Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Cell Sci ; 136(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37132654

RESUMO

Collective cell migration is the coordinated movement of multiple cells connected by cadherin-based adherens junctions and is essential for physiological and pathological processes. Cadherins undergo dynamic intracellular trafficking, and their surface level is determined by a balance between endocytosis, recycling and degradation. However, the regulatory mechanism of cadherin turnover in collective cell migration remains elusive. In this study, we show that the Bin/amphiphysin/Rvs (BAR) domain protein pacsin 2 (protein kinase C and casein kinase substrate in neurons protein 2) plays an essential role in collective cell migration by regulating N-cadherin (also known as CDH2) endocytosis in human cancer cells. Pacsin 2-depleted cells formed cell-cell contacts enriched with N-cadherin and migrated in a directed manner. Furthermore, pacsin 2-depleted cells showed attenuated internalization of N-cadherin from the cell surface. Interestingly, GST pull-down assays demonstrated that the pacsin 2 SH3 domain binds to the cytoplasmic region of N-cadherin, and expression of an N-cadherin mutant defective in binding to pacsin 2 phenocopied pacsin 2 RNAi cells both in cell contact formation and N-cadherin endocytosis. These data support new insights into a novel endocytic route of N-cadherin in collective cell migration, highlighting pacsin 2 as a possible therapeutic target for cancer metastasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Caderinas , Neoplasias , Humanos , Junções Aderentes/metabolismo , Caderinas/genética , Caderinas/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Endocitose/fisiologia , Neoplasias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Genes Cells ; 29(1): 17-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984375

RESUMO

Irgb6 is a priming immune-related GTPase (IRG) that counteracts Toxoplasma gondii. It is known to be recruited to the low virulent type II T. gondii parasitophorous vacuole (PV), initiating cell-autonomous immunity. However, the molecular mechanism by which immunity-related GTPases become inactivated after the parasite infection remains obscure. Here, we found that Thr95 of Irgb6 is prominently phosphorylated in response to low virulent type II T. gondii infection. We observed that a phosphomimetic T95D mutation in Irgb6 impaired its localization to the PV and exhibited reduced GTPase activity in vitro. Structural analysis unveiled an atypical conformation of nucleotide-free Irgb6-T95D, resulting from a conformational change in the G-domain that allosterically modified the PV membrane-binding interface. In silico docking corroborated the disruption of the physiological membrane binding site. These findings provide novel insights into a T. gondii-induced allosteric inactivation mechanism of Irgb6.


Assuntos
Toxoplasma , Toxoplasma/metabolismo , Fosforilação , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Vacúolos/metabolismo
3.
Cancer Sci ; 115(6): 1866-1880, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38494600

RESUMO

Bromodomain and extraterminal domain (BET) family proteins are epigenetic master regulators of gene expression via recognition of acetylated histones and recruitment of transcription factors and co-activators to chromatin. Hence, BET family proteins have emerged as promising therapeutic targets in cancer. In this study, we examined the functional role of bromodomain containing 3 (BRD3), a BET family protein, in colorectal cancer (CRC). In vitro and vivo analyses using BRD3-knockdown or BRD3-overexpressing CRC cells showed that BRD3 suppressed tumor growth and cell cycle G1/S transition and induced p21 expression. Clinical analysis of CRC datasets from our hospital or The Cancer Genome Atlas revealed that BET family genes, including BRD3, were overexpressed in tumor tissues. In immunohistochemical analyses, BRD3 was observed mainly in the nucleus of CRC cells. According to single-cell RNA sequencing in untreated CRC tissues, BRD3 was highly expressed in malignant epithelial cells, and cell cycle checkpoint-related pathways were enriched in the epithelial cells with high BRD3 expression. Spatial transcriptomic and single-cell RNA sequencing analyses of CRC tissues showed that BRD3 expression was positively associated with high p21 expression. Furthermore, overexpression of BRD3 combined with knockdown of, a driver gene in the BRD family, showed strong inhibition of CRC cells in vitro. In conclusion, we demonstrated a novel tumor suppressive role of BRD3 that inhibits tumor growth by cell cycle inhibition in part via induction of p21 expression. BRD3 activation might be a novel therapeutic approach for CRC.


Assuntos
Neoplasias Colorretais , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proliferação de Células/genética , Feminino , Masculino , Proteínas que Contêm Bromodomínio
4.
Hum Mutat ; 43(2): 169-179, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34837441

RESUMO

A centronuclear myopathy (CNM) is a group of inherited congenital diseases showing clinically progressive muscle weakness associated with the presence of centralized myonuclei, diagnosed by genetic testing and muscle biopsy. The gene encoding dynamin 2, DNM2, has been identified as a causative gene for an autosomal dominant form of CNM. However, the information of a DNM2 variant alone is not always sufficient to gain a definitive diagnosis as the pathogenicity of many gene variants is currently unknown. In this study, we identified five novel DNM2 variants in our cohort. To establish the pathogenicity of these variants without using clinicopathological information, we used a simple in cellulo imaging-based assay for T-tubule-like structures to provide quantitative data that enable objective determination of pathogenicity by novel DNM2 variants. With this assay, we demonstrated that the phenotypes induced by mutant dynamin 2 in cellulo are well correlated with biochemical gain-of-function features of mutant dynamin 2 as well as the clinicopathological phenotypes of each patient. Our approach of combining an in cellulo assay with clinical information of the patients also explains the course of a disease progression by the pathogenesis of each variant in DNM2-associated CNM.


Assuntos
Dinamina II , Miopatias Congênitas Estruturais , Dinamina II/genética , Humanos , Músculo Esquelético/patologia , Mutação , Miopatias Congênitas Estruturais/genética , Virulência
5.
J Biol Chem ; 296: 100077, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33187981

RESUMO

Membrane remodeling is required for dynamic cellular processes such as cell division, polarization, and motility. BAR domain proteins and dynamins are key molecules in membrane remodeling that work together for membrane deformation and fission. In striated muscles, sarcolemmal invaginations termed T-tubules are required for excitation-contraction coupling. BIN1 and DNM2, which encode a BAR domain protein BIN1 and dynamin 2, respectively, have been reported to be causative genes of centronuclear myopathy (CNM), a hereditary degenerative disease of skeletal muscle, and deformation of T-tubules is often observed in the CNM patients. However, it remains unclear how BIN1 and dynamin 2 are implicated in T-tubule biogenesis and how mutations in these molecules cause CNM to develop. Here, using an in cellulo reconstitution assay, we demonstrate that dynamin 2 is required for stabilization of membranous structures equivalent to T-tubules. GTPase activity of wild-type dynamin 2 is suppressed through interaction with BIN1, whereas that of the disease-associated mutant dynamin 2 remains active due to lack of the BIN1-mediated regulation, thus causing aberrant membrane remodeling. Finally, we show that in cellulo aberrant membrane remodeling by mutant dynamin 2 variants is correlated with their enhanced membrane fission activities, and the results can explain severity of the symptoms in patients. Thus, this study provides molecular insights into dysregulated membrane remodeling triggering the pathogenesis of DNM2-related CNM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dinamina II/metabolismo , Músculo Esquelético/metabolismo , Miopatias Congênitas Estruturais/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Western Blotting , Dinamina II/genética , Células HEK293 , Humanos , Imunoprecipitação , Microscopia de Fluorescência , Miopatias Congênitas Estruturais/genética , Nanotubos/química , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética
6.
Plant Physiol ; 186(1): 611-623, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33620496

RESUMO

Paddy fields are anaerobic and facilitate arsenite (As(III)) elution from the soil. Paddy-field rice accumulates arsenic (As) in its grains because silicate transporters actively assimilate As(III) during the reproductive stage. Reducing the As level in rice grains is an important challenge for agriculture. Using a forward genetic approach, we isolated a rice (Oryza sativa) mutant, low arsenic line 3 (las3), whose As levels were decreased in aerial tissues, including grains. The low-As phenotype was not observed in young plants before heading (emergence of the panicle). Genetic analyses revealed that a deficiency in alcohol dehydrogenase (ADH) 2 by mutation is responsible for the phenotype. Among the three rice ADH paralogues, ADH2 was the most efficiently produced in root tissue under anaerobic conditions. In wild-type (WT), silicon and As concentrations in aerial tissues increased with growth. However, the increase was suppressed in las3 during the reproductive stage. Accordingly, the gene expression of two silicate transporters, Lsi1 and Lsi2, was increased in WT around the time of heading, whereas the increase was suppressed in las3. These results indicate that the low-As phenotype in las3 is due to silicate transporter suppression. Measurement of intracellular pH by 31P-nuclear magnetic resonance revealed intracellular acidification of las3 roots under hypoxia, suggesting that silicate transporter suppression in las3 might arise from an intracellular pH decrease, which is known to be facilitated by a deficiency in ADH activity under anaerobic conditions. This study provides valuable insight into reducing As levels in rice grains.


Assuntos
Álcool Desidrogenase/genética , Arsênio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Silicatos/metabolismo , Álcool Desidrogenase/metabolismo , Oryza/enzimologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo
7.
J Exp Bot ; 73(18): 6475-6489, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35788288

RESUMO

Decreasing cadmium (Cd) concentrations in rice grains can effectively reduce potential risks to human health because rice is the major contributor to Cd intake in many diets. Among several genes involved in rice Cd accumulation, the loss of function of OsNRAMP5 is known to be effective in reducing grain concentration by inhibiting root uptake. However, disruption of this gene simultaneously decreases manganese (Mn) uptake because OsNRAMP5 is a major Mn transporter. With the aim of improving Mn uptake in OsNRAMP5 mutants while still restricting the grain Cd concentration below the upper limit of international standards, we identified a novel OsNRAMP5 allele encoding a protein in which glutamine (Q) at position 337 was replaced by lysine (K). The mutant carrying the OsNRAMP5-Q337K allele showed intermediate Cd and Mn accumulation between that of the wild-type and OsNRAMP5-knockout lines, and exhibited more resistance to Mn deficiency than the knockout lines. Different amino acid substitutions at position Q337 significantly affected the Cd and Mn transport activity in yeast cells, indicating that it is one of the crucial sites for OsNRAMP5 function. Our results suggest that the OsNRAMP5-Q337K allele might be useful for reducing grain Cd concentrations without causing severe Mn deficiency in rice cultivars through DNA marker-assisted breeding.


Assuntos
Cádmio , Oryza , Poluentes do Solo , Alelos , Cádmio/metabolismo , Grão Comestível/genética , Marcadores Genéticos , Glutamina , Lisina/metabolismo , Manganês/metabolismo , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poluentes do Solo/metabolismo
8.
Oncology ; 100(2): 101-113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34724663

RESUMO

INTRODUCTION: Fanconi anemia complementation group E (FANCE) is a Fanconi anemia (FA) pathway gene that regulates DNA repair. We evaluated the clinical relevance of FANCE expression in hepatocellular carcinoma (HCC). METHODS: First, the associations between the expression of FA pathway genes including FANCE and clinical outcomes in HCC patients were analyzed in 2 independent cohorts: The Cancer Genome Atlas (TCGA, n = 373) and our patient cohort (n = 53). Localization of FANCE expression in HCC tissues was observed by immunohistochemical staining. Gene set enrichment analysis (GSEA) and gene network analysis (SiGN_BN) were conducted using the TCGA dataset. Next, an in vitro proliferation assay was performed using FANCE-knockdown HCC cell lines (HuH7 and HepG2). The association between mRNA expression of FANCE and that of DNA damage response genes in HCC was analyzed using TCGA and Cancer Cell Line Encyclopedia datasets. Finally, the association between FANCE mRNA expression and overall survival (OS) in various digestive carcinomas was analyzed using TCGA data. RESULTS: FANCE was highly expressed in HCC cells. Multivariate analysis indicated that high FANCE mRNA expression was an independent factor predicting poor OS. GSEA revealed a positive relationship between enhanced FANCE expression and E2F and MYC target gene expression in HCC tissues. FANCE knockdown attenuated the proliferation of HCC cells, as well as reduced cdc25A expression and elevated histone H3 pSer10 expression. SiGN_BN revealed that FANCE mRNA expression was positively correlated with DNA damage response genes (H2A histone family member X and checkpoint kinase 1) in HCC tissues. Significant effects of high FANCE expression on OS were observed in hepatobiliary pancreatic carcinomas, including HCC. CONCLUSIONS: FANCE may provide a potential therapeutic target and biomarker of poor prognosis in HCC, possibly by facilitating tumor proliferation, which is mediated partly by cell cycle signaling activation.


Assuntos
Biomarcadores Tumorais/genética , Proteína do Grupo de Complementação E da Anemia de Fanconi/genética , Proteína do Grupo de Complementação E da Anemia de Fanconi/metabolismo , Regulação para Cima , Idoso , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Fatores de Transcrição E2F/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Proteínas Proto-Oncogênicas c-myc/genética , Análise de Sobrevida
9.
Plant Cell Physiol ; 62(5): 913-921, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33826734

RESUMO

Molybdenum (Mo) is an essential element for plant growth and is utilized by several key enzymes in biological redox processes. Rice assimilates molybdate ions via OsMOT1;1, a transporter with a high affinity for molybdate. However, other systems involved in the molecular transport of molybdate in rice remain unclear. Here, we characterized OsMOT1;2, which shares amino acid sequence similarity with AtMOT1;2 and functions in vacuolar molybdate export. We isolated a rice mutant harboring a complete deletion of OsMOT1;2. This mutant exhibited a significantly lower grain Mo concentration than the wild type (WT), but its growth was not inhibited. The Mo concentration in grains was restored by the introduction of WT OsMOT1;2. The OsMOT1;2-GFP protein was localized to the vacuolar membrane when transiently expressed in rice protoplasts. At the reproductive growth stage of the WT plant, OsMOT1;2 was highly expressed in the 2nd and lower leaf blades and nodes. The deletion of OsMOT1;2 impaired interorgan Mo allocation in aerial parts: relative to the WT, the mutant exhibited decreased Mo levels in the 1st and 2nd leaf blades and grains but increased Mo levels in the 2nd and lower leaf sheaths, nodes and internodes. When the seedlings were exposed to a solution with a high KNO3 concentration in the absence of Mo, the mutant exhibited significantly lower nitrate reductase activity in the shoots than the WT. Our results suggest that OsMOT1;2 plays an essential role in interorgan Mo distribution and molybdoenzyme activity in rice.


Assuntos
Proteínas de Transporte/metabolismo , Molibdênio/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Transporte Biológico , Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas , Molibdênio/farmacocinética , Mutação , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/metabolismo , Distribuição Tecidual
10.
FASEB J ; 34(12): 16449-16463, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33070431

RESUMO

Dynamin 1 is a neuronal endocytic protein that participates in vesicle formation by scission of invaginated membranes. Dynamin 1 is also expressed in the kidney; however, its physiological significance to this organ remains unknown. Here, we show that dynamin 1 is crucial for microtubule organization and stabilization in glomerular podocytes. By immunofluorescence and immunoelectron microscopy, dynamin 1 was concentrated at microtubules at primary processes in rat podocytes. By immunofluorescence of differentiated mouse podocytes (MPCs), dynamin 1 was often colocalized with microtubule bundles, which radially arranged toward periphery of expanded podocyte. In dynamin 1-depleted MPCs by RNAi, α-tubulin showed a dispersed linear filament-like localization, and microtubule bundles were rarely observed. Furthermore, dynamin 1 depletion resulted in the formation of discontinuous, short acetylated α-tubulin fragments, and the decrease of microtubule-rich protrusions. Dynamins 1 and 2 double-knockout podocytes showed dispersed acetylated α-tubulin and rare protrusions. In vitro, dynamin 1 polymerized around microtubules and cross-linked them into bundles, and increased their resistance to the disassembly-inducing reagents Ca2+ and podophyllotoxin. In addition, overexpression and depletion of dynamin 1 in MPCs increased and decreased the nocodazole resistance of microtubules, respectively. These results suggest that dynamin 1 supports the microtubule bundle formation and participates in the stabilization of microtubules.


Assuntos
Dinamina I/metabolismo , Rim/metabolismo , Microtúbulos/metabolismo , Podócitos/metabolismo , Animais , Células Cultivadas , Endocitose/fisiologia , Células Epiteliais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Ratos , Tubulina (Proteína)/metabolismo
11.
Cell Struct Funct ; 45(2): 121-130, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32581155

RESUMO

The activity of AMPA-type glutamate receptor is involved in insulin release from pancreatic ß-cells. However, the mechanism and dynamics that underlie AMPA receptor-mediated insulin release in ß-cells is largely unknown. Here, we show that AMPA induces internalization of glutamate receptor 2/3 (GluR2/3), AMPA receptor subtype, in the mouse ß-cell line MIN6. Immunofluorescence experiments showed that GluR2/3 appeared as fine dots that were distributed throughout MIN6 cells. Intracellular GluR2/3 co-localized with AP2 and clathrin, markers for clathrin-coated pits and vesicles. Immunoelectron microscopy revealed that GluR2/3 was also localized at plasma membrane. Surface biotinylation and immunofluorescence measurements showed that addition of AMPA caused an approximate 1.8-fold increase in GluR2/3 internalization under low-glucose conditions. Furthermore, internalized GluR2 largely co-localized with EEA1, an early endosome marker. In addition, GluR2/3 co-immunoprecipitated with cortactin, a F-actin binding protein. Depletion of cortactin by RNAi in MIN6 cells altered the intracellular distribution of GluR2/3, suggesting that cortactin is involved in internalization of GluR2/3 in MIN6 cells. Taken together, our results suggest that pancreatic ß-cells adjust the amount of AMPA-type GluR2/3 on the cell surface to regulate the receptive capability of the cell for glutamate.Key words: endocytosis, GluR2, AMPA, cortactin, MIN6.


Assuntos
Células Secretoras de Insulina/metabolismo , Receptores de AMPA/metabolismo , Linhagem Celular , Clatrina/genética , Clatrina/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Humanos , Receptores de AMPA/genética
12.
Biochem Biophys Res Commun ; 523(2): 548-553, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31932034

RESUMO

Phytochelatin synthases (PCSs) are activated by toxic metals/metalloids such as cadmium and arsenic and synthesize phytochelatins for detoxification of toxic elements. Rice (Oryza sativa L.) has two PCSs (OsPCS1 and OsPCS2), and we previously revealed that OsPCS1 has a higher responsiveness to arsenic than to cadmium, while OsPCS2 has a higher responsiveness to cadmium than to arsenic. Moreover, we found that the specific responsiveness of OsPCS1 to arsenic at rice nodes is a key factor in reducing arsenic in rice grains. However, the molecular characteristics of two PCSs in rice that contribute to the responsiveness to arsenic or heavy metals, including Cd, remain unclear. Here, we experimentally demonstrate that the C-terminal region in PCSs determines the responsiveness to arsenic or cadmium. We constructed chimeric proteins between OsPCS1 and OsPCS2 and performed an in vitro phytochelatin synthesis assay. A chimeric protein in which the 183 C-terminal amino acids of OsPCS2 were replaced with the 185 C-terminal amino acids of OsPCS1 showed higher responsiveness to arsenite than to cadmium, similar to OsPCS1. Contrary to expectations, mutations of cysteine residues that are unique to OsPCS1 or OsPCS2 had little influence on the responsiveness, although cysteine residues are reported to be representative of sites that interact with metals/metalloids. These results would enable the development of a breeding technology for reducing arsenic in rice grains by improving the arsenic-dependent activation of PCSs.


Assuntos
Aminoaciltransferases/metabolismo , Arsênio/toxicidade , Metais Pesados/toxicidade , Oryza/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Aminoaciltransferases/química , Aminoaciltransferases/genética , Cisteína/genética , Mutação , Oryza/metabolismo , Fitoquelatinas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Domínios Proteicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Plant J ; 91(5): 840-848, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28621830

RESUMO

Reduction of the level of arsenic (As) in rice grains is an important challenge for agriculture. A recent study reported that the OsABCC1 transporter prevents the accumulation of As in grains by sequestering As-phytochelatin complexes into vacuoles in the upper nodes. However, how phytochelatins are provided in response to As remains unclear. Here, we show that the phytochelatin synthase OsPCS1 plays a crucial role in reducing As levels in rice grains. Using a forward genetic approach, we isolated two rice mutants (has1 and has2) in which As levels were much higher in grains but significantly lower in node I compared with the wild type. Map-based cloning identified the genes responsible as OsABCC1 in has1 and OsPCS1 in has2. The levels of As in grains and node I were similar between the two mutants, suggesting that OsABCC1 preferentially cooperates with OsPCS1 to sequester As, although rice has another phytochelatin synthase, OsPCS2. An in vitro phytochelatin synthesis assay indicated that OsPCS1 was more sensitive to activation by As than by cadmium, whereas OsPCS2 was more weakly activated by As than by cadmium. Transgenic plants highly expressing OsPCS1 showed significantly lower As levels in grains than did wild-type plants. Our results provide new knowledge of the relative contribution of rice PCS paralogs to As sequestration and suggest a good candidate tool to reduce As levels in rice grains.


Assuntos
Aminoaciltransferases/metabolismo , Arsênio/metabolismo , Oryza/enzimologia , Fitoquelatinas/metabolismo , Sequência de Aminoácidos , Aminoaciltransferases/genética , Mutação , Oryza/genética , Oryza/fisiologia , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Vacúolos/metabolismo
14.
Surg Endosc ; 31(2): 981-986, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27369284

RESUMO

BACKGROUND: Advancement in both surgical technique and medical equipment has enabled solo surgery. ViKY® Endoscope Positioning System (ViKY®) is a robotic system that remotely controls an endoscope and provides direct vision control to the surgeon. Here, we report our experience with ViKY®-assisted solo surgery. METHODS: We retrospectively examined 25 cases of solo surgery TAPP with ViKY®. ViKY® was setup by the surgeon alone, and the setup duration was determined as the time at which the side rail was positioned and that when the endoscope was installed. For assessing the control unit, the number of false movements was counted. We compared the operative results between ViKY®-assisted solo surgery TAPP and the conventional method with an assistant. RESULTS: The average time to set up ViKY® was 7.9 min. The average number of commands for ViKY® during surgery was 98.3, and the average number of errors and no response of control unit was 7.9. The mean duration of surgery was 136 min for the ViKY® group, including the setup time, and 117 min for the conventional method. No case required an assistant during the operation. There was also no difference between the two groups with regard to postoperative complications and the rate of recurrence. CONCLUSIONS: ViKY® proved reliable in recognizing orders with very few failures, and the operations were performed safely and were comparable to the conventional operations with assistants. Solo surgery with ViKY® was beneficial in this clinical evaluation.


Assuntos
Hérnia Inguinal/cirurgia , Laparoscopia/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Minimamente Invasivos , Complicações Pós-Operatórias , Estudos Retrospectivos
15.
Biol Cell ; 107(9): 319-30, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26033110

RESUMO

BACKGROUND INFORMATION: Cortactin contributes to growth cone morphogenesis by forming with dynamin, ring-shaped complexes that mechanically bundle and stabilise F-actin. However, the regulatory mechanism of cortactin action is poorly understood. RESULTS: Immunofluorescence microscopy revealed that protein kinase C (PKC) α colocalises with cortactin at growth cone filopodia in SH-SY5Y neuroblastoma cells. PKC activation by phorbol 12-myristate 13-acetate causes cortactin phosphorylation, filopodial retraction and F-actin-bundle loss. Moreover, PKCα directly phosphorylates cortactin in vitro at S135/T145/S172, mitigating both cortactin's actin-binding and actin-crosslinking activity, whereas cellular expression of a phosphorylation-mimetic cortactin mutant hinders filopodial formation with a significant decrease of actin bundles. CONCLUSIONS: Our results indicate that PKC-mediated cortactin phosphorylation might be implicated in the maintenance of growth cone.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Cortactina/metabolismo , Cones de Crescimento/metabolismo , Proteína Quinase C-alfa/metabolismo , Linhagem Celular Tumoral , Humanos , Microscopia de Fluorescência , Fosforilação
16.
Pacing Clin Electrophysiol ; 39(4): 321-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27076040

RESUMO

BACKGROUND: Sleep-disordered breathing (SDB) is highly associated with arterial hypertension (HT). Sympathetic hypertonia increases the risk of sudden cardiac death in patients with sleep apnea. This study aims to noninvasively investigate the electrophysiological features in SDB patients with and without arterial HT. METHODS: Fifty-three patients with SDB were classified into two groups: SDB group and SDB + HT group. Twenty subjects with arterial HT were enrolled as controls (HT group). To assess arrhythmogenic vulnerability, high-resolution 24-hour ambulatory electrocardiograms were obtained for analyzing continuous late potential (LP), T-wave amplitude variability (TAV), and heart rate variability (HRV). RESULTS: A higher incidence of positive LP was observed in the SDB + HT (85%) group than that observed in the SDB (50%) and HT (20%) groups (P < 0.01). TAV was highest in the SDB + HT group (78 µV) compared with the SDB (61 µV) and HT groups (42 µV; P < 0.01). Positive LP and TAV values were observed at night in the SDB + HT and SDB groups. The low-frequency/high-frequency of the HRV analysis was highest in the SDB + HT (4.7) group compared with that in the SDB (2.9) and HT (2.9) groups (P = 0.01). CONCLUSION: Nocturnal LP, TAV, and HRV examinations were useful to investigate arrhythmogenesis. SDB patients with arterial HT showed a high prevalence of depolarization and repolarization abnormalities and relative sympathetic hyperactivity. This suggests that an electrophysiological instability is more prevalent in SDB patients with arterial HT.


Assuntos
Arritmias Cardíacas/epidemiologia , Eletrocardiografia Ambulatorial/estatística & dados numéricos , Hipertensão/epidemiologia , Síndromes da Apneia do Sono/epidemiologia , Arritmias Cardíacas/diagnóstico , Causalidade , Comorbidade , Feminino , Humanos , Hipertensão/diagnóstico , Incidência , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Polissonografia/estatística & dados numéricos , Prognóstico , Fatores de Risco , Síndromes da Apneia do Sono/diagnóstico
17.
Environ Microbiol ; 17(6): 1897-909, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25039305

RESUMO

Isolation and functional analysis of microbes mediating the methylation of arsenic (As) in paddy soils is important for understanding the origin of dimethylarsinic acid (DMA) in rice grains. Here, we isolated from the rice rhizosphere a unique bacterium responsible for As methylation. Strain GSRB54, which was isolated from the roots of rice plants grown in As-contaminated paddy soil under anaerobic conditions, was classified into the genus Streptomyces by 16S ribosomal RNA sequencing. Sequence analysis of the arsenite S-adenosylmethionine methyltransferase (arsM) gene revealed that GSRB54 arsM was phylogenetically different from known arsM genes in other bacteria. This strain produced DMA and monomethylarsonic acid when cultured in liquid medium containing arsenite [As(III)]. Heterologous expression of GSRB54 arsM in Escherichia coli promoted methylation of As(III) by converting it into DMA and trimethylarsine oxide. These results demonstrate that strain GSRB54 has a strong ability to methylate As. In addition, DMA was detected in the shoots of rice grown in liquid medium inoculated with GSRB54 and containing As(III). Since Streptomyces are generally aerobic bacteria, we speculate that strain GSRB54 inhabits the oxidative zone around roots of paddy rice and is associated with DMA accumulation in rice grains through As methylation in the rice rhizosphere.


Assuntos
Arsênio/metabolismo , Ácido Cacodílico/metabolismo , Oryza/microbiologia , Raízes de Plantas/microbiologia , Streptomyces/metabolismo , Sequência de Aminoácidos , Arsenicais/metabolismo , Arsenitos , Bactérias/genética , Sequência de Bases , Biotransformação , Metilação , Metiltransferases/genética , Dados de Sequência Molecular , Raízes de Plantas/metabolismo , RNA Ribossômico 16S/genética , Rizosfera , S-Adenosilmetionina/metabolismo , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo , Streptomyces/genética
18.
Pulm Pharmacol Ther ; 30: 96-101, 2015 02.
Artigo em Inglês | MEDLINE | ID: mdl-24721495

RESUMO

BACKGROUND: Theophylline is an old drug traditionally used as a bronchodilator, although it was recently shown to possess anti-inflammatory properties, enhance the actions of corticosteroid actions, and stimulate the respiratory neuronal network. Theophylline has been recognized as an important drug for not only asthma but also corticosteroid-insensitive chronic obstructive pulmonary disease (COPD). To clarify the role of theophylline in hypercapnic ventilatory responses in humans, we analyzed the effects of aminophylline administered at the usual clinical therapeutic doses on ventilation and augmentation of respiratory muscle contractility in room air and under 3 conditions of hypercapnia. STUDY DESIGN: We performed electromyography (EMG) of the parasternal intercostal muscle (PARA) and transversus abdominis muscle (TA) in 7 healthy subjects and recorded both ventilatory parameters and EMG data in room air and under 3 conditions of hypercapnia before (control) and during aminophylline administration. RESULTS: Before aminophylline administration (control), hypercapnic stimulation elicited ventilatory augmentation in a hypercapnia intensity-dependent manner. Ventilatory parameters (tidal volume, frequency of respiration, and minute ventilation) showed significant increases from lower PaCO2 levels during aminophylline administration when compared with the corresponding values before aminophylline administration. EMG activity of both PARA and TA increased significantly at each level of hypercapnia, and those augmentations were shown from lower PaCO2 levels during aminophylline administration. CONCLUSION: Aminophylline administered at the usual clinical therapeutic dose increases ventilation and EMG activity of both inspiratory and expiratory muscles during hypercapnia in healthy humans.


Assuntos
Aminofilina/farmacologia , Broncodilatadores/farmacologia , Hipercapnia/tratamento farmacológico , Músculos Respiratórios/efeitos dos fármacos , Dióxido de Carbono/metabolismo , Eletromiografia/métodos , Humanos , Hipercapnia/fisiopatologia , Músculos Intercostais/efeitos dos fármacos , Músculos Intercostais/metabolismo , Masculino , Contração Muscular/efeitos dos fármacos , Músculos Respiratórios/metabolismo , Volume de Ventilação Pulmonar , Adulto Jovem
19.
Proc Natl Acad Sci U S A ; 109(47): 19166-71, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23132948

RESUMO

Rice (Oryza sativa L.) grain is a major dietary source of cadmium (Cd), which is toxic to humans, but no practical technique exists to substantially reduce Cd contamination. Carbon ion-beam irradiation produced three rice mutants with <0.05 mg Cd⋅kg(-1) in the grain compared with a mean of 1.73 mg Cd⋅kg(-1) in the parent, Koshihikari. We identified the gene responsible for reduced Cd uptake and developed a strategy for marker-assisted selection of low-Cd cultivars. Sequence analysis revealed that these mutants have different mutations of the same gene (OsNRAMP5), which encodes a natural resistance-associated macrophage protein. Functional analysis revealed that the defective transporter protein encoded by the mutant osnramp5 greatly decreases Cd uptake by roots, resulting in decreased Cd in the straw and grain. In addition, we developed DNA markers to facilitate marker-assisted selection of cultivars carrying osnramp5. When grown in Cd-contaminated paddy fields, the mutants have nearly undetectable Cd in their grains and exhibit no agriculturally or economically adverse traits. Because mutants produced by ion-beam radiation are not transgenic plants, they are likely to be accepted by consumers and thus represent a practical choice for rice production worldwide.


Assuntos
Cruzamento , Cádmio/metabolismo , Carbono/química , Genes de Plantas/genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Agricultura , Sequência de Bases , Clonagem Molecular , Marcadores Genéticos , Humanos , Íons , Dados de Sequência Molecular , Mutação/genética , Cebolas/citologia , Cebolas/genética , Oryza/efeitos da radiação , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Transporte Proteico/efeitos da radiação , Característica Quantitativa Herdável , Sementes/metabolismo , Sementes/efeitos da radiação , Frações Subcelulares/metabolismo , Frações Subcelulares/efeitos da radiação , Transformação Genética
20.
J Neurosci ; 33(10): 4514-26, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23467367

RESUMO

Dynamin GTPase, a key molecule in endocytosis, mechanically severs the invaginated membrane upon GTP hydrolysis. Dynamin functions also in regulating actin cytoskeleton, but the mechanisms are yet to be defined. Here we show that dynamin 1, a neuronal isoform of dynamin, and cortactin form ring complexes, which twine around F-actin bundles and stabilize them. By negative-staining EM, dynamin 1-cortactin complexes appeared as "open" or "closed" rings depending on guanine nucleotide conditions. By pyrene actin assembly assay, dynamin 1 stimulated actin assembly in mouse brain cytosol. In vitro incubation of F-actin with both dynamin 1 and cortactin led to the formation of long and thick actin bundles, on which dynamin 1 and cortactin were periodically colocalized in puncta. A depolymerization assay revealed that dynamin 1 and cortactin increased the stability of actin bundles, most prominently in the presence of GTP. In rat cortical neurons and human neuroblastoma cell line, SH-SY5Y, both dynamin 1 and cortactin localized on actin filaments and the bundles at growth cone filopodia as revealed by immunoelectron microscopy. In SH-SY5Y cell, acute inhibition of dynamin 1 by application of dynamin inhibitor led to growth cone collapse. Cortactin knockdown also reduced growth cone filopodia. Together, our results strongly suggest that dynamin 1 and cortactin ring complex mechanically stabilizes F-actin bundles in growth cone filopodia. Thus, the GTPase-dependent mechanochemical enzyme property of dynamin is commonly used both in endocytosis and regulation of F-actin bundles by a dynamin 1-cortactin complex.


Assuntos
Actinas/metabolismo , Cortactina/metabolismo , Dinamina I/metabolismo , Cones de Crescimento/fisiologia , Neurônios/citologia , Pseudópodes/fisiologia , Trifosfato de Adenosina/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Anticorpos/farmacologia , Encéfalo/citologia , Células Cultivadas , Cortactina/genética , Cortactina/ultraestrutura , Citosol/metabolismo , Dinamina I/genética , Dinamina I/imunologia , Dinamina I/ultraestrutura , Feminino , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/ultraestrutura , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Humanos , Hidrazonas/farmacologia , Imunoprecipitação , Masculino , Camundongos , Microscopia Imunoeletrônica , Mutação/fisiologia , Neuroblastoma/patologia , Neurônios/ultraestrutura , Ligação Proteica/fisiologia , Pseudópodes/efeitos dos fármacos , Pseudópodes/ultraestrutura , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa