Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572272

RESUMO

The number of connected IoT devices is significantly increasing and it is expected to reach more than two dozens of billions of IoT connections in the coming years. Low Power Wide Area Networks (LPWAN) have become very relevant for this new paradigm due to features such as large coverage and low power consumption. One of the most appealing technologies among these networks is LoRaWAN. Although it may be considered as one of the most mature LPWAN platforms, there are still open gaps such as its capacity limitations. For this reason, this work proposes a collision avoidance resource allocation algorithm named the Collision Avoidance Resource Allocation (CARA) algorithm with the objective of significantly increase system capacity. CARA leverages the multichannel structure and the orthogonality of spreading factors in LoRaWAN networks to avoid collisions among devices. Simulation results show that, assuming ideal radio link conditions, our proposal outperforms in 95.2% the capacity of a standard LoRaWAN network and increases the capacity by almost 40% assuming a realistic propagation model. In addition, it has been verified that CARA devices can coexist with LoRaWAN traditional devices, thus allowing the simultaneous transmissions of both types of devices. Moreover, a proof-of-concept has been implemented using commercial equipment in order to check the feasibility and the correct operation of our solution.

2.
Sensors (Basel) ; 21(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884098

RESUMO

Network slicing is a powerful paradigm for network operators to support use cases with widely diverse requirements atop a common infrastructure. As 5G standards are completed, and commercial solutions mature, operators need to start thinking about how to integrate network slicing capabilities in their assets, so that customer-facing solutions can be made available in their portfolio. This integration is, however, not an easy task, due to the heterogeneity of assets that typically exist in carrier networks. In this regard, 5G commercial networks may consist of a number of domains, each with a different technological pace, and built out of products from multiple vendors, including legacy network devices and functions. These multi-technology, multi-vendor and brownfield features constitute a challenge for the operator, which is required to deploy and operate slices across all these domains in order to satisfy the end-to-end nature of the services hosted by these slices. In this context, the only realistic option for operators is to introduce slicing capabilities progressively, following a phased approach in their roll-out. The purpose of this paper is to precisely help designing this kind of plan, by means of a technology radar. The radar identifies a set of solutions enabling network slicing on the individual domains, and classifies these solutions into four rings, each corresponding to a different timeline: (i) as-is ring, covering today's slicing solutions; (ii) deploy ring, corresponding to solutions available in the short term; (iii) test ring, considering medium-term solutions; and (iv) explore ring, with solutions expected in the long run. This classification is done based on the technical availability of the solutions, together with the foreseen market demands. The value of this radar lies in its ability to provide a complete view of the slicing landscape with one single snapshot, by linking solutions to information that operators may use for decision making in their individual go-to-market strategies.


Assuntos
Radar , Tecnologia , Rede Social
3.
Sensors (Basel) ; 22(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35009771

RESUMO

Fifth Generation (5G) is expected to meet stringent performance network requisites of the Industry 4.0. Moreover, its built-in network slicing capabilities allow for the support of the traffic heterogeneity in Industry 4.0 over the same physical network infrastructure. However, 5G network slicing capabilities might not be enough in terms of degree of isolation for many private 5G networks use cases, such as multi-tenancy in Industry 4.0. In this vein, infrastructure network slicing, which refers to the use of dedicated and well isolated resources for each network slice at every network domain, fits the necessities of those use cases. In this article, we evaluate the effectiveness of infrastructure slicing to provide isolation among production lines (PLs) in an industrial private 5G network. To that end, we develop a queuing theory-based model to estimate the end-to-end (E2E) mean packet delay of the infrastructure slices. Then, we use this model to compare the E2E mean delay for two configurations, i.e., dedicated infrastructure slices with segregated resources for each PL against the use of a single shared infrastructure slice to serve the performance-sensitive traffic from PLs. Also we evaluate the use of Time-Sensitive Networking (TSN) against bare Ethernet to provide layer 2 connectivity among the 5G system components. We use a complete and realistic setup based on experimental and simulation data of the scenario considered. Our results support the effectiveness of infrastructure slicing to provide isolation in performance among the different slices. Then, using dedicated slices with segregated resources for each PL might reduce the number of the production downtimes and associated costs as the malfunctioning of a PL will not affect the network performance perceived by the performance-sensitive traffic from other PLs. Last, our results show that, besides the improvement in performance, TSN technology truly provides full isolation in the transport network compared to standard Ethernet thanks to traffic prioritization, traffic regulation, and bandwidth reservation capabilities.


Assuntos
Rede Social , Tecnologia sem Fio , Simulação por Computador , Indústrias , Tecnologia
4.
Sensors (Basel) ; 16(8)2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27556468

RESUMO

Cellular systems are recently being considered an option to provide support to the Internet of Things (IoT). To enable this support, the 3rd Generation Partnership Project (3GPP) has introduced new procedures specifically targeted for cellular IoT. With one of these procedures, the transmissions of small and infrequent data packets from/to the devices are encapsulated in signaling messages and sent through the control plane. However, these transmissions from/to a massive number of devices may imply a major increase of the processing load on the control plane entities of the network and in particular on the Mobility Management Entity (MME). In this paper, we propose two designs of an MME based on Network Function Virtualization (NFV) that aim at facilitating the IoT support. The first proposed design partially separates the processing resources dedicated to each traffic class. The second design includes traffic shaping to control the traffic of each class. We consider three classes: Mobile Broadband (MBB), low latency Machine to Machine communications (lM2M) and delay-tolerant M2M communications. Our proposals enable reducing the processing resources and, therefore, the cost. Additionally, results show that the proposed designs lessen the impact between classes, so they ease the compliance of the delay requirements of MBB and lM2M communications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa