Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
J Neurosci ; 41(39): 8126-8133, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34400517

RESUMEN

Neurotransmitter spillover is a form of communication not readily predicted by anatomic structure. In the cerebellum, glutamate spillover from climbing fibers recruits molecular layer interneurons in the absence of conventional synaptic connections. Spillover-mediated signaling is typically limited by transporters that bind and reuptake glutamate. Here, we show that patterned expression of the excitatory amino acid transporter 4 (EAAT4) in Purkinje cells regulates glutamate spillover to molecular layer interneurons. Using male and female Aldolase C-Venus knock-in mice to visualize zebrin microzones, we find larger climbing fiber-evoked spillover EPSCs in regions with low levels of EAAT4 compared with regions with high EAAT4. This difference is not explained by presynaptic glutamate release properties or postsynaptic receptor density but rather by differences in the glutamate concentration reaching receptors on interneurons. Inhibiting glutamate transport normalizes the differences between microzones, suggesting that heterogeneity in EAAT4 expression is a primary determinant of differential spillover. These results show that neuronal glutamate transporters limit extrasynaptic transmission in a non-cell-autonomous manner and provide new insight into the functional specialization of cerebellar microzones.SIGNIFICANCE STATEMENT Excitatory amino acid transporters (EAATs) help maintain the fidelity and independence of point-to-point synaptic transmission. Whereas glial transporters are critical to maintain low ambient levels of extracellular glutamate to prevent excitotoxicity, neuronal transporters have more subtle roles in shaping excitatory synaptic transmission. Here we show that the patterned expression of neuronal EAAT4 in cerebellar microzones controls glutamate spillover from cerebellar climbing fibers to nearby interneurons. These results contribute to fundamental understanding of neuronal transporter functions and specialization of cerebellar microzones.


Asunto(s)
Cerebelo/metabolismo , Transportador 4 de Aminoácidos Excitadores/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Ácido Glutámico/metabolismo , Interneuronas/metabolismo , Transmisión Sináptica/fisiología , Animales , Transportador 4 de Aminoácidos Excitadores/genética , Ratones , Células de Purkinje/metabolismo , Sinapsis/metabolismo
2.
Hum Mol Genet ; 27(15): 2614-2627, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29741614

RESUMEN

Loss of excitatory amino acid transporters (EAATs) has been implicated in a number of human diseases including spinocerebellar ataxias, Alzhiemer's disease and motor neuron disease. EAAT4 and GLAST/EAAT1 are the two predominant EAATs responsible for maintaining low extracellular glutamate levels and preventing neurotoxicity in the cerebellum, the brain region essential for motor control. Here using genetically modified mice we identify new critical roles for EAAT4 and GLAST/EAAT1 as modulators of Purkinje cell (PC) spontaneous firing patterns. We show high EAAT4 levels, by limiting mGluR1 signalling, are essential in constraining inherently heterogeneous firing of zebrin-positive PCs. Moreover mGluR1 antagonists were found to restore regular spontaneous PC activity and motor behaviour in EAAT4 knockout mice. In contrast, GLAST/EAAT1 expression is required to sustain normal spontaneous simple spike activity in low EAAT4 expressing (zebrin-negative) PCs by restricting NMDA receptor activation. Blockade of NMDA receptor activity restores spontaneous activity in zebrin-negative PCs of GLAST knockout mice and furthermore alleviates motor deficits. In addition both transporters have differential effects on PC survival, with zebrin-negative PCs more vulnerable to loss of GLAST/EAAT1 and zebrin-positive PCs more vulnerable to loss of EAAT4. These findings reveal that glutamate transporter dysfunction through elevated extracellular glutamate and the aberrant activation of extrasynaptic receptors can disrupt cerebellar output by altering spontaneous PC firing. This expands our understanding of disease mechanisms in cerebellar ataxias and establishes EAATs as targets for restoring homeostasis in a variety of neurological diseases where altered cerebellar output is now thought to play a key role in pathogenesis.


Asunto(s)
Cerebelo/metabolismo , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 4 de Aminoácidos Excitadores/genética , Células de Purkinje/fisiología , Animales , Ataxia/genética , Supervivencia Celular/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 4 de Aminoácidos Excitadores/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Células de Purkinje/citología , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Hum Mol Genet ; 25(20): 4448-4461, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28173092

RESUMEN

Clinical phenotypes of spinocerebellar ataxia type-5 (SCA5) and spectrin-associated autosomal recessive cerebellar ataxia type-1 (SPARCA1) are mirrored in mice lacking ß-III spectrin (ß-III-/-). One function of ß-III spectrin is the stabilization of the Purkinje cell-specific glutamate transporter EAAT4 at the plasma membrane. In ß-III-/- mice EAAT4 levels are reduced from an early age. In contrast levels of the predominant cerebellar glutamate transporter GLAST, expressed in Bergmann glia, only fall progressively from 3 months onwards. Here we elucidated the roles of these two glutamate transporters in cerebellar pathogenesis mediated through loss of ß-III spectrin function by studying EAAT4 and GLAST knockout mice as well as crosses of both with ß-III-/- mice. Our data demonstrate that EAAT4 loss, but not abnormal AMPA receptor composition, in young ß-III-/- mice underlies early Purkinje cell hyper-excitability and that subsequent loss of GLAST, superimposed on the earlier deficiency of EAAT4, is responsible for Purkinje cell loss and progression of motor deficits. Yet the loss of GLAST appears to be independent of EAAT4 loss, highlighting that other aspects of Purkinje cell dysfunction underpin the pathogenic loss of GLAST. Finally, our results demonstrate that Purkinje cells in the posterior cerebellum of ß-III-/- mice are most susceptible to the combined loss of EAAT4 and GLAST, with degeneration of proximal dendrites, the site of climbing fibre innervation, most pronounced. This highlights the necessity for efficient glutamate clearance from these regions and identifies dysregulation of glutamatergic neurotransmission particularly within the posterior cerebellum as a key mechanism in SCA5 and SPARCA1 pathogenesis.


Asunto(s)
Ataxia Cerebelosa/metabolismo , Modelos Animales de Enfermedad , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 4 de Aminoácidos Excitadores/metabolismo , Células de Purkinje/metabolismo , Espectrina/metabolismo , Ataxias Espinocerebelosas/metabolismo , Animales , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/patología , Transportador 1 de Aminoácidos Excitadores/fisiología , Transportador 4 de Aminoácidos Excitadores/fisiología , Femenino , Masculino , Ratones , Ratones Noqueados , Fenotipo , Células de Purkinje/patología , Espectrina/fisiología , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología
4.
Cell Physiol Biochem ; 51(5): 2275-2289, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30537735

RESUMEN

BACKGROUND/AIMS: Parkinson's disease (PD) is a frequently occurring condition that resulted from the loss of midbrain neurons, which synthesize the neurotransmitter dopamine. In this study, we established mouse models of PD to investigate the expression of microRNA-128 (miR-128) and mechanism through which it affects apoptosis of dopamine (DA) neurons and the expression of excitatory amino acid transporter 4 (EAAT4) via binding to axis inhibition protein 1 (AXIN1). METHODS: Gene expression microarray analysis was performed to screen differentially expressed miRNAs that are associated with PD. The targeting relationship between miR-128 and AXIN1 was verified via a bioinformatics prediction and dual-luciferase reporter gene assay. After separation, DA neurons were subjected to a series of inhibitors, activators and shRNAs to validate the mechanisms of miR-128 in controlling of AXIN1 in PD. Positive protein expression of AXIN1 and EAAT4 in DA neurons was determined using immunocytochemistry. miR-128 expression and the mRNA and protein levels of AXIN1 and EAAT4 were evaluated via RT-qPCR and Western blot analysis, respectively. DA neuron apoptosis was evaluated using TUNEL staining. RESULTS: We identified AXIN1 as an upregulated gene in PD based on the microarray data of GSE7621. AXIN1 was targeted and negatively mediated by miR-128. In the DA neurons, upregulated miR-128 expression or sh-AXIN1 increased the positive expression rate of EAAT4 together with mRNA and protein levels, but decreased the mRNA and protein levels of AXIN1, apoptosis rate along with the positive expression rate of AXIN1; however, the opposite trend was found in response to transfection with miR-128 inhibitors. CONCLUSION: Evidence from experimental models revealed that miR-128 might reduce apoptosis of DA neurons while increasing the expression of EAAT4 which might be related to the downregulation of AXIN1. Thus, miR-128 may serve as a potential target for the treatment of PD.


Asunto(s)
Proteína Axina/genética , Neuronas Dopaminérgicas/patología , Transportador 4 de Aminoácidos Excitadores/genética , Regulación de la Expresión Génica , MicroARNs/genética , Enfermedad de Parkinson/genética , Animales , Apoptosis , Neuronas Dopaminérgicas/metabolismo , Redes Reguladoras de Genes , Humanos , Masculino , Ratones Endogámicos C57BL , Enfermedad de Parkinson/patología , Regulación hacia Arriba
5.
Cell Physiol Biochem ; 40(5): 1252-1260, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27978527

RESUMEN

BACKGROUND: Cellular uptake of glutamate by the excitatory amino-acid transporters (EAATs) decreases excitation and thus participates in the regulation of neuroexcitability. Kinases impacting on neuronal function include Lithium-sensitive glycogen synthase kinase GSK3ß. The present study thus explored whether the activities of EAAT3 and/or EAAT4 isoforms are sensitive to GSK3ß. METHODS: cRNA encoding wild type EAAT3 (SLC1A1) or EAAT4 (SLC1A6) was injected into Xenopus oocytes without or with additional injection of cRNA encoding wild type GSK3ß or the inactive mutant K85AGSK3ß. Dual electrode voltage clamp was performed in order to determine glutamate-induced current (IEAAT). RESULTS: Appreciable IEAAT was observed in EAAT3 or EAAT4 expressing but not in water injected oocytes. IEAAT was significantly increased by coexpression of GSK3ß but not by coexpression of K85AGSK3ß. Coexpression of GSK3ß increased significantly the maximal IEAAT in EAAT3 or EAAT4 expressing oocytes, without significantly modifying apparent affinity of the carriers. Lithium (1 mM) exposure for 24 hours decreased IEAAT in EAAT3 and GSK3ß expressing oocytes to values similar to IEAAT in oocytes expressing EAAT3 alone. Lithium did not significantly modify IEAAT in oocytes expressing EAAT3 without GSK3ß. CONCLUSIONS: Lithium-sensitive GSK3ß is a powerful regulator of excitatory amino acid transporters EAAT3 and EAAT4.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/metabolismo , Transportador 4 de Aminoácidos Excitadores/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Litio/farmacología , Regulación hacia Arriba/efectos de los fármacos , Animales , Transporte Biológico/efectos de los fármacos , Ácido Glutámico/metabolismo , Humanos , Proteínas Mutantes/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Xenopus laevis
6.
J Membr Biol ; 249(3): 239-49, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26690923

RESUMEN

Excitatory amino acid transporters EAAT1 (SLC1A3), EAAT2 (SLC1A2), EAAT3 (SLC1A1), and EAAT4 (SLC1A6) serve to clear L-glutamate from the synaptic cleft and are thus important for the limitation of neuronal excitation. EAAT3 has previously been shown to form complexes with caveolin-1, a major component of caveolae, which participate in the regulation of transport proteins. The present study explored the impact of caveolin-1 on electrogenic transport by excitatory amino acid transporter isoforms EAAT1-4. To this end cRNA encoding EAAT1, EAAT2, EAAT3, or EAAT4 was injected into Xenopus oocytes without or with additional injection of cRNA encoding caveolin-1. The L-glutamate (2 mM)-induced inward current (I Glu) was taken as a measure of glutamate transport. As a result, I Glu was observed in EAAT1-, EAAT2-, EAAT3-, or EAAT4-expressing oocytes but not in water-injected oocytes, and was significantly decreased by coexpression of caveolin-1. Caveolin-1 decreased significantly the maximal transport rate. Treatment of EAATs-expressing oocytes with brefeldin A (5 µM) was followed by a decrease in conductance, which was similar in oocytes expressing EAAT together with caveolin-1 as in oocytes expressing EAAT1-4 alone. Thus, caveolin-1 apparently does not accelerate transporter protein retrieval from the cell membrane. In conclusion, caveolin-1 is a powerful negative regulator of the excitatory glutamate transporters EAAT1, EAAT2, EAAT3, and EAAT4.


Asunto(s)
Caveolina 1/metabolismo , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 3 de Aminoácidos Excitadores/metabolismo , Transportador 4 de Aminoácidos Excitadores/metabolismo , Animales , Transporte Biológico , Caveolina 1/genética , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 3 de Aminoácidos Excitadores/genética , Transportador 4 de Aminoácidos Excitadores/genética , Expresión Génica , Ácido Glutámico/metabolismo , Humanos , Oocitos/metabolismo , Xenopus laevis
7.
Cerebellum ; 15(3): 314-21, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26194056

RESUMEN

Excitatory amino acid transporter 4 (EAAT4) is believed to be critical to the synaptic activity of cerebellar Purkinje cells by limiting extracellular glutamate concentrations and facilitating the induction of long-term depression. However, the modulation of EAAT4 expression has not been elucidated. It has been shown that Ras homolog enriched in brain (Rheb)/mammalian target of rapamycin (mTOR) signaling plays essential roles in the regulation of protein translation, cell size, and cell growth. In addition, we previously found that a cascade including mTOR suppression and Akt activation induces increased expression of EAAT2 in astrocytes. In the present work, we explored whether Rheb/mTOR signaling is involved in the regulation of EAAT4 expression using conditional Rheb1 knockout mice. Our results demonstrated that Rheb1 deficiency resulted in the downregulation of EAAT4 expression, as well as decreased activity of mTOR and increased activity of Akt. The downregulation of EAAT4 was also confirmed by reduced EAAT4 currents and slowed kinetics of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor-mediated currents. On the other hand, conditional knockout of Rheb1 did not alter the morphology of Purkinje cell layer and the number of Purkinje cells. Overall, our findings suggest that small GTPase Rheb1 is a modulator in the expression of EAAT4 in Purkinje cells.


Asunto(s)
Transportador 4 de Aminoácidos Excitadores/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Neuropéptidos/metabolismo , Células de Purkinje/metabolismo , Animales , Western Blotting , Femenino , Inmunohistoquímica , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Potenciales de la Membrana/fisiología , Ratones Noqueados , Proteínas de Unión al GTP Monoméricas/genética , Complejos Multiproteicos/metabolismo , Neuropéptidos/genética , Técnicas de Placa-Clamp , Células de Purkinje/citología , Proteína Homóloga de Ras Enriquecida en el Cerebro , Receptores AMPA , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de la Célula Individual , Serina-Treonina Quinasas TOR/metabolismo
8.
Epilepsia ; 57(6): 984-93, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27153812

RESUMEN

OBJECTIVE: Posttraumatic seizures (PTS) commonly occur following severe traumatic brain injury (sTBI). Risk factors for PTS have been identified, but variability in who develops PTS remains. Excitotoxicity may influence epileptogenesis following sTBI. Glutamate transporters manage glutamate levels and excitatory neurotransmission, and they have been associated with both epilepsy and TBI. Therefore, we aimed to determine if genetic variation in neuronal glutamate transporter genes is associated with accelerated epileptogenesis and increased PTS risk after sTBI. METHODS: Individuals (N = 253) 18-75 years of age with sTBI were assessed for genetic relationships with PTS. Single nucleotide polymorphisms (SNPs) within SLC1A1 and SLC1A6 were assayed. Kaplan-Meier estimates and log-rank statistics were used to compare seizure rates from injury to 3 years postinjury for SNPs by genotype. Hazard ratios (HRs) were estimated using Cox proportional hazards regression for SNPs significant in Kaplan-Meier analyses adjusting for known PTS risk factors. RESULTS: Thirty-two tagging SNPs were examined (SLC1A1: n = 28, SLC1A6: n = 4). Forty-nine subjects (19.37%) had PTS. Of these, 18 (36.7%) seized within 7 days, and 31 (63.3%) seized between 8 days and 3 years post-TBI. With correction for multiple comparisons, genotypes at SNP rs10974620 (SLC1A1) were significantly associated with time to first seizure across the full 3-year follow-up (seizure rates: 77.1% minor allele homozygotes, 24.8% heterozygotes, 16.6% major allele homozygotes; p = 0.001). When seizure follow-up began day 2 postinjury, genotypes at SNP rs7858819 (SLC1A1) were significantly associated with PTS risk (seizure rates: 52.7% minor allele homozygotes, 11.8% heterozygotes, 21.1% major allele homozygotes; p = 0.002). After adjusting for covariates, we found that rs10974620 remained significant (p = 0.017, minor allele versus major allele homozygotes HR 3.4, 95% confidence interval [CI] 1.3-9.3). rs7858819 also remained significant in adjusted models (p = 0.023, minor allele versus major allele homozygotes HR 3.4, 95%CI 1.1-10.5). SIGNIFICANCE: Variations within SLC1A1 are associated with risk of epileptogenesis following sTBI. Future studies need to confirm findings, but variation within neuronal glutamate transporter genes may represent a possible pharmaceutical target for PTS prevention and treatment.


Asunto(s)
Epilepsia Postraumática/genética , Transportador 3 de Aminoácidos Excitadores/genética , Transportador 4 de Aminoácidos Excitadores/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Adolescente , Adulto , Anciano , Femenino , Estudios de Seguimiento , Estudios de Asociación Genética , Genotipo , Escala de Coma de Glasgow , Humanos , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Modelos de Riesgos Proporcionales , Estadísticas no Paramétricas , Adulto Joven
9.
Nat Genet ; 38(2): 184-90, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16429157

RESUMEN

We have discovered that beta-III spectrin (SPTBN2) mutations cause spinocerebellar ataxia type 5 (SCA5) in an 11-generation American kindred descended from President Lincoln's grandparents and two additional families. Two families have separate in-frame deletions of 39 and 15 bp, and a third family has a mutation in the actin/ARP1 binding region. Beta-III spectrin is highly expressed in Purkinje cells and has been shown to stabilize the glutamate transporter EAAT4 at the surface of the plasma membrane. We found marked differences in EAAT4 and GluRdelta2 by protein blot and cell fractionation in SCA5 autopsy tissue. Cell culture studies demonstrate that wild-type but not mutant beta-III spectrin stabilizes EAAT4 at the plasma membrane. Spectrin mutations are a previously unknown cause of ataxia and neurodegenerative disease that affect membrane proteins involved in glutamate signaling.


Asunto(s)
Proteínas del Citoesqueleto/genética , Proteínas del Tejido Nervioso/genética , Ataxias Espinocerebelosas/clasificación , Ataxias Espinocerebelosas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Estudios de Casos y Controles , Línea Celular , Cerebelo/patología , Niño , Mapeo Cromosómico , Proteínas del Citoesqueleto/química , Transportador 4 de Aminoácidos Excitadores/metabolismo , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Linaje , Espectrina
10.
J Neurosci ; 33(3): 1068-87, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23325245

RESUMEN

In the present study, the mechanism of action and molecular basis for the activity of the first class of selective inhibitors of the human excitatory amino acid transporter subtype 1 (EAAT1) and its rodent ortholog GLAST are elucidated. The previously reported specificity of UCPH-101 and UCPH-102 for EAAT1 over EAAT2 and EAAT3 is demonstrated to extend to the EAAT4 and EAAT5 subtypes as well. Interestingly, brief exposure to UCPH-101 induces a long-lasting inactive state of EAAT1, whereas the inhibition exerted by closely related analogs is substantially more reversible in nature. In agreement with this, the kinetic properties of UCPH-101 unblocking of the transporter are considerably slower than those of UCPH-102. UCPH-101 exhibits noncompetitive inhibition of EAAT1, and its binding site in GLAST has been delineated in an elaborate mutagenesis study. Substitutions of several residues in TM3, TM4c, and TM7a of GLAST have detrimental effects on the inhibitory potency and/or efficacy of UCPH-101 while not affecting the pharmacological properties of (S)-glutamate or the competitive EAAT inhibitor TBOA significantly. Hence, UCPH-101 is proposed to target a predominantly hydrophobic crevice in the "trimerization domain" of the GLAST monomer, and the inhibitor is demonstrated to inhibit the uptake through the monomer that it binds to exclusively and not to affect substrate translocation through the other monomers in the GLAST trimer. The allosteric mode of UCPH-101 inhibition underlines the functional importance of the trimerization domain of the EAAT and demonstrates the feasibility of modulating transporter function through ligand binding to regions distant from its "transport domain."


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Benzopiranos/farmacología , Transportador 1 de Aminoácidos Excitadores/antagonistas & inhibidores , Animales , Transporte Biológico/fisiología , Células Cultivadas , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 3 de Aminoácidos Excitadores/genética , Transportador 3 de Aminoácidos Excitadores/metabolismo , Transportador 4 de Aminoácidos Excitadores/genética , Transportador 4 de Aminoácidos Excitadores/metabolismo , Humanos , Ratas
12.
J Neurosci ; 32(5): 1528-35, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22302796

RESUMEN

In the CNS, excitatory amino acid transporters (EAATs) localized to neurons and glia terminate the actions of synaptically released glutamate. Whereas glial transporters are primarily responsible for maintaining low ambient levels of extracellular glutamate, neuronal transporters have additional roles in shaping excitatory synaptic transmission. Here we test the hypothesis that the expression level of the Purkinje cell (PC)-specific transporter, EAAT4, near parallel fiber (PF) release sites controls the extrasynaptic glutamate concentration transient following synaptic stimulation. Expression of EAAT4 follows a parasagittal banding pattern that allows us to compare regions of high and low EAAT4-expressing PCs. Using EAAT4 promoter-driven eGFP reporter mice together with pharmacology and genetic deletion, we show that the level of neuronal transporter expression influences extrasynaptic transmission from PFs to adjacent Bergmann glia (BG). Surprisingly, a twofold difference in functional EAAT4 levels is sufficient to alter signaling to BG, although EAAT4 may only be responsible for removing a fraction of released glutamate. These results demonstrate that physiological regulation of neuronal transporter expression can alter extrasynaptic neuroglial signaling.


Asunto(s)
Transportador 4 de Aminoácidos Excitadores/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Sistema de Transporte de Aminoácidos X-AG/fisiología , Animales , Animales Recién Nacidos , Cerebelo/efectos de los fármacos , Cerebelo/fisiología , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Transducción de Señal/fisiología , Transmisión Sináptica/efectos de los fármacos
13.
Proc Natl Acad Sci U S A ; 107(13): 6022-7, 2010 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-20231455

RESUMEN

The spectrin membrane skeleton controls the disposition of selected membrane channels, receptors, and transporters. In the brain betaIII spectrin binds directly to the excitatory amino acid transporter (EAAT4), the glutamate receptor delta, and other proteins. Mutations in betaIII spectrin link strongly to human spinocerebellar ataxia type 5 (SCA5), correlating with alterations in EAAT4. We have explored the mechanistic basis of this phenotype by targeted gene disruption of Spnb3. Mice lacking intact betaIII spectrin develop normally. By 6 months they display a mild nonprogressive ataxia. By 1 year most Spnb3(-/-) animals develop a myoclonic seizure disorder with significant reductions of EAAT4, EAAT1, GluRdelta, IP3R, and NCAM140. Other synaptic proteins are normal. The cerebellum displays increased dark Purkinje cells (PC), a thin molecular layer, fewer synapses, a loss of dendritic spines, and a 2-fold expansion of the PC dendrite diameter. Membrane and expanded Golgi profiles fill the PC dendrite and soma, and both regions accumulate EAAT4. Correlating with the seizure disorder are enhanced hippocampal levels of neuropeptide Y and EAAT3 and increased calpain proteolysis of alphaII spectrin. It appears that betaIII spectrin disruption impairs synaptogenesis by disturbing the intracellular pathways selectively regulating protein trafficking to the synapse. The mislocalization of these proteins secondarily disrupts glutamate transport dynamics, leading to seizures, neuronal damage, and compensatory changes in EAAT3 and neuropeptide Y.


Asunto(s)
Ataxia/etiología , Convulsiones/etiología , Espectrina/deficiencia , Animales , Ataxia/genética , Ataxia/fisiopatología , Secuencia de Bases , Encéfalo/metabolismo , Encéfalo/fisiopatología , Encéfalo/ultraestructura , Cartilla de ADN/genética , Modelos Animales de Enfermedad , Transportador 4 de Aminoácidos Excitadores/metabolismo , Femenino , Marcación de Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Degeneración Nerviosa/genética , Degeneración Nerviosa/fisiopatología , Fenotipo , Convulsiones/genética , Convulsiones/fisiopatología , Espectrina/genética , Espectrina/fisiología , Ataxias Espinocerebelosas/etiología , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/fisiopatología , Sinapsis/fisiología , Sinapsis/ultraestructura
14.
J Neurosci ; 31(46): 16581-90, 2011 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-22090485

RESUMEN

Mutations in the gene encoding ß-III spectrin give rise to spinocerebellar ataxia type 5, a neurodegenerative disease characterized by progressive thinning of the molecular layer, loss of Purkinje cells and increasing motor deficits. A mouse lacking full-length ß-III spectrin (ß-III⁻/⁻) displays a similar phenotype. In vitro and in vivo analyses of Purkinje cells lacking ß-III spectrin, reveal a critical role for ß-III spectrin in Purkinje cell morphological development. Disruption of the normally well ordered dendritic arborization occurs in Purkinje cells from ß-III⁻/⁻ mice, specifically showing a loss of monoplanar organization, smaller average dendritic diameter and reduced densities of Purkinje cell spines and synapses. Early morphological defects appear to affect distribution of dendritic, but not axonal, proteins. This study confirms that thinning of the molecular layer associated with disease pathogenesis is a consequence of Purkinje cell dendritic degeneration, as Purkinje cells from 8-month-old ß-III⁻/⁻ mice have drastically reduced dendritic volumes, surface areas and total dendritic lengths compared with 5- to 6-week-old ß-III⁻/⁻ mice. These findings highlight a critical role of ß-III spectrin in dendritic biology and are consistent with an early developmental defect in ß-III⁻/⁻ mice, with abnormal Purkinje cell dendritic morphology potentially underlying disease pathogenesis.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Dendritas/ultraestructura , Espinas Dendríticas/metabolismo , Células de Purkinje/citología , Espectrina/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Calbindinas , Transportador 4 de Aminoácidos Excitadores/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Transportador de Glucosa de Tipo 2/metabolismo , Técnicas In Vitro , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/genética , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Canal de Sodio Activado por Voltaje NAV1.6 , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Proteínas de Transporte de Fosfato/metabolismo , Proteína G de Unión al Calcio S100/metabolismo , Tinción con Nitrato de Plata/métodos , Canales de Sodio/metabolismo , Espectrina/deficiencia , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
15.
J Biol Chem ; 286(27): 23780-8, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21572047

RESUMEN

EAAT glutamate transporters do not only function as secondary-active glutamate transporters but also as anion channels. EAAT anion channel activity depends on transport substrates. For most isoforms, it is negligible without external Na(+) and increased by external glutamate. We here investigated gating of EAAT4 anion channels with various cations and amino acid substrates using patch clamp experiments on a mammalian cell line. We demonstrate that Li(+) can substitute for Na(+) in supporting substrate-activated anion currents, albeit with changed voltage dependence. Anion currents were recorded in glutamate, aspartate, and cysteine, and distinct time and voltage dependences were observed. For each substrate, gating was different in external Na(+) or Li(+). All features of voltage-dependent and substrate-specific anion channel gating can be described by a simplified nine-state model of the transport cycle in which only amino acid substrate-bound states assume high anion channel open probabilities. The kinetic scheme suggests that the substrate dependence of channel gating is exclusively caused by differences in substrate association and translocation. Moreover, the voltage dependence of anion channel gating arises predominantly from electrogenic cation binding and membrane translocation of the transporter. We conclude that all voltage- and substrate-dependent conformational changes of the EAAT4 anion channel are linked to transitions within the transport cycle.


Asunto(s)
Transportador 4 de Aminoácidos Excitadores/metabolismo , Activación del Canal Iónico/fisiología , Litio/metabolismo , Sodio/metabolismo , Animales , Transportador 4 de Aminoácidos Excitadores/genética , Células HEK293 , Humanos , Transporte Iónico/fisiología , Conformación Proteica , Ratas
16.
J Biol Chem ; 286(5): 3935-43, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21127051

RESUMEN

Excitatory amino acid transporters (EAATs) mediate the uptake of glutamate into neuronal and glial cells of the mammalian central nervous system. Two transporters expressed primarily in glia, EAAT1 and EAAT2, are crucial for glutamate homeostasis in the adult mammalian brain. Three neuronal transporters (EAAT3, EAAT4, and EAAT5) appear to have additional functions in regulating and processing cellular excitability. EAATs are assembled as trimers, and the existence of multiple isoforms raises the question of whether certain isoforms can form hetero-oligomers. Co-expression and pulldown experiments of various glutamate transporters showed that EAAT3 and EAAT4, but neither EAAT1 and EAAT2, nor EAAT2 and EAAT3 are capable of co-assembling into heterotrimers. To study the functional consequences of hetero-oligomerization, we co-expressed EAAT3 and the serine-dependent mutant R501C EAAT4 in HEK293 cells and Xenopus laevis oocytes and studied glutamate/serine transport and anion conduction using electrophysiological methods. Individual subunits transport glutamate independently of each other. Apparent substrate affinities are not affected by hetero-oligomerization. However, polarized localization in Madin-Darby canine kidney cells was different for homo- and hetero-oligomers. EAAT3 inserts exclusively into apical membranes of Madin-Darby canine kidney cells when expressed alone. Co-expression with EAAT4 results in additional appearance of basolateral EAAT3. Our results demonstrate the existence of heterotrimeric glutamate transporters and provide novel information about the physiological impact of EAAT oligomerization.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/metabolismo , Transportador 4 de Aminoácidos Excitadores/metabolismo , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Neuronas/metabolismo , Multimerización de Proteína , Animales , Transporte Biológico , Línea Celular , Fenómenos Electrofisiológicos , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 3 de Aminoácidos Excitadores/genética , Transportador 4 de Aminoácidos Excitadores/genética , Transportador 5 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Humanos , Mutación Missense , Neuroglía/metabolismo , Isoformas de Proteínas , Ratas , Especificidad por Sustrato , Transfección
17.
Toxicol Appl Pharmacol ; 262(3): 355-62, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22659509

RESUMEN

Recently, our laboratory reported that exposure to nanoparticle-rich diesel exhaust (NRDE) for 3 months impaired hippocampus-dependent spatial learning ability and up-regulated the expressions of memory function-related genes in the hippocampus of female mice. However, whether NRDE affects the hippocampus-dependent non-spatial learning ability and the mechanism of NRDE-induced neurotoxicity was unknown. Female BALB/c mice were exposed to clean air, middle-dose NRDE (M-NRDE, 47 µg/m(3)), high-dose NRDE (H-NRDE, 129 µg/m(3)), or filtered H-NRDE (F-DE) for 3 months. We then investigated the effect of NRDE exposure on non-spatial learning ability and the expression of genes related to glutamate neurotransmission using a novel object recognition test and a real-time RT-PCR analysis, respectively. We also examined microglia marker Iba1 immunoreactivity in the hippocampus using immunohistochemical analyses. Mice exposed to H-NRDE or F-DE could not discriminate between familiar and novel objects. The control and M-NRDE-exposed groups showed a significantly increased discrimination index, compared to the H-NRDE-exposed group. Although no significant changes in the expression levels of the NMDA receptor subunits were observed, the expression of glutamate transporter EAAT4 was decreased and that of glutamic acid decarboxylase GAD65 was increased in the hippocampus of H-NRDE-exposed mice, compared with the expression levels in control mice. We also found that microglia activation was prominent in the hippocampal area of the H-NRDE-exposed mice, compared with the other groups. These results indicated that exposure to NRDE for 3 months impaired the novel object recognition ability. The present study suggests that genes related to glutamate metabolism may be involved in the NRDE-induced neurotoxicity observed in the present mouse model.


Asunto(s)
Nanopartículas/toxicidad , Reconocimiento en Psicología/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Transportador 4 de Aminoácidos Excitadores/análisis , Femenino , Expresión Génica/efectos de los fármacos , Glutamato Descarboxilasa/análisis , Hipocampo/química , Hipocampo/efectos de los fármacos , Exposición por Inhalación/efectos adversos , Aprendizaje/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
J Neurosci ; 30(21): 7290-9, 2010 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-20505095

RESUMEN

Purkinje cells in the mammalian cerebellum are remarkably homogeneous in shape and orientation, yet they exhibit regional differences in gene expression. Purkinje cells that express high levels of zebrin II (aldolase C) and the glutamate transporter EAAT4 cluster in parasagittal zones that receive input from distinct groups of climbing fibers (CFs); however, the physiological properties of CFs that target these molecularly distinct Purkinje cells have not been determined. Here we report that CFs that innervate Purkinje cells in zebrin II-immunoreactive (Z(+)) zones release more glutamate per action potential than CFs in Z(-) zones. CF terminals in Z(+) zones had larger pools of release-ready vesicles, exhibited enhanced multivesicular release, and produced larger synaptic glutamate transients. As a result, CF-mediated EPSCs in Purkinje cells decayed more slowly in Z(+) zones, which triggered longer-duration complex spikes containing a greater number of spikelets. The differences in the duration of CF EPSCs between Z(+) and Z(-) zones persisted in EAAT4 knock-out mice, indicating that EAAT4 is not required for maintaining this aspect of CF function. These results indicate that the organization of the cerebellum into discrete longitudinal zones is defined not only by molecular phenotype of Purkinje cells within zones, but also by the physiological properties of CFs that project to these distinct regions. The enhanced release of glutamate from CFs in Z(+) zones may alter the threshold for synaptic plasticity and prolong inhibition of cerebellar output neurons in deep cerebellar nuclei.


Asunto(s)
Cerebelo/citología , Ácido Glutámico/metabolismo , Fibras Nerviosas/metabolismo , Células de Purkinje/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Ácido Aspártico/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Transportador 4 de Aminoácidos Excitadores/genética , Antagonistas del GABA/farmacología , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Células de Purkinje/efectos de los fármacos , Piridazinas/farmacología , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Zinc/farmacología
19.
J Biol Chem ; 285(31): 23676-86, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20519505

RESUMEN

Excitatory amino acid transporter (EAAT) glutamate transporters function not only as secondary active glutamate transporters but also as anion channels. Recently, a conserved aspartic acid (Asp(112)) within the intracellular loop near to the end of transmembrane domain 2 was proposed as a major determinant of substrate-dependent gating of the anion channel associated with the glial glutamate transporter EAAT1. We studied the corresponding mutation (D117A) in another EAAT isoform, EAAT4, using heterologous expression in mammalian cells, whole cell patch clamp, and noise analysis. In EAAT4, D117A modifies unitary conductances, relative anion permeabilities, as well as gating of associated anion channels. EAAT4 anion channel gating is characterized by two voltage-dependent gating processes with inverse voltage dependence. In wild type EAAT4, external l-glutamate modifies the voltage dependence as well as the minimum open probabilities of both gates, resulting in concentration-dependent changes of the number of open channels. Not only transport substrates but also anions affect wild type EAAT4 channel gating. External anions increase the open probability and slow down relaxation constants of one gating process that is activated by depolarization. D117A abolishes the anion and glutamate dependence of EAAT4 anion currents and shifts the voltage dependence of EAAT4 anion channel activation by more than 200 mV to more positive potentials. D117A is the first reported mutation that changes the unitary conductance of an EAAT anion channel. The finding that mutating a pore-forming residue modifies gating illustrates the close linkage between pore conformation and voltage- and substrate-dependent gating in EAAT4 anion channels.


Asunto(s)
Ácido Aspártico/química , Transportador 4 de Aminoácidos Excitadores/química , Aniones/química , Biofisica/métodos , Membrana Celular/metabolismo , Relación Dosis-Respuesta a Droga , Electrofisiología/métodos , Ácido Glutámico/química , Humanos , Cinética , Neurotransmisores/metabolismo , Técnicas de Placa-Clamp , Permeabilidad , Isoformas de Proteínas , Estructura Terciaria de Proteína
20.
Cell Physiol Biochem ; 28(4): 693-702, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22178881

RESUMEN

The Janus-activated kinase-2 JAK2 is involved in the signaling of leptin and erythropoietin receptors and mediates neuroprotective effects of the hormones. In theory, JAK2 could be effective through modulation of the glutamate transporters, carriers accounting for the clearance of glutamate released during neurotransmission. The present study thus elucidated the effect of JAK2 on the glutamate transporters EAAT1, EAAT2, EAAT3 and EAAT4. To this end, cRNA encoding the carriers was injected into Xenopus oocytes with or without cRNA encoding JAK2 and glutamate transport was estimated from glutamate induced current (I(glu)). I(glu) was observed in Xenopus oocytes expressing EAAT1 or EAAT2 or EAAT3 or EAAT4, but not in water injected oocytes. Coexpression of JAK2 resulted in an increase of I(glu) by 83% (EAAT1), 67% (EAAT2), 42% (EAAT3) and 126% (EAAT4). As shown for EAAT4 expressing Xenopus oocytes, the effect of JAK2 was mimicked by gain of function mutation (V617F)JAK2 but not by the inactive mutant (K882E)JAK2. Incubation with JAK2 inhibitor AG490 (40 µM) resulted in a gradual decrease of I(glu) by 53%, 79% and 92% within 3, 6 and 24 hours. Confocal microscopy and chemiluminescence analysis revealed that JAK2 coexpression increased EAAT4 protein abundance in the cell membrane. Disruption of transcription did not appreciably modify the up-regulation of I(glu) in EAAT4 expressing oocytes. The decay of I(glu) following inhibition of carrier insertion with brefeldin A was similar in oocytes expressing EAAT4 + JAK2 and oocytes expressing EAAT4 alone, indicating that JAK2 did not appreciably affect carrier retrieval from the membrane. In conclusion, JAK2 is a novel powerful regulator of glutamate transporters and thus participates in the protection against excitotoxicity.


Asunto(s)
Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Janus Quinasa 2/metabolismo , Sustitución de Aminoácidos , Animales , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 3 de Aminoácidos Excitadores/metabolismo , Transportador 4 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Humanos , Janus Quinasa 2/genética , Oocitos/metabolismo , Técnicas de Placa-Clamp , Regulación hacia Arriba , Xenopus laevis/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda