Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Mikrochim Acta ; 191(6): 331, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744722

RESUMEN

A broad host range phage-based nanozyme (Fe-MOF@SalmpYZU47) was prepared for colorimetric detection of multiple Salmonella enterica strains. The isolation of a broad host range phage (SalmpYZU47) capable of infecting multiple S. enterica strains was achieved. Then, it was directly immobilized onto the Fe-MOF to prepare Fe-MOF@SalmpYZU47, exhibiting peroxidase-like activity. The peroxidase-like activity can be specifically inhibited by multiple S. enterica strains, benefiting from the broad host range capture ability of Fe-MOF@SalmpYZU47. Based on it, a colorimetric detection approach was developed for S. enterica in the range from 1.0 × 102 to 1.0 × 108 CFU mL-1, achieving a low limit of detection (LOD) of 11 CFU mL-1. The Fe-MOF@SalmpYZU47 was utilized for detecting S. enterica in authentic food samples, achieving recoveries ranging from 91.88 to 105.34%. Hence, our proposed broad host range phage-based nanozyme exhibits significant potential for application in the colorimetric detection of pathogenic bacteria.


Asunto(s)
Colorimetría , Límite de Detección , Estructuras Metalorgánicas , Salmonella enterica , Colorimetría/métodos , Salmonella enterica/aislamiento & purificación , Salmonella enterica/química , Estructuras Metalorgánicas/química , Microbiología de Alimentos/métodos , Contaminación de Alimentos/análisis , Peroxidasa/química
2.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37176000

RESUMEN

Proteus mirabilis is a Gram-negative Gammaproteobacterium and a major causative agent of urinary tract infections in humans. It is characterized by its ability to switch between swimming motility in liquid media and swarming on solid surfaces. Here, we used cryo-electron tomography and subtomogram averaging to reveal the structure of the flagellar motor of P. mirabilis at nanometer resolution in intact cells. We found that P. mirabilis has a motor that is structurally similar to those of Escherichia coli and Salmonella enterica, lacking the periplasmic elaborations that characterize other more specialized gammaproteobacterial motors. In addition, no density corresponding to stators was present in the subtomogram average suggesting that the stators are dynamic. Finally, several assembly intermediates of the motor were seen that support the inside-out assembly pathway.


Asunto(s)
Proteínas Bacterianas , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Flagelos , Proteínas Motoras Moleculares , Proteus mirabilis , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Escherichia coli/química , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestructura , Proteus mirabilis/química , Proteus mirabilis/citología , Proteus mirabilis/ultraestructura , Salmonella enterica/química , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/metabolismo , Proteínas Motoras Moleculares/ultraestructura
3.
Food Microbiol ; 94: 103616, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33279059

RESUMEN

The objective of this study was to characterize the biofilms formed by Salmonella enterica serotype Agona, Listeria monocytogenes, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) after 12, 48, 72, 120 and 240 h of incubation at 10 °C. Biofilms containing a single species, together with dual-species biofilms in which S. enterica and a Gram-positive bacterium existed in combination, were formed on polystyrene and evaluated by using confocal laser scanning microscopy (CLSM). All strains were able to form biofilm. The greatest biovolume in the observation field of 14,161 µm2 was observed for mono-species biofilms after 72 h, where biovolumes of 94,409.0 µm3 ± 2131.0 µm3 (S. enterica), 58,418.3 µm3 ± 5944.9 µm3 (L. monocytogenes), 68,020.8 µm3 ± 5812.3 µm3 (MRSA) and 59,280.0 µm3 ± 4032.9 µm3 (VRE) were obtained. In comparison with single-species biofilms, the biovolume of S. enterica was higher in the presence of MRSA or VRE after 48, 72 and 120 h. In dual-species biofilms, the bacteria showed a double-layer distribution pattern, with S. enterica in the top layer and Gram-positive bacteria in the bottom layer. This spatial disposition should be taken into account when effective strategies to eliminate biofilms are being developed.


Asunto(s)
Biopelículas , Enterococcus faecium/química , Listeria monocytogenes/química , Staphylococcus aureus Resistente a Meticilina/química , Salmonella enterica/química , Enterococcus faecium/fisiología , Listeria monocytogenes/fisiología , Staphylococcus aureus Resistente a Meticilina/fisiología , Microscopía Confocal , Salmonella enterica/fisiología
4.
Biochemistry ; 59(51): 4845-4855, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33326210

RESUMEN

The P22 tailspike endorhamnosidase confers the high specificity of bacteriophage P22 for some serogroups of Salmonella differing only slightly in their O-antigen polysaccharide. We used several biophysical methods to study the binding and hydrolysis of O-antigen fragments of different lengths by P22 tailspike protein. O-Antigen saccharides of defined length labeled with fluorophors could be purified with higher resolution than previously possible. Small amounts of naturally occurring variations of O-antigen fragments missing the nonreducing terminal galactose could be used to determine the contribution of this part to the free energy of binding to be ∼7 kJ/mol. We were able to show via several independent lines of evidence that an unproductive binding mode is highly favored in binding over all other possible binding modes leading to hydrolysis. This is true even under circumstances under which the O-antigen fragment is long enough to be cleaved efficiently by the enzyme. The high-affinity unproductive binding mode results in a strong self-competitive inhibition in addition to product inhibition observed for this system. Self-competitive inhibition is observed for all substrates that have a free reducing end rhamnose. Naturally occurring O-antigen, while still attached to the bacterial outer membrane, does not have a free reducing end and therefore does not perform self-competitive inhibition.


Asunto(s)
Bacteriófago P22/enzimología , Glicósido Hidrolasas/metabolismo , Antígenos O/metabolismo , Oligosacáridos/metabolismo , Proteínas de la Cola de los Virus/metabolismo , Dominio Catalítico , Colorantes Fluorescentes/química , Glicósido Hidrolasas/antagonistas & inhibidores , Glicósido Hidrolasas/química , Hidrólisis , Antígenos O/química , Oligosacáridos/química , Unión Proteica , Salmonella enterica/química , Proteínas de la Cola de los Virus/antagonistas & inhibidores , Proteínas de la Cola de los Virus/química
5.
Anal Bioanal Chem ; 412(15): 3595-3604, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32248395

RESUMEN

The detection of Salmonella spp. in food samples is regulated by the ISO 6579:2002 standard, which requires that precise procedures are followed to ensure the reliability of the detection process. This standard requires buffered peptone water as a rich medium for the enrichment of bacteria. However, the effects of different brands of buffered peptone water on the identification of microorganisms by Raman spectroscopy are unknown. In this regard, our study evaluated the discrimination between two bacterial species, Salmonella enterica and Escherichia coli, inoculated and analyzed with six of the most commonly used buffered peptone water brands. The results showed that bacterial cells behaved differently according to the brand used in terms of biomass production and the spectral fingerprint. The identification accuracy of the analyzed strains was between 85% and 100% depending on the given brand. Several batches of two brands were studied to evaluate the classification rates between the analyzed bacterial species. The chemical analysis performed on these brands showed that the nutrient content was slightly different and probably explained the observed effects. On the basis of these results, Raman spectroscopy operators are encouraged to select an adequate culture medium and continue its use throughout the identification process to guarantee optimal recognition of the microorganism of interest.


Asunto(s)
Escherichia coli/aislamiento & purificación , Salmonella enterica/aislamiento & purificación , Espectrometría Raman/métodos , Técnicas de Tipificación Bacteriana/métodos , Tampones (Química) , Escherichia coli/química , Infecciones por Escherichia coli/microbiología , Humanos , Peptonas/análisis , Salmonella enterica/química , Agua/análisis
6.
J Biol Chem ; 293(39): 15316-15329, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30049795

RESUMEN

The closely related type III secretion system zinc metalloprotease effector proteins GtgA, GogA, and PipA are translocated into host cells during Salmonella infection. They then cleave nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) transcription factor subunits, dampening activation of the NF-κB signaling pathway and thereby suppressing host immune responses. We demonstrate here that GtgA, GogA, and PipA cleave a subset of NF-κB subunits, including p65, RelB, and cRel but not NF-κB1 and NF-κB2, whereas the functionally similar type III secretion system effector NleC of enteropathogenic and enterohemorrhagic Escherichia coli cleaved all five NF-κB subunits. Mutational analysis of NF-κB subunits revealed that a single nonconserved residue in NF-κB1 and NF-κB2 that corresponds to the P1' residue Arg-41 in p65 prevents cleavage of these subunits by GtgA, GogA, and PipA, explaining the observed substrate specificity of these enzymes. Crystal structures of GtgA in its apo-form and in complex with the p65 N-terminal domain explained the importance of the P1' residue. Furthermore, the pattern of interactions suggested that GtgA recognizes NF-κB subunits by mimicking the shape and negative charge of the DNA phosphate backbone. Moreover, structure-based mutational analysis of GtgA uncovered amino acids that are required for the interaction of GtgA with p65, as well as those that are required for full activity of GtgA in suppressing NF-κB activation. This study therefore provides detailed and critical insight into the mechanism of substrate recognition by this family of proteins important for bacterial virulence.


Asunto(s)
Escherichia coli/química , Metaloproteasas/química , Infecciones por Salmonella/genética , Salmonella enterica/química , Secuencia de Aminoácidos/genética , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/patogenicidad , Células HeLa , Humanos , Inmunidad Celular , Metaloproteasas/genética , FN-kappa B/química , Conformación Proteica , Infecciones por Salmonella/microbiología , Salmonella enterica/genética , Salmonella enterica/patogenicidad , Transducción de Señal , Relación Estructura-Actividad , Factor de Transcripción ReIA/química , Sistemas de Secreción Tipo III/química , Sistemas de Secreción Tipo III/genética , Zinc/química
7.
Proteins ; 87(8): 679-692, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30968972

RESUMEN

Peptidase E (PepE) is a nonclassical serine peptidase with a Ser-His-Glu catalytic triad. It is specific for dipeptides with an N-terminal aspartate residue (Asp-X dipeptidase activity). Its homolog from Listeria monocytogenes (PepElm) has a Ser-His-Asn "catalytic triad." Based on sequence alignment we predicted that the PepE homolog from Deinococcus radiodurans (PepEdr) would have a Ser-His-Asp "catalytic triad." We confirmed this by solving the crystal structure of PepEdr to 2.7 Å resolution. We show that PepElm and PepEdr lack the Asp-X dipeptidase activity. Our analyses suggest that absence of P1 pocket in the active site could be the main reason for this lack of typical activity. Sequence and structural data reveal that the PepE homologs can be divided into long and short PepEs based on presence or absence of a C-terminal tail which adopts a ß-hairpin conformation in the canonical PepE from Salmonella enterica. A long PepE from Bacillus subtilis with Ser-His-Asp catalytic triad exhibits Asp-X dipeptidase activity. Whereas the three long PepEs enzymatically characterized till date have been found to possess the Asp-X dipeptidase activity, the three enzymatically characterized short PepEs lack this activity irrespective of the nature of their catalytic triads. This study illuminates the structural and functional heterogeneity in the S51 family and also provides structural basis for the functional variability among PepE homologs.


Asunto(s)
Aminopeptidasas/química , Bacillus subtilis/enzimología , Deinococcus/enzimología , Listeria monocytogenes/enzimología , Salmonella enterica/enzimología , Bacillus subtilis/química , Dominio Catalítico , Cristalografía por Rayos X , Deinococcus/química , Listeria monocytogenes/química , Modelos Moleculares , Conformación Proteica , Salmonella enterica/química
8.
Photochem Photobiol Sci ; 18(11): 2730-2739, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31560013

RESUMEN

Photodynamic therapy (PDT) of bacterial strains presents an attractive potential alternative to antibiotic therapies in search of the solution for the chemoresistance problem. The efficacy of the treatment is dependent on the interaction of photochemically active substances called photosensitizers (PSs) with the bacterial cell wall or their intracellular accumulation. In addition to exogenous PSs, other molecules such as 5-aminolevulinic acid (5-ALA), a natural precursor of heme, are gaining interest. When provided exogenously to cells, 5-ALA uptake results in the overproduction of various photoactive porphyrins. The pattern of their intracellular accumulation and release to the surroundings depends on incubation conditions such as the applied 5-ALA concentration, cell density and incubation duration. The detection of endogenously synthesized porphyrins in samples of Salmonella enterica cells and supernatants was accomplished after 4 h and 20 h incubation periods by means of fluorescence spectroscopy. The relative proportions of different types of porphyrins were assessed by modeling the registered spectra with the fluorescence spectra of standard porphyrins. After the shorter incubation period, the dominant porphyrins in the supernatant medium were coproporphyrins. The longer incubation period shifted the relative proportion of intracellular porphyrins from protoporphyrin IX towards water-soluble porphyrins such as uroporphyrin I, which interfered with additional by-products. The time-dependent changes in compositions of both intracellular and extracellular porphyrins imply that 5-ALA-induced sensitization might have triggered a complex protective mechanism of bacterial cells. Thus, identification and evaluation of the relative amounts of porphyrins, which accumulate in bacterial cells and are extruded outside after different time periods, could provide access to valuable information, working towards more efficient applications of 5-ALA-based antibacterial PDT.


Asunto(s)
Ácido Aminolevulínico/química , Fármacos Fotosensibilizantes/química , Porfirinas/química , Salmonella enterica/química , Espectrometría de Fluorescencia , Ácido Aminolevulínico/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Porfirinas/metabolismo , Salmonella enterica/efectos de los fármacos
9.
Inorg Chem ; 58(16): 11091-11099, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31353893

RESUMEN

Several bacterial species have evolutionary developed protein systems specialized in the control of intracellular gold ion concentration. In order to prevent the detrimental consequences that may be induced even at very low concentrations, bacteria such as Salmonella enterica and Cupriavidus metallidurans utilize Au-specific merR-type transcriptional regulators that detect these toxic ions and control the expression of specific resistance factors. Among these highly specialized proteins, golB has been investigated in depth, and X-ray structures of both apo and Au(I)-bound golB have been recently reported. Here, the binding of Au(I) at golB was investigated by means of multilevel computational approaches. Molecular dynamics simulations evidenced how conformations amenable for the Au(I) chelation through the Cys-XX-Cys motif on helix 1 are extensively sampled in the phase space of apo-golB. Hybrid QM/MM calculations on metal-bound structures of golB also allowed to characterize the most probable protonation state for gold binding motif and to assess the structural features mostly influencing the Au(I) coordination in this protein. Consistently with experimental evidence, we found that golB may control its Au(I) affinity by conformational changes that affect the distance between Cys10 and Cys13, thus being able to switch between the Au(I) sequestration/release-prone states in response to external stimuli. The protein structure enveloping the metal binding motif favors the thiol-thiolate protonation state of Au(I)-golB, thus probably enhancing the binding selectivity for Au(I) compared to other cations.


Asunto(s)
Proteínas Bacterianas/química , Oro/química , Metaloproteínas/química , Simulación de Dinámica Molecular , Teoría Cuántica , Cupriavidus/química , Salmonella enterica/química
10.
J Appl Microbiol ; 126(5): 1496-1507, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30761711

RESUMEN

AIM: To investigate the use of a light scattering sensor, BActerial Rapid Detection using Optical scattering Technology (BARDOT) coupled with a multipathogen selective medium, Salmonella, Escherichia and Listeria (SEL), for concurrent detection of the three major foodborne pathogens in a single assay. METHODS AND RESULTS: BARDOT was used to detect and distinguish the three major pathogens, Salmonella enterica, Shiga toxin-producing Escherichia coli (STEC) and Listeria monocytogenes from food based on colony scatter signature patterns on SEL agar (SELA). Multiple strains of three test pathogens were grown on SELA, and BARDOT was used to generate colony scatter image libraries for inclusive (SEL Library) and exclusive (non-SEL Library) bacterial group. These pathogens were further differentiated using the SEL scatter image library. Raw chicken and hotdog samples were artificially inoculated with pathogens (100 CFU per 25 g each), and enriched in SEL broth at 37°C for 18 h and colonies were grown on SELA for 11-22 h before screening with BARDOT. The BARDOT sensor successfully detected and differentiated Salmonella, STEC and Listeria on SELA with high classification accuracy 92-98%, 91-98% and 83-98% positive predictive values (PPV) respectively; whereas the nontarget strains showed only 0-13% PPV. BARDOT-identified colonies were further confirmed by multiplex PCR targeting inlB gene of L. monocytogenes, stx2 of STEC and sefA of S. enterica serovar Enteritidis. CONCLUSIONS: The results show that BARDOT coupled with SELA can efficiently screen for the presence of three major pathogens simultaneously in a test sample within 29-40 h. SIGNIFICANCE AND IMPACT OF THE STUDY: This innovative SELA-BARDOT detection platform can reduce turnaround time and economic burden on food industries by offering a label-free, noninvasive on-plate multipathogen screening technology for reducing microbial food safety and public health concerns.


Asunto(s)
Escherichia coli , Microbiología de Alimentos/métodos , Listeria monocytogenes , Salmonella enterica , Dispersión de Radiación , Animales , Pollos , Escherichia coli/química , Escherichia coli/aislamiento & purificación , Luz , Listeria monocytogenes/química , Listeria monocytogenes/aislamiento & purificación , Carne/microbiología , Salmonella enterica/química , Salmonella enterica/aislamiento & purificación
11.
Anal Chem ; 90(20): 12019-12026, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30226755

RESUMEN

The threat of food safety and the limited analytical methods with high performance promote the growing interest in the development of pathogenic bacteria biosensors. This study presents a pathogenic bacteria biosensing system, where a novel three-dimensional (3D) chip acts as an analytical carrier and DNA-programmed hybridization chain reaction (HCR) causes signal amplification. The 3D chip is designed featuring a compact multichannel structure. It has a large surface area for sensitive sensing and exhibits multiple functions of target capture, separation, rinsing, and signal detection to simplify the analysis processes. HCR, which enables the fluorophore's polymerization, is designed as two signal amplification modes, each with unique advantages. Mode I achieves highly sensitive detection in a "sandwich" assay format, in which a long HCR-amplified probe is used to boost the fluorescence signal. In mode II, the assembly of HCR is performed on the inner surface of the 3D chip. Especially, a group of rapid-assembly HCR sequences is proposed, of which the assembly time as short as 15 min stands out among the related works previously reported. Under the optimal conditions, the proposed biosensing system has the limits of detection (LOD) of 4 and 8 cfu/mL in mode I for Staphylococcus aureus detection and in mode II for Salmonella enterica Typhimurium detection, respectively. The specificity and the real sample applications are evaluated. This multichannel-structured 3D chip based on HCR signal amplification has potential applications in food safety monitoring and biosensor development.


Asunto(s)
ADN Bacteriano/genética , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Salmonella enterica/química , Staphylococcus aureus/química , Electroforesis en Gel de Poliacrilamida , Polimetil Metacrilato/química
12.
Anal Chem ; 90(4): 2912-2917, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29376315

RESUMEN

Food poisoning caused by bacteria is a major cause of disease and death worldwide. Herein we describe the use of Janus micromotors as mobile sensors for the detection of toxins released by enterobacteria as indicators of food contamination. The micromotors are prepared by a Pickering emulsion approach and rely on the simultaneous encapsulation of platinum nanoparticles for enhanced bubble-propulsion and receptor-functionalized quantum dots (QDs) for selective binding with the 3-deoxy-d-manno-oct-2-ulosonic acid target in the endotoxin molecule. Lipopolysaccharides (LPS) from Salmonella enterica were used as target endotoxins, which upon interaction with the QDs induce a rapid quenching of the native fluorescence of the micromotors in a concentration-dependent manner. The micromotor assay can readily detect concentrations as low as 0.07 ng mL-1 of endotoxin, which is far below the level considered toxic to humans (275 µg mL-1). Micromotors have been successfully applied for the detection of Salmonella toxin in food samples in 15 min compared with several hours required by the existing Gold Standard method. Such ultrafast and reliable approach holds considerable promise for food contamination screening while awaiting the results of bacterial cultures in a myriad of food safety and security defense applications.


Asunto(s)
Endotoxinas/análisis , Contaminación de Alimentos/análisis , Lipopolisacáridos/análisis , Puntos Cuánticos/química , Salmonella enterica/química , Azúcares Ácidos/química , Humanos , Tamaño de la Partícula , Propiedades de Superficie
13.
Biochem Biophys Res Commun ; 495(2): 1614-1619, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29197577

RESUMEN

The bacterial flagellar motor drives the rotation of helical flagellar filaments to propel bacteria through viscous media. It consists of a dynamic population of mechanosensitive stators that are embedded in the inner membrane and activate in response to external load. This entails assembly around the rotor, anchoring to the peptidoglycan layer to counteract torque from the rotor and opening of a cation channel to facilitate an influx of cations, which is converted into mechanical rotation. Stator complexes are comprised of four copies of an integral membrane A subunit and two copies of a B subunit. Each B subunit includes a C-terminal OmpA-like peptidoglycan-binding (PGB) domain. This is thought to be linked to a single N-terminal transmembrane helix by a long unstructured peptide, which allows the PGB domain to bind to the peptidoglycan layer during stator anchoring. The high-resolution crystal structures of flagellar motor PGB domains from Salmonella enterica (MotBC2) and Vibrio alginolyticus (PomBC5) have previously been elucidated. Here, we use small-angle X-ray scattering (SAXS). We show that unlike MotBC2, the dimeric conformation of the PomBC5 in solution differs to its crystal structure, and explore the functional relevance by characterising gain-of-function mutants as well as wild-type constructs of various lengths. These provide new insight into the conformational diversity of flagellar motor PGB domains and experimental verification of their overall topology.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas Bacterianas/química , Flagelos/química , Proteínas Motoras Moleculares/química , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/genética , Modelos Moleculares , Proteínas Motoras Moleculares/genética , Dominios Proteicos , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Salmonella enterica/química , Salmonella enterica/genética , Dispersión del Ángulo Pequeño , Homología de Secuencia de Aminoácido , Soluciones , Vibrio alginolyticus/química , Vibrio alginolyticus/genética , Difracción de Rayos X
14.
Biochemistry (Mosc) ; 83(7): 846-854, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30200869

RESUMEN

The capacities of relatively nontoxic lipopolysaccharide (LPS) from Rhodobacter capsulatus PG and highly potent LPS from Salmonella enterica serovar Typhimurium to evoke proinflammatory cytokine production have been compared in vivo. Intravenous administration of S. enterica LPS at a relatively low dose (1 mg/kg body weight) led to upregulation of TNF-α, IL-6, and IFN-γ production by non-sensitized CD-1 mice. LPS from R. capsulatus PG used at a four-times higher dose than that from S. enterica elicited production of almost the same amount of systemic TNF-α; therefore, the doses of 4 mg/kg LPS from R. capsulatus PG and 1 mg/kg LPS from S. enterica were considered to be approximately equipotential doses with respect to the LPS-dependent TNF-α production by CD-1 mice. Rhodobacter capsulatus PG LPS was a weaker inducer of the production of TNF-α, IL-6, and IFN-γ, as compared to the equipotential dose of S. enterica LPS. Administration of R. capsulatus PG LPS before S. enterica LPS decreased production of IFN-γ, but not of TNF-α and IL-6, induced by S. enterica LPS. Rhodobacter capsulatus PG LPS also suppressed IFN-γ production induced by S. enterica LPS when R. capsulatus PG LPS had been injected as little as 10 min after S. enterica LPS, but to a much lesser extent. Rhodobacter capsulatus PG LPS did not affect TNF-α and IL-6 production induced by the equipotential dose of S. enterica LPS. In order to draw conclusion on the endotoxic activity of particular LPSs, species-specific structure or arrangement of the animal or human immune systems should be considered.


Asunto(s)
Citocinas/biosíntesis , Polisacáridos Bacterianos/farmacología , Rhodobacter capsulatus/química , Salmonella enterica/química , Animales , Relación Dosis-Respuesta a Droga , Femenino , Inflamación/metabolismo , Ratones
15.
Food Microbiol ; 69: 72-81, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28941911

RESUMEN

This study was conducted to determine the effects of intrinsic juice characteristics namely insoluble solids (IS, 0-3 %w/v), and soluble solids (SS, 0-70 °Brix), and extrinsic process parameter treated volume (250-1000 mL) on the UV-C inactivation rates of heat-stressed Salmonella enterica in simulated fruit juices (SFJs). A Rotatable Central Composite Design of Experiment (CCRD) was used to determine combinations of the test variables, while Response Surface Methodology (RSM) was used to characterize and quantify the influences of the test variables on microbial inactivation. The heat-stressed cells exhibited log-linear UV-C inactivation behavior (R2 0.952 to 0.999) in all CCRD combinations with DUV-C values ranging from 10.0 to 80.2 mJ/cm2. The DUV-C values obtained from the CCRD significantly fitted into a quadratic model (P < 0.0001). RSM results showed that individual linear (IS, SS, volume), individual quadratic (IS2 and volume2), and factor interactions (IS × volume and SS × volume) were found to significantly influence UV-C inactivation. Validation of the model in SFJs with combinations not included in the CCRD showed that the predictions were within acceptable error margins.


Asunto(s)
Jugos de Frutas y Vegetales/microbiología , Viabilidad Microbiana/efectos de la radiación , Salmonella enterica/efectos de la radiación , Manipulación de Alimentos , Calor , Metabolismo de los Lípidos , Lípidos/química , Modelos Biológicos , Salmonella enterica/química , Salmonella enterica/genética , Salmonella enterica/metabolismo , Solubilidad , Rayos Ultravioleta
16.
Biochemistry ; 56(2): 364-375, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-28045498

RESUMEN

The EutT enzyme from Salmonella enterica, a member of the family of ATP:cobalt(I) corrinoid adenosyltransferase (ACAT) enzymes, requires a divalent transition metal ion for catalysis, with Fe(II) yielding the highest activity. EutT contains a unique cysteine-rich HX11CCX2C(83) motif (where H and the last C occupy the 67th and 83rd positions, respectively, in the amino acid sequence) not found in other ACATs and employs an unprecedented mechanism for the formation of adenosylcobalamin. Recent kinetic and spectroscopic studies of this enzyme revealed that residues in the HX11CCX2C(83) motif are required for the tight binding of the divalent metal ion and are critical for the formation of a four-coordinate (4c) cob(II)alamin [Co(II)Cbl] intermediate in the catalytic cycle. However, it remained unknown which, if any, of the residues in the HX11CCX2C(83) motif bind the divalent metal ion. To address this issue, we have characterized Co(II)-substituted wild-type EutT (EutTWT/Co) by using electronic absorption, electron paramagnetic resonance, and magnetic circular dichroism (MCD) spectroscopies. Our results indicate that the reduced catalytic activity of EutTWT/Co relative to that of the Fe(II)-containing enzyme arises from the incomplete incorporation of Co(II) ions and, thus, a decrease in the relative population of 4c Co(II)Cbl. Our MCD data for EutTWT/Co also reveal that the Co(II) ions reside in a distorted tetrahedral coordination environment with direct cysteine sulfur ligation. Additional spectroscopic studies of EutT/Co variants possessing a single alanine substitution of either His67, His75, Cys79, Cys80, or Cys83 indicate that Cys80 coordinates to the Co(II) ion, while the additional residues are important for maintaining the structural integrity and/or high affinity of the metal binding site.


Asunto(s)
Transferasas Alquil y Aril/química , Proteínas Bacterianas/química , Cobalto/química , Coenzimas/química , Complejos de Coordinación/química , Cisteína/química , Salmonella enterica/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Alanina/química , Alanina/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cationes Bivalentes , Dicroismo Circular/métodos , Clonación Molecular , Cobalto/metabolismo , Cobamidas/química , Cobamidas/metabolismo , Coenzimas/metabolismo , Complejos de Coordinación/metabolismo , Cisteína/metabolismo , Escherichia coli , Expresión Génica , Histidina/química , Histidina/metabolismo , Hierro/química , Hierro/metabolismo , Mutación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonella enterica/enzimología , Salmonella enterica/genética
17.
Microb Pathog ; 111: 414-421, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28923603

RESUMEN

We aimed in this work to evaluate the effect of static magnetic field 200 mT (SMF) on the expression of genes involved in the biosynthetic pathway of cardiolipin: g3pd, plsB, cdsA, pgsA, pgpA, cls and phosphatidylethanolamine: pssA and psd in Salmonella enterica subsp enterica serovar Hadar. Bacteria were exposed to a SMF during 3, 6 and 9 h. RNA extraction was followed by Reverse Transcriptase Polymerase Chain Reaction RT-PCR. The relative quantification of mRNA expression levels using 16S rRNA doesn't change during the time exposure. RT-PCR was done for two exposure experiments. The gene expression using RT-PCR present no significant difference in case of plsB, cdsA, pgpA, pgsA and psd genes during the different exposure times. However, a significant increase was observed in the expression of g3pd and pssA genes after 6 h and for cls gene after 3 h of exposure, but any variation was notified after 9 h of exposure. So we can conclude from this study that cls, g3pd and pssA genes are required in the adaptation of Salmonella Hadar to SMF.


Asunto(s)
Proteínas Bacterianas/genética , Cardiolipinas/biosíntesis , Fosfatidiletanolaminas/biosíntesis , Salmonella enterica/química , Salmonella enterica/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Regulación Bacteriana de la Expresión Génica , Campos Magnéticos , Salmonella enterica/metabolismo
18.
Appl Microbiol Biotechnol ; 101(23-24): 8557-8569, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29032472

RESUMEN

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)-based microbial identification is a popular analytical method. Strain Solution proteotyping software available for MALDI-TOF MS has great potential for the precise and detailed discrimination of microorganisms at serotype- or strain-level, beyond the conventional mass fingerprinting approaches. Here, we constructed a theoretically calculated mass database of Salmonella enterica subspecies enterica consisting of 12 biomarker proteins: ribosomal proteins S8, L15, L17, L21, L25, and S7, Mn-cofactor-containing superoxide dismutase (SodA), peptidyl-prolyl cis-trans isomerase C (PPIase C), and protein Gns, and uncharacterized proteins YibT, YaiA, and YciF, that can allow serotyping of Salmonella. Strain Solution ver. 2 software with the novel database constructed in this study demonstrated that 109 strains (94%), including the major outbreak-associated serotypes, Enteritidis, Typhimurium, and Infantis, could be correctly identified from others by colony-directed MALDI-TOF MS using 116 strains belonging to 23 kinds of typed and untyped serotypes of S. enterica from culture collections, patients, and foods. We conclude that Strain Solution ver. 2 software integrated with the accurate mass database will be useful for the bacterial proteotyping by MALDI-TOF MS-based microbial classification in the clinical and food safety fields.


Asunto(s)
Proteínas Bacterianas/análisis , Proteínas Bacterianas/química , Biología Computacional/métodos , Salmonella enterica/química , Salmonella enterica/clasificación , Serotipificación/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Microbiología de Alimentos , Humanos , Infecciones por Salmonella/microbiología , Salmonella enterica/aislamiento & purificación , Programas Informáticos
19.
J Basic Microbiol ; 57(10): 852-861, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28745825

RESUMEN

Salmonella enterica serotype Choleraesuis (S. Choleraesuis), Gram-negative facultative intracellular pathogen is capable of inducing the cholera in pigs whose symptoms manifest as fever, depression, septicemia, arthritis, and diarrhea. Infections with S. Choleraesuis has resulted in great economic loss for the swine breeding operations. Bacterial outer membrane vesicles (OMVs) play an important role in pathogenicity and host-pathogen interaction. In this study, we purified OMVs released by S. Choleraesuis strain χ3545 and characterized their lipopolysaccharide (LPS) profile. The OMVs contained intact LPS molecules. By using LC-MS/MS, we identified 192 proteins in the OMVs. In addition, the subcellular location and biological functions of the vesicles was predicted. The proteins were mainly derived from outer membranes and cytoplasm. Several proteins were immunoreactive and associated with the secretion pathway. Some putative multi-drug resistance-associated proteins were also identified. Furthermore, immunization experiment via intranasal or intraperitoneal route in mice demonstrated that S. Choleraesuis OMVs could elicit strong humoral and mucosal immune responses. Although OMVs as vaccine did not provide strong protection against clinical strain of wild-type S. Choleraesuis, immunization of OMVs still prolonged the survival time of vaccinated mice after high dose of S. Choleraesuis infection. Overall, this study provides valuable fundamental information toward elucidating the pathogenicity and functions of OMVs secreted from S. Choleraesuis.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Inmunogenicidad Vacunal , Salmonelosis Animal/inmunología , Vacunas contra la Salmonella/inmunología , Salmonella enterica/inmunología , Animales , Proteínas de la Membrana Bacteriana Externa/administración & dosificación , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana Múltiple , Interacciones Huésped-Patógeno , Inmunización , Lipopolisacáridos/análisis , Lipopolisacáridos/inmunología , Ratones , Proteómica , Salmonella enterica/química , Salmonella enterica/efectos de los fármacos , Salmonella enterica/patogenicidad
20.
Medicina (Kaunas) ; 53(2): 122-130, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28462872

RESUMEN

BACKGROUND AND OBJECTIVE: One of the main causes of bacterial resistance to antimicrobials is multidrug resistance induced by the increased efficiency of the efflux pumps. In this study we analyzed how the conditions of assay affect the efflux of indicator substrates ethidium (Et+) and tetraphenylphosphonium (TPP+) in Salmonella enterica ser. Typhimurium cells. Impact of the outer membrane permeability barrier, composition and temperature of the medium on accumulation of the indicator compounds also was analyzed. MATERIALS AND METHODS: The fluorescence of Et+ and Nile Red was measured using 96-well plates and a plate reader. In parallel to traditional studies of fluorescence we applied a constructed selective electrode to follow the accumulation of Et+ in S. enterica cells. Simultaneously with monitoring of Et+ concentration in the cell incubation medium, electrochemical measurements of TPP+ accumulation were performed. Furthermore, Et+ and TPP+ were used within the same sample as agents competing for the interaction with the efflux pumps. An inhibitor phenylalanyl-arginyl-ß-naphtylamide (PAßN) was applied to evaluate the input of RND-family pumps in the total efflux of these indicator compounds. RESULTS: S. enterica cells with the intact outer membrane (OM) bound very low amounts of Et+ or TPP+. Cells with the permeabilized OM accumulate considerably higher amounts of the indicator compounds at pH 8.0, but only Et+ was considerably accumulated at pH 6.5. At conditions of electrochemical monitoring accumulation of Et+ by the permeabilized cells at 37°C was considerably faster than at 23°C, but at the higher temperature most of the cell-accumulated Et+ was extruded back to the medium. The fluorescence of Et+ in suspension of cells incubated in 400mmol/L Tris buffer was about twice higher compared to 100mmol/L one. The inhibitory action of TPP+ on Et+ efflux was evident only in 400mmol/L Tris although PAßN effectively increased Et+ fluorescence at both buffer concentrations. CONCLUSIONS: Results of our experiments indicate that ionic strength of the incubation medium influence the selectivity, the medium temperature and the assay conditions impact the kinetics of efflux. The lower accumulated amount and the weaker fluorescence of Et+ registered in slightly acidic medium indicate that ΔΨ plays a role in the accumulation of this indicator cation. The bound amount of Et+ to the de-energized or permeabilized cells considerably varies depending on the conditions and methods of de-energization or permeabilization of cells. Tris/EDTA permeabilization of the cells does not inhibit the efflux.


Asunto(s)
Permeabilidad de la Membrana Celular , Etidio/metabolismo , Compuestos Onio/metabolismo , Compuestos Organofosforados/metabolismo , Salmonella enterica/metabolismo , Cationes/análisis , Cationes/metabolismo , Membrana Celular/metabolismo , ADN Bacteriano/metabolismo , Farmacorresistencia Bacteriana Múltiple , Etidio/análisis , Fluorometría/métodos , Indicadores y Reactivos/metabolismo , Compuestos Onio/análisis , Compuestos Organofosforados/análisis , Salmonella enterica/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda