología , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Inmunohistoquímica , Masculino , Microscopía Fluorescente , Neuronas Motoras/metabolismo , Ratas , Ratas Wistar
16.
Clin Biochem ; 45(1-2): 88-91, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22085534

RESUMEN

OBJECTIVES: To describe and validate a new protocol for molecular diagnosis of spinal muscular atrophy (SMA), a frequent neuromuscular disease of childhood. DESIGN AND METHODS: SMA is caused in most cases by homozygous deletion of the SMN1 gene. We describe a triplex quantitative real-time PCR method in which fragments of SMN1, SMN2 (a nearly-identical neighboring gene with markedly reduced function) and of a control gene, CFTR, are amplified in the same tube. RESULTS: We validated this method in three ways. First, testing the same samples ten times yielded CV values <4.6%. Second, in 104 previously-genotyped individuals, SMN copy numbers identical to those of the previously-determined genotype was unambiguously obtained in all cases. Finally, results using the technique in practice are described and analyzed for reproducibility of amplification efficiency and for inter-run variability. CONCLUSIONS: In over 1200 samples, this technique has proven accurate, fast, economical and reproducible.


Asunto(s)
Regulación de la Expresión Génica , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Atrofias Musculares Espinales de la Infancia/diagnóstico , Atrofias Musculares Espinales de la Infancia/genética , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Alelos , Secuencia de Bases , Cartilla de ADN/genética , Eliminación de Gen , Genotipo , Homocigoto , Humanos , Datos de Secuencia Molecular , Mutación , Reproducibilidad de los Resultados , Proteína 2 para la Supervivencia de la Neurona Motora/genética
17.
Neuroscience ; 181: 226-33, 2011 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-21333717

RESUMEN

Spinal muscular atrophy (SMA), a neurodegenerative disorder primarily affecting motor neurons, is the most common genetic cause of infant death. This incurable disease is caused by the absence of a functional SMN1 gene and a reduction in full length survival of motor neuron (SMN) protein. In this study, a neuroprotective function of SMN was investigated in differentiated human SH-SY5Y cells using an adenoviral vector to over-express SMN protein. The pro-survival capacity of SMN was assessed in an Akt/PI3-kinase inhibition (LY294002) model, as well as an oxidative stress (hydrogen peroxide) and excitotoxic (glutamate) model. SMN over-expression in SH-SY5Y cells protected against Akt/phosphatidylinositol 3-kinase (PI3-kinase) inhibition, but not oxidative stress, nor against excitotoxicity in rat cortical neurons. Western analysis of cell homogenates from SH-SY5Y cultures over-expressing SMN harvested pre- and post-Akt/PI3-kinase inhibition indicated that SMN protein inhibited caspase-3 activation via blockade of calpain-mediated procaspase-3 cleavage. This study has revealed a novel anti-apoptotic function for the SMN protein in differentiated SH-SY5Y cells. Finally, the cell death model described herein will allow the assessment of future therapeutic agents or strategies aimed at increasing SMN protein levels.


Asunto(s)
Apoptosis/fisiología , Calpaína/fisiología , Caspasa 3/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Neuronas/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/genética , Células Cultivadas , Activación Enzimática/genética , Humanos , Neuronas/citología , Ratas
18.
J Clin Invest ; 121(8): 3042-50, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21785216

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease that is characterized by the loss of motor neurons, resulting in progressive muscle atrophy. It is caused by the loss of functional survival motor neuron (SMN) protein due to mutations or deletion in the SMN1 gene. A potential treatment strategy for SMA is to upregulate levels of SMN protein. Several agents that activate STAT5 in human and mouse cell lines enhance SMN expression from the SMN2 gene and can compensate, at least in part, for the loss of production of a functional protein from SMN1. Here, we have shown that prolactin (PRL) increases SMN levels via activation of the STAT5 pathway. PRL increased SMN mRNA and protein levels in cultured human and mouse neuronal cells. Administration of STAT5-specific siRNA blocked the effects of PRL, indicating that the PRL-induced transcriptional upregulation of the SMN-encoding gene was mediated by activation of STAT5. Furthermore, systemic administration of PRL to WT mice induced SMN expression in the brain and spinal cord. Critically, PRL treatment increased SMN levels, improved motor function, and enhanced survival in a mouse model of severe SMA. Our results confirm earlier work suggesting STAT5 pathway activators as potential therapeutic compounds for the treatment of SMA and identify PRL as one such promising agent.


Asunto(s)
Regulación de la Expresión Génica , Neuronas Motoras/fisiología , Atrofia Muscular Espinal/metabolismo , Prolactina/biosíntesis , Factor de Transcripción STAT5/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis , Proteínas Supresoras de Tumor/metabolismo , Animales , Modelos Animales de Enfermedad , Células Endoteliales/citología , Humanos , Ratones , Neuronas/metabolismo , Prolactina/fisiología , ARN Mensajero/metabolismo , Transcripción Genética , Regulación hacia Arriba
19.
Nat Biotechnol ; 28(3): 271-4, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20190738

RESUMEN

Spinal muscular atrophy (SMA), the most common autosomal recessive neurodegenerative disease affecting children, results in impaired motor neuron function. Despite knowledge of the pathogenic role of decreased survival motor neuron (SMN) protein levels, efforts to increase SMN have not resulted in a treatment for patients. We recently demonstrated that self-complementary adeno-associated virus 9 (scAAV9) can infect approximately 60% of motor neurons when injected intravenously into neonatal mice. Here we use scAAV9-mediated postnatal day 1 vascular gene delivery to replace SMN in SMA pups and rescue motor function, neuromuscular physiology and life span. Treatment on postnatal day 5 results in partial correction, whereas postnatal day 10 treatment has little effect, suggesting a developmental period in which scAAV9 therapy has maximal benefit. Notably, we also show extensive scAAV9-mediated motor neuron transduction after injection into a newborn cynomolgus macaque. This demonstration that scAAV9 traverses the blood-brain barrier in a nonhuman primate emphasizes the clinical potential of scAAV9 gene therapy for SMA.


Asunto(s)
Técnicas de Transferencia de Gen , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/terapia , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Animales Recién Nacidos , Dependovirus/genética , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Estimación de Kaplan-Meier , Macaca fascicularis , Masculino , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Fenotipo , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
20.
J Neurol Sci ; 287(1-2): 27-31, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19758605

RESUMEN

Childhood spinal muscular atrophy (SMA) is an autosomal recessive disorder characterised by loss of the alpha motor neurones of the spinal cord. SMA is cause by mutations in the survival motor neuron (SMN) gene. There are two copies of the SMN gene: SMN1 and SMN2. The two genes differ by only 11 nucleotides at the genomic level. One of these is a C to T single nucleotide polymorphism (SNP) at position 6 in exon 7. This change alters an exon splicing enhancer in exon 7, meaning that while SMN1 expresses exclusively full-length protein containing exon 7, SMN2 is predominantly alternatively spliced and expresses a truncated transcript lacking exon 7 (SMN7). As all SMA patients are effectively null for SMN1 but retain at least one copy of SMN2, patients express considerably lower levels of functional SMN protein compared with uneffected individuals. Therefore, SMA is triggered by a fall in the levels of expressed full-length protein, and the levels expressed by the retained SMN2 gene control the severity. As a result, RNA manipulation to suppress the alternative splicing event and thus increase SMN exon 7 inclusion has emerged as an attractive therapeutic approach. In this review we have discussed the current state of bifunctional RNAs as a viable therapy, concentrating on recent advances and overall implications of this research on SMA.


Asunto(s)
Terapia Genética/métodos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , ARN/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Empalme Alternativo/genética , Animales , Exones/genética , Regulación de la Expresión Génica/genética , Humanos , Atrofia Muscular Espinal/fisiopatología , Polimorfismo de Nucleótido Simple/genética , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis , Proteína 2 para la Supervivencia de la Neurona Motora/biosíntesis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda