Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Appl Environ Microbiol ; 90(2): e0189223, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38289132

RESUMO

The growing concern arising from viruses with pandemic potential and multi-resistant bacteria responsible for hospital-acquired infections and outbreaks of food poisoning has led to an increased awareness of indirect contact transmission. This has resulted in a renewed interest to confer antimicrobial properties to commonly used metallic materials. The present work provides a full characterization of optimized fluoride anodic films grown in stainless steel 304L as well as their antimicrobial properties. Antibacterial tests show that the anodic film, composed mainly of chromium and iron fluorides, reduces the count and the percentage of the area covered by 50% and 87.7% for Pseudomonas aeruginosa and Stenotrophomonas maltophilia, respectively. Virologic tests show that the same treatment reduces the infectivity of the coronavirus HCoV-229E-GFP, in comparison with the non-anodized stainless steel 304L.IMPORTANCEThe importance of environmental surfaces as a source of infection is a topic of particular interest today, as many microorganisms can survive on these surfaces and infect humans through direct contact. Modification of these surfaces by anodizing has been shown to be useful for some alloys of medical interest. This work evaluates the effect of anodizing on stainless steel, a metal widely used in a variety of applications. According to the study, the fluoride anodic layers reduce the colonization of the surfaces by both bacteria and viruses, thus reducing the risk of acquiring infections from these sources.


Assuntos
Anti-Infecciosos , Fluoretos , Humanos , Fluoretos/farmacologia , Aço Inoxidável , Fômites , Bactérias , Anti-Infecciosos/farmacologia
2.
Antimicrob Agents Chemother ; 67(9): e0040223, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37565746

RESUMO

Mycobacterium abscessus biofilm aggregates have been shown in the lungs of cystic fibrosis patients and are often tolerant to drugs. Herein, we analyzed bi-dimensional images of either fluorescent or Congo red-stained M. abscessus colony-biofilms grown on a membrane to monitor growth and shape of M. abscessus smooth and rough variants. These colony-biofilms responded differently to rifabutin and bedaquiline, thus highlighting the importance of the morphotype to properly address antibiotic treatment in patients with biofilm-related infections.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pulmão/microbiologia , Biofilmes
3.
Adv Exp Med Biol ; 1323: 81-90, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32797406

RESUMO

Septic arthritis and prosthetic joint infection (PJI) are conditions commonly associated with Gram-positive cocci, however, a drastic increase in cases derived from enterobacterial species has been observed. Recently it has been reported by multiple groups that staphylococci rapidly form free-floating aggregates in the presence of synovial fluid. These aggregates are comparatively more resistant to antimicrobial challenge than their planktonic counterparts, and thus may play a role in the pathogenesis of joint infection. While staphylococcal aggregates have been the primary focus of interest in the field, it is unclear just how widespread synovial fluid mediated aggregation (SFMA) is in Gram negative enterobacteria (GNE). Through this work we have evaluated SFMA in clinical GNE isolated from PJIs. Two PJI clinical strains each of Enterobacter cloacae, Escherichia coli, Klebsiella pneumonia and Proteus mirabilis strains representing a range of antibiotic susceptibilities were exposed to 10% bovine synovial fluid supernatant (BSF) using a relatively simple, quick semi-quantitative method using an imaging plate reader. BSF stimulated aggregation within 0.5 h both strains of E. cloacae and P. mirabilis and one strain of E.coli. In one strain of P. mirabilis and E.coli, the size of the aggregates significantly increased from 0.5 to 2 h exposure. In contrast, neither K. pneumoniae strain aggregated in BSF. These preliminary findings show that aggregation can occur quickly in GNE, but the extent appears strain and species specific. Further work is required to assess the impact of SFMA on antibiotic tolerance, host innate immunity and the establishment of biofilms.


Assuntos
Enterobacteriaceae , Líquido Sinovial , Animais , Antibacterianos/farmacologia , Biofilmes , Bovinos , Klebsiella pneumoniae , Proteus mirabilis
4.
Artigo em Inglês | MEDLINE | ID: mdl-31451500

RESUMO

The physiological factors that contribute to Mycobacterium abscessus lung infections remain unclear. We determined whether antibiotic treatment targeting a major cystic fibrosis pathogen (i.e., Pseudomonas aeruginosa) could provide the ideal conditions for the establishment of M. abscessus infection. Our data showed that P. aeruginosa inhibited M. abscessus biofilm formation under control conditions and that antimicrobial therapy selectively targeting P. aeruginosa diminished this competitive interaction, thereby increasing M. abscessus survival.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Mycobacterium abscessus/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Humanos , Testes de Sensibilidade Microbiana/métodos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Escarro/microbiologia
5.
Appl Environ Microbiol ; 85(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30367003

RESUMO

Joint prosthesis failure is mainly related to aseptic loosening and prosthetic joint infections, both of which are associated with high morbidity and substantial costs for patients and health systems. The development of a biomaterial that is capable of stimulating bone growth while minimizing bacterial adhesion would reduce the incidence of prosthetic failure. We report antibacterial and osteostimulatory effects in a novel fluorine-phosphorus (F-P)-doped TiO2 oxide film grown on Ti-6Al-4V alloy with a nanostructure of bottle-shaped nanotubes (bNT) using five bacterial species (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia) and MCT3T3-E1 osteoblastic cells. The interaction between the bacteria and bNT Ti-6Al-4V was complex, as the adhesion of four bacterial species decreased (two staphylococcus species, E. coli, and S. maltophilia), and the viability of staphylococci and S. maltophilia also decreased because of the aluminum (Al) released by bNT Ti-6Al-4V. This released Al can be recruited by the bacteria through siderophores and was retained only by the Gram-negative bacteria tested. P. aeruginosa showed higher adhesion on bNT Ti-6Al-4V than on chemically polished (CP) samples of Ti-6Al-4V alloy and an ability to mobilize Al from bNT Ti-6Al-4V. The cell adhesion and proliferation of MCT3T3-E1 osteoblastic cells significantly increased at 48 and 168 h, as did the matrix mineralization of these cells and the gene expression levels of three of the most important markers related to bone differentiation. According to our results, the bNT Ti-6Al-4V alloy could have clinical application, preventing infection and stimulating bone growth and thus preventing the two main causes of joint prosthesis failure.IMPORTANCE This work evaluates F-P-doped bNT Ti-6Al-4V from microbiological and cellular approaches. The bacterial results highlight that the antibacterial ability of bNT Ti-6Al-4V is the result of a combination of antiadhesive and bactericidal effects exerted by Al released from the alloy. The cell results highlight that F-P bNT Ti-6Al-4V alloy increases osseointegration due to modification of the chemical composition of the alloy resulting from P incorporation and not due to the nanostructure, as reported previously. A key finding was the detection of Al release from inside the bNT Ti-6Al-4V nanostructures, a result of the nanostructure growth during the anodizing process that is in part responsible for its bactericidal effect.


Assuntos
Antibacterianos/administração & dosagem , Bactérias/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Osteogênese/efeitos dos fármacos , Infecções Relacionadas à Prótese/prevenção & controle , Titânio/farmacologia , Ligas , Antibacterianos/química , Bactérias/crescimento & desenvolvimento , Flúor/química , Teste de Materiais , Nanoestruturas/química , Procedimentos Ortopédicos/métodos , Fósforo/química , Titânio/química
6.
Int J Med Microbiol ; 308(3): 413-423, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29555180

RESUMO

Lung disease in cystic fibrosis (CF) is characterized by the progressive colonization of the respiratory tract by different bacteria, which develop polymicrobial biofilms. In the past decades, there has been an increase in the number of CF patients infected with Non-Tuberculous Mycobacteria (NTM). Although Mycobacterium abscessus is the main NTM isolated globally, little is known about M. abscessus multispecies biofilm formation. In the present study we developed an in vitro model to study the phenotypic characteristics of biofilms formed by M. abscessus and Pseudomonas aeruginosa, a major pathogen in CF. For that purpose, dual species biofilms were grown on polycarbonate membranes with a fixed concentration of P. aeruginosa and different inoculums of M. abscessus. The biofilms were sampled at 24, 48, and 72 h and bacteria were quantified in specific media. The results revealed that the increasing initial concentration of M. abscessus in dual species biofilms had an effect on its population only at 24 and 48 h, whereas P. aeruginosa was not affected by the different concentrations used of M. abscessus. Time elapsed increased biofilm formation of both species, specially between 24 and 48 h. According to the results, the conditions to produce a mature dual species biofilm in which the relative species distribution remained stable were 72 h growth of the mixed microbial culture at a 1:1 ratio. A significant decrease in mycobacterial population in dual compared to single species biofilms was found, suggesting that P. aeruginosa has a negative influence on M. abscessus. Finally, in a proof of concept experiment, young and mature dual species biofilms were exposed to clarithromycin.


Assuntos
Biofilmes/crescimento & desenvolvimento , Fibrose Cística/microbiologia , Mycobacterium abscessus/fisiologia , Micobactérias não Tuberculosas/fisiologia , Pseudomonas aeruginosa/fisiologia , Antibacterianos , Biofilmes/efeitos dos fármacos , Claritromicina/farmacologia , Humanos , Técnicas In Vitro , Modelos Biológicos , Mycobacterium abscessus/crescimento & desenvolvimento , Mycobacterium abscessus/ultraestrutura , Micobactérias não Tuberculosas/crescimento & desenvolvimento , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/ultraestrutura
7.
J Mater Sci Mater Med ; 29(8): 118, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030636

RESUMO

We aimed to evaluate the release of two antibiotics: gentamicin and vancomycin loaded into F-doped nanotubular anodic oxide layers, as well as their bactericide effect. F-doped nanotubular oxide layers fabricated on Ti-6Al-4V loaded with gentamicin (Gm), vancomycin (Vm) and their mixture (Gm + Vm) by a previously described loading method. Antibiotic release was studied by RP-HPLC and by a biological method. Bactericidal activity was evaluated by a bacterial adherence protocol described previously using on three clinically important bacterial species. The antibiotic release steady up to 120 and 180 min for Gm and Vm, respectively, and despite the antibiotic concentration decreased, their biological activity was maintained over time. The number of living bacteria of three species tested on NT-Gm specimens was significantly lower than on NT specimens without antibiotics (P < 0.01). There are significant differences among NT-Gm and NT-Gm + Vm specimens (P < 0.05) for S. aureus 15981, S. epidermidis ATCC 35984, and P. aeruginosa ATCC 27853 and no differences between NT-Vm and NT-Gm + Vm for staphylococci (P > 0.05). In conclusion, this Gm + Vm loading method added to the properties of F-doped nanotubular oxide layers fabricated on Ti-6Al-4V, and therefore surfaces with antibacterial, biocompatible, tissue integration stimulating and spread-spectrum bactericidal properties can be obtained.


Assuntos
Antibacterianos/administração & dosagem , Sistemas de Liberação de Medicamentos , Gentamicinas/administração & dosagem , Nanotubos/química , Infecções Relacionadas à Prótese/prevenção & controle , Vancomicina/administração & dosagem , Ligas , Artroplastia , Aderência Bacteriana , Materiais Biocompatíveis , Cromatografia Líquida de Alta Pressão , Difusão , Humanos , Modelos Moleculares , Óxidos/química , Pseudomonas aeruginosa , Staphylococcus aureus , Staphylococcus epidermidis , Eletricidade Estática , Titânio/química
8.
Antibiotics (Basel) ; 13(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38927189

RESUMO

The prevalence of carbapenem-resistant P. aeruginosa has dramatically increased over the last decade, and antibiotics alone are not enough to eradicate infections caused by this opportunistic pathogen. Phage therapy is a fresh treatment that can be administered under compassionate use, particularly against chronic cases. However, it is necessary to thoroughly characterize the virus before therapeutic application. Our work describes the discovery of the novel sequenced bacteriophage, vB_PaeP-F1Pa, containing an integrase, performs a phylogenetical analysis, describes its stability at a physiological pH and temperature, latent period (40 min), and burst size (394 ± 166 particles per bacterial cell), and demonstrates its ability to infect MDR and XDR P. aeruginosa strains. Moreover, this novel bacteriophage was able to inhibit the growth of bacteria inside preformed biofilms. The present study offers a road map to analyze essential areas for successful phage therapy against MDR and XDR P. aeruginosa infections, and shows that a phage containing an integrase is also able to show good in vitro results, indicating that it is very important to perform a genomic analysis before any clinical use, in order to prevent adverse effects in patients.

9.
Microbiol Spectr ; 12(5): e0000624, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38619253

RESUMO

Mycobacterium abscessus is increasingly recognized as an emerging opportunistic pathogen causing severe lung diseases and cutaneous infections. However, treatment of M. abscessus infections remains particularly challenging, largely due to intrinsic resistance to a wide panel of antimicrobial agents. New therapeutic alternatives are urgently needed. Herein, we show that, upon limited irradiation with a blue-light source, newly developed porphyrin-peptide cage-type photosensitizers exert a strong bactericidal activity against smooth and rough variants of M. abscessus in planktonic cultures and in biofilms, at low concentrations. Atomic force microscopy unraveled important morphological alterations that include a wrinkled and irregular bacterial surface. The potential of these compounds for a photo-therapeutic use to treat M. abscessus skin infections requires further evaluations.IMPORTANCEMycobacterium abscessus causes persistent infections and is extremely difficult to eradicate. Despite intensive chemotherapy, treatment success rates remain very low. Thus, given the unsatisfactory performances of the current regimens, more effective therapeutic alternatives are needed. In this study, we evaluated the activity of newly described porphyrin-peptide cage-type conjugates in the context of photodynamic therapy. We show that upon light irradiation, these compounds were highly bactericidal against M. abscessus in vitro, thus qualifying these compounds for future studies dedicated to photo-therapeutic applications against M. abscessus skin infections.


Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Fármacos Fotossensibilizantes , Porfirinas , Mycobacterium abscessus/efeitos dos fármacos , Porfirinas/farmacologia , Porfirinas/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Humanos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/química , Fotoquimioterapia/métodos , Luz
10.
Antibiotics (Basel) ; 13(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38534698

RESUMO

BACKGROUND: The Mycobacterium avium complex includes the commonest non-tuberculous mycobacteria associated with human infections. These infections have been associated with the production of biofilms in many cases, but there are only a few studies about biofilms produced by the species included in this group. METHODS: Three collection strains (M. avium ATCC25291, M. intracellulare ATCC13950, and M. chimaera DSM756), three clinically significant strains (647, 657, and 655), and three clinically non-significant ones (717, 505, and 575) of each species were included. The clinical significance of the clinical isolates was established according to the internationally accepted criteria. The biofilm ultrastructure was studied by Confocal-Laser Scanning Microscopy by using BacLight Live-Dead and Nile Red stains. The viability, covered surface, height, and relative autofluorescence were measured in several images/strain. The effect of clarithromycin was studied by using the technique described by Muñoz-Egea et al. with modifications regarding incubation time. The study included clarithromycin in the culture medium at a concentration achievable in the lungs (11.3 mg/L), using one row of wells as the control without antibiotics. The bacterial viability inside the biofilm is expressed as a percentage of viable cells. The differences between the different parameters of the biofilm ultrastructure were analyzed by using the Kruskal-Wallis test. The correlation between bacterial viability in the biofilm and treatment time was evaluated by using Spearman's rank correlation coefficient (ρ). RESULTS: The strains showed differences between them with all the studied parameters, but neither a species-specific pattern nor a clinical-significance-specific pattern were detected. For the effect of clarithromycin, the viability of the bacteria contained in the biofilm was inversely proportional to the exposure time of the biofilm (ρ > -0.3; p-value < 0.05), excluding two M. chimaera strains (M. chimaera DSM756 and 575), which showed a weak positive correlation with treatment time (0.2 < ρ < 0.39; p-value < 0.05). Curiously, despite a clarithromycin treatment of 216 h, the percentage of the biofilm viability of the strains evaluated here was not less than 40% at best (M. avium 717). CONCLUSIONS: All the M. avium complex strains studied can form biofilm in vitro, but the ultrastructural characteristics between them suggest that these are strain-specific characteristics unrelated to the species or the clinical significance. The clarithromycin effect on MAC species is biofilm-age/time-of-treatment-dependent and appears to be strain-specific while being independent of the clinical significance of the strain.

11.
Int J Biomed Imaging ; 2024: 3655327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665417

RESUMO

Purpose: The Gram-positive Staphylococcus aureus bacterium is one of the leading causes of infection in humans. The lack of specific noninvasive techniques for diagnosis of staphylococcal infection together with the severity of its associated complications support the need for new specific and selective diagnostic tools. This work presents the successful synthesis of an immunotracer that targets the α-toxin released by S. aureus. Methods: [89Zr]Zr-DFO-ToxAb was synthesized based on radiolabeling an anti-α-toxin antibody with zirconium-89. The physicochemical characterization of the immunotracer was performed by high-performance liquid chromatography (HPLC), radio-thin layer chromatography (radio-TLC), and electrophoretic analysis. Its diagnostic ability was evaluated in vivo by positron emission tomography/computed tomography (PET/CT) imaging in an animal model of local infection-inflammation (active S. aureus vs. heat-killed S. aureus) and infective osteoarthritis. Results: Chemical characterization of the tracer established the high radiochemical yield and purity of the tracer while maintaining antibody integrity. In vivo PET/CT image confirmed the ability of the tracer to detect active foci of S. aureus. Those results were supported by ex vivo biodistribution studies, autoradiography, and histology, which confirmed the ability of [89Zr]Zr-DFO-ToxAb to detect staphylococcal infectious foci, avoiding false-positives derived from inflammatory processes. Conclusions: We have developed an immuno-PET tracer capable of detecting S. aureus infections based on a radiolabeled antibody specific for the staphylococcal alpha toxins. The in vivo assessment of [89Zr]Zr-DFO-ToxAb confirmed its ability to selectively detect staphylococcal infectious foci, allowing us to discern between infectious and inflammatory processes.

12.
Gels ; 9(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36975625

RESUMO

Orthopedic prosthesis-related infections (OPRI) are an essential health concern. OPRI prevention is a priority and a preferred option over dealing with poor prognosis and high-cost treatments. Micron-thin sol-gel films have been noted for a continuous and effective local delivery system. This study aimed to perform a comprehensive in vitro evaluation of a novel hybrid organic-inorganic sol-gel coating developed from a mixture of organopolysiloxanes and organophosphite and loaded with different concentrations of linezolid and/or cefoxitin. The kinetics of degradation and antibiotics release from the coatings were measured. The inhibition of biofilm formation of the coatings against Staphylococcus aureus, S. epidermidis, and Escherichia coli strains was studied, as well as the cell viability and proliferation of MC3T3-E1 osteoblasts. The microbiological assays demonstrated that sol-gel coatings inhibited the biofilm formation of the evaluated Staphylococcus species; however, no inhibition of the E. coli strain was achieved. A synergistic effect of the coating loaded with both antibiotics was observed against S. aureus. The cell studies showed that the sol-gels did not compromise cell viability and proliferation. In conclusion, these coatings represent an innovative therapeutic strategy with potential clinical use to prevent staphylococcal OPRI.

13.
Microbiol Spectr ; 11(6): e0283623, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37831478

RESUMO

IMPORTANCE: Mycobacterium abscessus represents the most common rapidly growing mycobacterial pathogen in cystic fibrosis and is extremely difficult to eradicate. Essential genes are required for growth, often participate in pathogenesis, and encode valid drug targets for further chemotherapeutic developments. However, assessing the function of essential genes in M. abscessus remains challenging due to the limited spectrum of efficient genetic tools. Herein, we generated a Tet-OFF-based system allowing to knock down the expression of mmpL3, encoding the mycolic acid transporter in mycobacteria. Using this conditional mutant, we confirm the essentiality of mmpL3 in planktonic cultures, in biofilms, and during infection in zebrafish embryos. Thus, in this study, we developed a robust and reliable method to silence the expression of any M. abscessus gene during host infection.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium , Animais , Mycobacterium abscessus/genética , Infecções por Mycobacterium não Tuberculosas/microbiologia , Peixe-Zebra , Expressão Gênica
14.
Materials (Basel) ; 16(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36837133

RESUMO

Prosthetic joint infection is an uncommon entity, but it supposes high costs, both from the economic side to the health systems and from the emotional side of the patient. The evaluation of the bacterial adherence to different materials frequently involved in joint prostheses allows us to better understand the mechanisms underlying this and provide information for the future development of prevention strategies. This study evaluated the bacterial adherence of four different species (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa) on Ti6Al4V and CoCrMo. The topography, surface contact angles, and linear average roughness were measured in the samples from both alloys. The interaction with the surface of both alloys was significantly different, with the CoCrMo showing an aggregating effect on all the species, with additional anti-adherent activity in the case of Pseudomonas aeruginosa. The viability also changes, with a significant decrease (p < 0.05) in the CoCrMo alloy. In the case of S. epidermidis, the viability in the supernatant from the samples was different, too, with a decrease in the colony-forming units in the Ti6Al4V, which could be related to cation release from the surface. Beyond adhesion is a multifactorial and complex process, and considering that topography and wettability were similar, the chemical composition could play a main role in the different properties observed.

15.
Front Cell Infect Microbiol ; 13: 1176755, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424779

RESUMO

Introduction: Surgical site infection remains a devastating and feared complication of surgery caused mainly by Staphylococcus aureus (S. aureus). More specifically, methicillin-resistant S. aureus (MRSA) infection poses a serious threat to global health. Therefore, developing new antibacterial agents to address drug resistance are urgently needed. Compounds derived from natural berries have shown a strong antimicrobial potential. Methods: This study aimed to evaluate the effect of various extracts from two arctic berries, cloudberry (Rubus chamaemorus) and raspberry (Rubus idaeus), on the development of an MRSA biofilm and as treatment on a mature MRSA biofilm. Furthermore, we evaluated the ability of two cloudberry seed-coat fractions, hydrothermal extract and ethanol extract, and the wet-milled hydrothermal extract of a raspberry press cake to inhibit and treat biofilm development in a wound-like medium. To do so, we used a model strain and two clinical strains isolated from infected patients. Results: All berry extracts prevented biofilm development of the three MRSA strains, except the raspberry press cake hydrothermal extract, which produced a diminished anti-staphylococcal effect. Discussion: The studied arctic berry extracts can be used as a treatment for a mature MRSA biofilm, however some limitations in their use exist.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Frutas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/microbiologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Biofilmes , Crescimento e Desenvolvimento , Testes de Sensibilidade Microbiana
16.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37513873

RESUMO

Antibiotic resistance is a global problem and bacterial biofilms contribute to its development. In this context, this study aimed to perform the synthesis and characterization of seven materials based on silica mesoporous nanoparticles functionalized with three types of fluoroquinolones, along with Cu2+ or Ag+ species to evaluate the antibacterial properties against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa, including clinical and multi-drug-resistant strains of S. aureus and P. aeruginosa. In addition, in order to obtain an effective material to promote wound healing, a well-known proliferative agent, phenytoin sodium, was adsorbed onto one of the silver-functionalized materials. Furthermore, biofilm studies and the generation of reactive oxygen species (ROS) were also carried out to determine the antibacterial potential of the synthesized materials. In this sense, the Cu2+ materials showed antibacterial activity against S. aureus and E. coli, potentially due to increased ROS generation (up to 3 times), whereas the Ag+ materials exhibited a broader spectrum of activity, even inhibiting clinical strains of MRSA and P. aeruginosa. In particular, the Ag+ material with phenytoin sodium showed the ability to reduce biofilm development by up to 55% and inhibit bacterial growth in a "wound-like medium" by up to 89.33%.

17.
Pharmaceutics ; 15(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36839883

RESUMO

Five different silica nanoparticles functionalized with vitamin B12, a derivative of coumarin found in green plants and a minimum content of an organotin(IV) fragment (1-MSN-Sn, 2-MSN-Sn, 2-SBA-Sn, 2-FSPm-Sn and 2-FSPs-Sn), were identified as excellent anticancer agents against triple negative breast cancer, one of the most diagnosed and aggressive cancerous tumors, with very poor prognosis. Notably, compound 2-MSN-Sn shows selectivity for cancer cells and excellent luminescent properties detectable by imaging techniques once internalized. The same compound is also able to interact with and nearly eradicate biofilms of Staphylococcus aureus, the most common bacteria isolated from chronic wounds and burns, whose treatment is a clinical challenge. 2-MSN-Sn is efficiently internalized by bacteria in a biofilm state and destroys the latter through reactive oxygen species (ROS) generation. Its internalization by bacteria was also efficiently monitored by fluorescence imaging. Since silica nanoparticles are particularly suitable for oral or topical administration, and considering both its anticancer and antibacterial activity, 2-MSN-Sn represents a new dual-condition theranostic agent, based primarily on natural products or their derivatives and with only a minimum amount of a novel metallodrug.

18.
Front Cell Infect Microbiol ; 13: 1203991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886663

RESUMO

Introduction: Antimicrobial Resistance is a serious public health problem, which is aggravated by the ability of the microorganisms to form biofilms. Therefore, new therapeutic strategies need to be found, one of them being the use of cationic dendritic systems (dendrimers and dendrons). Methods: The aim of this study is to analyze the in vitro antimicrobial efficacy of six cationic carbosilane (CBS) dendrimers and one dendron with peripheral ammonium groups against multidrug-resistant bacteria, some of them isolated hospital strains, and their biofilms. For this purpose, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC) and minimum eradication biofilm concentration (MBEC) studies were carried out. In addition, the cytotoxicity on Hela cells of those compounds that proved to be the most effective was analyzed. Results: All the tested compounds showed in vitro activity against the planktonic forms of methicillin-resistant Staphylococcus aureus and only the dendrimers BDSQ017, BDAC-001 and BDLS-001 and the dendron BDEF-130 against their biofilms. On the other hand, only the dendrimers BDAC 001, BDLS-001 and BDJS-049 and the dendron BDEF-130 were antibacterial in vitro against the planktonic forms of multidrug-resistant Pseudomonas aeruginosa, but they lacked activity against their preformed biofilms. In addition, the dendrimers BDAC-001, BDLS-001 and BDSQ-017 and the dendron BDEF-130 exhibited a good profile of cytotoxicity in vitro. Discussion: Our study demonstrates the possibility of using the four compounds mentioned above as possible topical antimicrobials against the clinical and reference strains of multidrug-resistant bacteria.


Assuntos
Anti-Infecciosos , Dendrímeros , Staphylococcus aureus Resistente à Meticilina , Humanos , Dendrímeros/farmacologia , Células HeLa , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
19.
Biology (Basel) ; 11(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35205029

RESUMO

(1) Background: Carbapenem-resistant Klesiella pneumoniae (CR-KP) infection rates depict an almost pre-antibiotic scenario since the pipeline for effective antibiotics against this pathogen has been almost entirely depleted. This study aims to evaluate the antibacterial effect of gold nanostars (GNS) alone or associated with some of the most widely used antibiotics for the treatment of CR-KP strains, i.e., meropenem or amikacin, on both planktonic and sessile forms. Additionally, we measured the effect of GNS on cell proliferation and biocompatibility in invertebrate in vivo models. (2) Materials and methods: GNS were made from gold seeds grown using a seeded-growth surfactant-free method assisted by silver ions and functionalized with mercapto-poly(ethylene glycol)amino by ligand exchange. The antimicrobial capacity, effect on cell proliferation, and biocompatibility of the most effective combination was evaluated in a Galleria mellonella model. (3) Results: The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were 80 and 160 µM of GNS for all strains, respectively. The minimum biofilm inhibitory concentration (MBIC) and minimum biofilm eradication concentration (MBEC) were >320 µM of GNS for both. A synergy was found between GNS and amikacin. Larvae administered GNS plus amikacin were found to tolerate the treatment well, which prevented infection. (4) Conclusions: GNS are a promising anti-CR-KP nanomaterial.

20.
Antibiotics (Basel) ; 11(9)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36140039

RESUMO

Aims: This study aimed to characterize 79 Cutibacterium acnes strains isolated from prosthetic joint infections (PJIs) originated from eight European hospitals. Methods: Isolates were phylotyped according to the single-locus sequence typing (SLST) scheme. We evaluated the ability of the biofilm formation of C. acnes strains isolated from PJIs and 84 isolates recovered from healthy skin. Antibiotic susceptibility testing of planktonic and biofilm cells of PJI isolates and skin isolates was performed. Results: Most of the isolates from PJIs belonged to the SLST class H/phylotype IB (34.2%), followed by class D/phylotype IA1 (21.5%), class A/phylotype IA1 (18.9%), and class K/phylotype II (13.9%). All tested isolates were biofilm producers; no difference in biofilm formation was observed between the healthy skin group and the PJI group of strains. Planktonic and sessile cells of C. acnes remained highly susceptible to a broad spectrum of antibiotics, including beta-lactams, clindamycin, fluoroquinolones, linezolid, rifampin, and vancomycin. The minimal inhibitory concentrations (MICs) for planktonic and biofilm states coincided in most cases. However, the minimal biofilm eradication concentration (MBEC) was high for all antimicrobial drugs tested (>32 mg/L), except for rifampin (2 mg/L). Conclusions: C. acnes strains isolated from healthy skin were able to produce biofilm to the same extent as isolates recovered from PJIs. All C. acnes strains in planktonic and sessile states were susceptible to most antibiotics commonly used for PJI treatment, although rifampin was the only antimicrobial agent able to eradicate C. acnes embedded in biofilm.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa