Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cell ; 161(6): 1252-65, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26046436

RESUMO

Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery.


Assuntos
Descoberta de Drogas , Bibliotecas de Moléculas Pequenas , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , National Institutes of Health (U.S.) , Estados Unidos
2.
J Pharmacol Exp Ther ; 384(2): 306-314, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36456195

RESUMO

Development of neurocognitive disorder in human immunodeficiency virus (HIV)-infected patients has been linked to dysregulation of dopamine by the HIV-1 transactivator of transcription (Tat) protein, a negative allosteric modulator of dopamine transporter (DAT). Using fast scan cyclic voltammetry, the present study determined the effects of in vivo Tat expression on dopamine release in the caudate putamen of inducible Tat transgenic (iTat-tg) mice and the impact of a novel DAT allosteric modulator, Southern Research Institute (SRI)-32743, on the Tat effect. We found that 7- or 14-day doxycycline (Dox)-induced Tat expression in iTat-tg mice resulted in a 2-fold increase in phasic but not tonic stimulated baseline dopamine release relative to saline control mice. To determine whether the Tat-induced increase in dopamine release is mediated by DAT regulation, we examined the effect of an in vitro applied DAT inhibitor, nomifensine, on the dopamine release. Nomifensine (1 nM-10 µM) concentration-dependently enhanced phasic stimulated dopamine release in both saline- and Dox-treated iTat-tg mice, while the magnitude of the nomifensine-mediated dopamine release was unchanged between saline and Dox treatment groups. A single systemic administration of SRI-32743 prior to animal sacrifice reversed the increased dopamine release in the baseline of phasic dopamine release and nomifensine-augmented dopamine levels in Dox-treated iTat-tg mice, while SRI-32743 alone did not alter baseline of dopamine release. These findings suggest that Tat expression induced an increase in extracellular dopamine levels by not only inhibiting DAT-mediated dopamine transport but also stimulating synaptic dopamine release. Thus, DAT allosteric modulators may serve as a potential therapeutic intervention for HIV infection-dysregulated dopamine system observed in HIV-1 positive individuals. SIGNIFICANCE STATEMENT: HIV infection-induced dysregulation of the dopaminergic system has been implicated in the development of neurocognitive impairments observed in HIV positive patients. Understanding the mechanisms underlying HIV-1 Tat protein-induced alteration of extracellular dopamine levels will provide insights into the development of molecules that can attenuate Tat interaction with targets in the dopaminergic system. Here, we determined whether Tat alters dopamine release and how the novel DAT allosteric modulator, SRI-32743, impacts dopamine neurotransmission to attenuate Tat-induced effects on extracellular dopamine dynamics.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Camundongos , Animais , Camundongos Transgênicos , HIV-1/metabolismo , Dopamina/metabolismo , Transativadores/metabolismo , Nomifensina/metabolismo , Putamen/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana
3.
Antimicrob Agents Chemother ; 65(9): e0024421, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34152810

RESUMO

Venezuelan equine encephalitis virus (VEEV) is a reemerging alphavirus that can cause encephalitis resulting in severe human morbidity and mortality. Using a high-throughput cell-based screen, we identified a quinolinone compound that protected against VEEV-induced cytopathic effects. Analysis of viral replication in cells identified several quinolinone compounds with potent inhibitory activity against vaccine and virulent strains of VEEV. These quinolinones also displayed inhibitory activity against additional alphaviruses, such as Mayaro virus and Ross River virus, although the potency was greatly reduced. Time-of-addition studies indicated that these compounds inhibit the early-to-mid stage of viral replication. Deep sequencing and reverse genetics studies identified two unique resistance mutations in the nsP2 gene (Y102S/C; stalk domain) that conferred VEEV resistance on this chemical series. Moreover, introduction of a K102Y mutation into the nsP2 gene enhanced the sensitivity of chikungunya virus (CHIKV) to this chemical series. Computational modeling of CHIKV and VEEV nsP2 identified a highly probable docking alignment for the quinolinone compounds that require a tyrosine residue at position 102 within the helicase stalk domain. These studies identified a class of compounds with antiviral activity against VEEV and other alphaviruses and provide further evidence that therapeutics targeting nsP2 may be useful against alphavirus infection.


Assuntos
Vírus Chikungunya , Vírus da Encefalite Equina Venezuelana , Quinolonas , Animais , Antivirais/farmacologia , Vírus da Encefalite Equina Venezuelana/genética , Cavalos , Humanos , Quinolonas/farmacologia , Replicação Viral
4.
J Biol Chem ; 292(41): 16999-17010, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28790173

RESUMO

Among primary brain cancers, gliomas are the most deadly and most refractory to current treatment modalities. Previous reports overwhelmingly support the role of the RNA-binding protein Hu antigen R (HuR) as a positive regulator of glioma disease progression. HuR expression is consistently elevated in tumor tissues, and a cytoplasmic localization appears essential for HuR-dependent oncogenic transformation. Here, we report HuR aggregation (multimerization) in glioma and the analysis of this tumor-specific HuR protein multimerization in clinical brain tumor samples. Using a split luciferase assay, a bioluminescence resonance energy transfer technique, and site-directed mutagenesis, we examined the domains involved in HuR multimerization. Results obtained with the combination of the split HuR luciferase assay with the bioluminescence resonance energy transfer technique suggested that multiple (at least three) HuR molecules come together during HuR multimerization in glioma cells. Using these data, we developed a model of HuR multimerization in glioma cells. We also demonstrate that exposing glioma cells to the HuR inhibitor tanshinone group compound 15,16-dihydrotanshinone-I or to the newly identified compound 5 disrupts HuR multimerization modules and reduces tumor cell survival and proliferation. In summary, our findings provide new insights into HuR multimerization in glioma and highlight possible pharmacological approaches for targeting HuR domains involved in cancer cell-specific multimerization.


Assuntos
Transformação Celular Neoplásica/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Glioma/metabolismo , Proteínas de Neoplasias/metabolismo , Agregação Patológica de Proteínas/metabolismo , Neoplasias Encefálicas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Proteína Semelhante a ELAV 1/antagonistas & inibidores , Proteína Semelhante a ELAV 1/genética , Furanos , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Fenantrenos/farmacologia , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Domínios Proteicos , Quinonas
5.
J Pharmacol Exp Ther ; 367(2): 222-233, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150482

RESUMO

Drugs that inhibit the dopamine (DA) transporter (DAT) include both therapeutic agents and abused drugs. Recent studies identified a novel series of putative allosteric DAT inhibitors, but the in vivo effects of these compounds are unknown. This study examined the abuse-related behavioral and neurochemical effects produced in rats by SRI-31142 [2-(7-methylimidazo[1,2-a]pyridin-6-yl)-N-(2-phenyl-2-(pyridin-4-yl)ethyl)quinazolin-4-amine], one compound from this series. In behavioral studies, intracranial self-stimulation (ICSS) was used to compare the effects produced by SRI-31142, the abused and nonselective DAT inhibitor cocaine, and the selective DAT inhibitor GBR-12935 [1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine]. In neurochemical studies, in vivo microdialysis was used to compare the effects of SRI-31142 and cocaine on levels of DA and serotonin in nucleus accumbens (NAc). The effects of SRI-31142 in combination with cocaine were also examined in both procedures. In contrast to cocaine and GBR-12935, SRI-31142 failed to produce abuse-related increases in ICSS or NAc DA; instead, SRI-31142 only decreased ICSS and NAc DA at a dose that was also sufficient to block cocaine-induced increases in ICSS and NAc DA. Pharmacokinetic studies suggested low but adequate brain penetration of SRI-31142, in vitro binding studies failed to identify likely non-DAT targets, and in vitro functional assays failed to confirm DA uptake inhibition in an assay of DAT-mediated fluorescent signals in live cells. These results indicate that SRI-31142 does not produce cocaine-like abuse-related effects in rats. SRI-31142 may have utility to block cocaine effects and may warrant further study as a candidate pharmacotherapy; however, the role of DAT in mediating these effects is unclear, and side effects may be a limiting factor.


Assuntos
Cocaína/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Dopamina/metabolismo , Animais , Ligantes , Masculino , Microdiálise/métodos , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo
6.
Biochem J ; 473(8): 1027-35, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26846349

RESUMO

Historically, drugs used in the treatment of cancers also tend to cause damage to healthy cells while affecting cancer cells. Therefore, the identification of novel agents that act specifically against cancer cells remains a high priority in the search for new therapies. In contrast with normal cells, most cancer cells contain multiple centrosomes which are associated with genome instability and tumorigenesis. Cancer cells can avoid multipolar mitosis, which can cause cell death, by clustering the extra centrosomes into two spindle poles, thereby enabling bipolar division. Kinesin-like protein KIFC1 plays a critical role in centrosome clustering in cancer cells, but is not essential for normal cells. Therefore, targeting KIFC1 may provide novel insight into selective killing of cancer cells. In the present study, we identified a small-molecule KIFC1 inhibitor, SR31527, which inhibited microtubule (MT)-stimulated KIFC1 ATPase activity with an IC50 value of 6.6 µM. By using bio layer interferometry technology, we further demonstrated that SR31527 bound directly to KIFC1 with high affinity (Kd=25.4 nM). Our results from computational modelling and saturation-transfer difference (STD)-NMR experiments suggest that SR31527 bound to a novel allosteric site of KIFC1 that appears suitable for developing selective inhibitors of KIFC1. Importantly, SR31527 prevented bipolar clustering of extra centrosomes in triple negative breast cancer (TNBC) cells and significantly reduced TNBC cell colony formation and viability, but was less toxic to normal fibroblasts. Therefore, SR31527 provides a valuable tool for studying the biological function of KIFC1 and serves as a potential lead for the development of novel therapeutic agents for breast cancer treatment.


Assuntos
Descoberta de Drogas , Cinesinas/antagonistas & inibidores , Cinesinas/metabolismo , Tiadiazóis/química , Tiadiazóis/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Humanos , Cinesinas/química , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Tiadiazóis/farmacologia
7.
J Biol Chem ; 289(47): 32937-51, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25228699

RESUMO

Pathogenic mutations in the LRRK2 gene can cause late-onset Parkinson disease. The most common mutation, G2019S, resides in the kinase domain and enhances activity. LRRK2 possesses the unique property of cis-autophosphorylation of its own GTPase domain. Because high-resolution structures of the human LRRK2 kinase domain are not available, we used novel high-throughput assays that measured both cis-autophosphorylation and trans-peptide phosphorylation to probe the ATP-binding pocket. We disclose hundreds of commercially available activity-selective LRRK2 kinase inhibitors. Some compounds inhibit cis-autophosphorylation more strongly than trans-peptide phosphorylation, and other compounds inhibit G2019S-LRRK2 more strongly than WT-LRRK2. Through exploitation of structure-activity relationships revealed through high-throughput analyses, we identified a useful probe inhibitor, SRI-29132 (11). SRI-29132 is exquisitely selective for LRRK2 kinase activity and is effective in attenuating proinflammatory responses in macrophages and rescuing neurite retraction phenotypes in neurons. Furthermore, the compound demonstrates excellent potency, is highly blood-brain barrier-permeant, but suffers from rapid first-pass metabolism. Despite the observed selectivity of SRI-29132, docking models highlighted critical interactions with residues conserved in many protein kinases, implying a unique structural configuration for the LRRK2 ATP-binding pocket. Although the human LRRK2 kinase domain is unstable and insoluble, we demonstrate that the LRRK2 homolog from ameba can be mutated to approximate some aspects of the human LRRK2 ATP-binding pocket. Our results provide a rich resource for LRRK2 small molecule inhibitor development. More broadly, our results provide a precedent for the functional interrogation of ATP-binding pockets when traditional approaches to ascertain structure prove difficult.


Assuntos
Trifosfato de Adenosina/química , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Biocatálise/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Células Hep G2 , Humanos , Cinética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutação , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Piridazinas/química , Piridazinas/metabolismo , Piridazinas/farmacologia , Homologia de Sequência de Aminoácidos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Triazóis/química , Triazóis/metabolismo , Triazóis/farmacologia
8.
J Pharmacol Exp Ther ; 353(3): 529-38, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25788711

RESUMO

Novel allosteric modulators of the dopamine transporter (DAT) have been identified. We have shown previously that SRI-9804 [N-(diphenylmethyl)-2-phenyl-4-quinazolinamine], SRI-20040 [N-(2,2-diphenylethyl)-2-phenyl-4-quinazolinamine], and SRI-20041 [N-(3,3-diphenylpropyl)-2-phenyl-4-quinazolinamine] partially inhibit [(125)I]RTI-55 ([(125)I]3ß-(4'-iodophenyl)tropan-2ß-carboxylic acid methyl ester) binding and [(3)H]dopamine ([(3)H]DA) uptake, slow the dissociation rate of [(125)I]RTI-55 from the DAT, and allosterically modulate d-amphetamine-induced, DAT-mediated DA release. We synthesized and evaluated the activity of >500 analogs of these ligands and report here on 36 selected compounds. Using synaptosomes prepared from rat caudate, we conducted [(3)H]DA uptake inhibition assays, DAT binding assays with [(3)H]WIN35428 ([(3)H]2ß-carbomethoxy-3ß-(4-fluorophenyl)tropane), and DAT-mediated release assays with either [(3)H]MPP(+) ([(3)H]1-methyl-4-phenylpyridinium) or [(3)H]DA. We observed three groups of [(3)H]DA uptake inhibitors: 1) full-efficacy agents with a one-site fit, 2) full-efficacy agents with a two-site fit, and 3) partial-efficacy agents with a one-site fit-the focus of further studies. These agents partially inhibited DA, serotonin, and norepinephrine uptake, yet were much less potent at inhibiting [(3)H]WIN35428 binding to the DAT. For example, SRI-29574 [N-(2,2-diphenylethyl)-2-(imidazo[1,2-a]pyridin-6-yl)quinazolin-4-amine] partially inhibited DAT uptake, with an IC50 = 2.3 ± 0.4 nM, without affecting binding to the DAT. These agents did not alter DAT-mediated release of [(3)H]MPP(+) in the absence or presence of 100 nM d-amphetamine. SRI-29574 had no significant effect on the d-amphetamine EC50 or Emax value for DAT-mediated release of [(3)H]MPP(+). These studies demonstrate the existence of potent DAT ligands that partially block [(3)H]DA uptake, without affecting DAT binding or d-amphetamine-induced [(3)H]MPP(+) release. These compounds may prove to be useful probes of biogenic amine transporter function as well as novel therapeutics.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , 1-Metil-4-fenilpiridínio/farmacologia , Animais , Ligação Competitiva/efeitos dos fármacos , Núcleo Caudado/efeitos dos fármacos , Núcleo Caudado/metabolismo , Cocaína/análogos & derivados , Cocaína/farmacologia , Dextroanfetamina/farmacologia , Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Ligantes , Masculino , Ratos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
9.
NeuroImmune Pharm Ther ; 3(1): 1-6, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38711842

RESUMO

Objectives: HIV-1 Tat (transactivator of transcription) protein disrupts dopaminergic transmission and potentiates the rewarding effects of cocaine. Allosteric modulators of the dopamine transporter (DAT) have been shown to reverse Tat-induced DAT dysfunction. We hypothesized that a novel DAT allosteric modulator, SRI-30827, would counteract Tat-induced potentiation of cocaine reward. Methods: Doxycycline (Dox)-inducible Tat transgenic (iTat-tg) mice and their G-tg (Tat-null) counterparts were tested in a cocaine conditioned place preference (CPP) paradigm. Mice were treated 14 days with saline, or Dox (100 mg/kg/day, i.p.) to induce Tat protein. Upon induction, mice were place conditioned two days with cocaine (10 mg/kg/day) after a 1-h daily intracerebroventricular (i.c.v.) pretreatment with SRI-30827 (1 nmol) or a vehicle control, and final place preference assessed as a measure of cocaine reward. Results: Dox-treatment significantly potentiated cocaine-CPP in iTat-tg mice over the response of saline-treated control littermates. SRI-30827 treatment eliminated Tat-induced potentiation without altering normal cocaine-CPP in saline-treated mice. Likewise, SRI-30827 did not alter cocaine-CPP in both saline- and Dox-treated G-tg mice incapable of expressing Tat protein. Conclusions: These findings add to a growing body of evidence that allosteric modulation of DAT could provide a promising therapeutic intervention for patients with comorbid HIV-1 and cocaine use disorder (CUD).

10.
Virol J ; 10: 19, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23302182

RESUMO

BACKGROUND: Human respiratory syncytial virus (hRSV) is a highly contagious pathogen and is the most common cause of bronchiolitis and pneumonia for infants and children under one year of age. Worldwide, greater than 33 million children under five years of age are affected by hRSV resulting in three million hospitalizations and 200,000 deaths. However, severe lower respiratory tract disease may occur at any age, especially among the elderly or those with compromised cardiac, pulmonary, or immune systems. There is no vaccine commercially available. Existing therapies for the acute infection are ribavirin and the prophylactic humanized monoclonal antibody (Synagis® from MedImmune) that is limited to use in high risk pediatric patients. Thus, the discovery of new inhibitors for hRSV would be clinically beneficial. RESULTS: We have developed and validated a 384-well cell-based, high-throughput assay that measures the cytopathic effect of hRSV (strain Long) in HEp-2 cells using a luminescent-based detection system for signal endpoint (Cell Titer Glo®). The assay is sensitive and robust, with Z factors greater than 0.8, signal to background greater than 35, and signal to noise greater than 24. Utilizing this assay, 313,816 compounds from the Molecular Libraries Small Molecule Repository were screened at 10 µM. We identified 7,583 compounds that showed greater than 22% CPE inhibition in the primary screen. The top 2,500 compounds were selected for confirmation screening and 409 compounds showed at least 50% inhibition of CPE and were considered active. We selected fifty-one compounds, based on potency, selectivity and chemical tractability, for further evaluation in dose response and secondary assays Several compounds had SI50 values greater than 3, while the most active compound displayed an SI50 value of 58.9. CONCLUSIONS: A robust automated luminescent-based high throughput screen that measures the inhibition of hRSV-induced cytopathic effect in HEp-2 cells for the rapid identification of potential inhibitors from large compound libraries has been developed, optimized and validated. The active compounds identified in the screen represent different classes of molecules, including aryl sulfonylpyrrolidines which have not been previously identified as having anti-hRSV activity.


Assuntos
Antivirais/isolamento & purificação , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Automação Laboratorial/métodos , Efeito Citopatogênico Viral/efeitos dos fármacos , Células Hep G2 , Hepatócitos/virologia , Humanos , Medições Luminescentes , Potexvirus
11.
Bioorg Med Chem Lett ; 22(2): 1160-4, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22178556

RESUMO

Compound 1 was identified as a HCV replication inhibitor from screening/early SAR triage. Potency improvement was achieved via modulation of substituent on the 5-azo linkage. Due to potential toxicological concern, the 5-azo linkage was replaced with 5-alkenyl or 5-alkynyl moiety. Analogs containing the 5-alkynyl linkage were found to be potent inhibitors of HCV replication. Further evaluation identified compounds 53 and 63 with good overall profile, in terms of replicon potency, selectivity and in vivo characteristics. Initial target engagement studies suggest that these novel carbanucleoside-like derivatives may inhibit the HCV replication complex (replicase).


Assuntos
Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Pirimidinas/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
12.
Bioorg Med Chem Lett ; 22(15): 5144-9, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22814211

RESUMO

Introduction of nitrogen atom into the benzene ring of a previously identified HCV replication (replicase) benzofuran inhibitor 2, resulted in the discovery of the more potent pyridofuran analogue 5. Subsequent introduction of small alkyl and alkoxy ligands into the pyridine ring resulted in further improvements in replicon potency. Replacement of the 4-chloro moiety on the pyrimidine core with a methyl group, and concomitant monoalkylation of the C-2 amino moiety resulted in the identification of several inhibitors with desirable characteristics. Inhibitor 41, from the monosubstituted pyridofuran and inhibitor 50 from the disubstituted series displayed excellent potency, selectivity (GAPDH/MTS CC(50)) and PK parameters in all species studied, while the selectivity in the thymidine incorporation assay (DNA·CC(50)) was low.


Assuntos
Antivirais/química , Inibidores Enzimáticos/química , Furanos/química , Hepacivirus/enzimologia , Nucleosídeos de Pirimidina/química , Pirimidinas/química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Animais , Antivirais/síntese química , Antivirais/farmacocinética , Benzofuranos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Furanos/síntese química , Furanos/farmacocinética , Meia-Vida , Fígado/metabolismo , Nucleosídeos de Pirimidina/síntese química , Nucleosídeos de Pirimidina/farmacocinética , Pirimidinas/síntese química , Pirimidinas/farmacocinética , RNA Polimerase Dependente de RNA/metabolismo , Ratos , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
13.
Bioorg Med Chem Lett ; 22(22): 6967-73, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23036957

RESUMO

The installation of geminal substitution at the C5' position of the carbosugar in our pyrimidine-derived hepatitis C inhibitor series is reported. SAR studies around the C5' position led to the installation of the dimethyl group as the optimal functionality. An improved route was subsequently designed to access these substitutions. Expanded SAR at the C2 amino position led to the utilization of C2 ethers. These compounds exhibited good potency, high selectivity, and excellent plasma exposure and bioavailability in rodent as well as in higher species.


Assuntos
Antivirais/síntese química , Carboidratos/química , Pirimidinas/química , Animais , Antivirais/química , Antivirais/farmacocinética , Disponibilidade Biológica , Cães , Meia-Vida , Haplorrinos , Hepacivirus/efeitos dos fármacos , Hepacivirus/metabolismo , Pirimidinas/síntese química , Pirimidinas/farmacocinética , Ratos , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
14.
Bioorg Med Chem Lett ; 22(17): 5652-7, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22858143

RESUMO

Introduction of a nitrogen atom into the benzene ring of a previously identified HCV replication (replicase) benzothiazole inhibitor 1, resulted in the discovery of the more potent pyridothiazole analogues 3. The potency and PK properties of the compounds were attenuated by the introductions of various functionalities at the R(1), R(2) or R(3) positions of the molecule (compound 3). Inhibitors 38 and 44 displayed excellent potency, selectivity (GAPDH/MTS CC(50)), PK parameters in all species studied, and cross genotype activity.


Assuntos
Antivirais/química , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Pirimidinas/química , Pirimidinas/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacocinética , Cães , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Humanos , Pirimidinas/farmacocinética , Ratos , Relação Estrutura-Atividade , Tiazóis/química , Tiazóis/farmacocinética , Tiazóis/farmacologia
15.
Bioorg Med Chem Lett ; 22(9): 3229-34, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22472692

RESUMO

Based on a previously identified HCV replication (replicase) inhibitor 1, SAR efforts were conducted around the pyrimidine core to improve the potency and pharmacokinetic profile of the inhibitors. A benzothiazole moiety was found to be the optimal substituent at the pyrimidine 5-position. Due to potential reactivity concern, the 4-chloro residue was replaced by a methyl group with some loss in potency and enhanced rat in vivo profile. Extensive investigations at the C-2 position resulted in identification of compound 16 that demonstrated very good replicon potency, selectivity and rodent plasma/target organ concentration. Inhibitor 16 also demonstrated good plasma levels and oral bioavailability in dogs, while monkey exposure was rather low. Chemistry optimization towards a practical route to install the benzothiazole moiety resulted in an efficient direct C-H arylation protocol.


Assuntos
Antivirais/química , Benzotiazóis/química , Hepacivirus/efeitos dos fármacos , Pirimidinas/química , Replicação Viral/efeitos dos fármacos , Animais , Cães , Haplorrinos , Hepacivirus/fisiologia , Metilação , Roedores , Especificidade da Espécie
16.
Addict Biol ; 17(2): 224-34, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21309957

RESUMO

A major problem in treating alcohol use disorders (AUDs) is the high rate of relapse due to stress and re-exposure to cues or an environment previously associated with alcohol use. Stressors can induce relapse to alcohol-seeking in humans or reinstatement in rodents. Delta opioid peptide receptors (DOP-Rs) play a role in cue-induced reinstatement of ethanol-seeking; however, their role in stress-induced reinstatement of ethanol-seeking is not known. The objective of this study was to determine the role of DOP-Rs in yohimbine-stress-induced reinstatement of ethanol-seeking. Male, Long-Evans rats were trained to self-administer 10% ethanol in daily 30-minute operant self-administration sessions using a FR3 schedule of reinforcement, followed by extinction training. Once extinction criteria were met, we examined the effects of the DOP-R antagonist, SoRI-9409 (0-5 mg/kg, i.p.) on yohimbine (2 mg/kg, i.p.) stress-induced reinstatement. Additionally, DOP-R-stimulated [(35) S]GTPγS binding was measured in brain membranes and plasma levels of corticosterone (CORT) were determined. Pre-treatment with SoRI-9409 decreased yohimbine stress-induced reinstatement of ethanol-seeking but did not affect yohimbine-induced increases in plasma CORT levels. Additionally, yohimbine increased DOP-R-stimulated (35) [S]GTPγS binding in brain membranes of ethanol-trained rats, an effect that was inhibited by SoRI-9409. This suggests that the DOP-R plays an important role in yohimbine-stress-induced reinstatement of ethanol-seeking behavior, and DOP-R antagonists may be promising candidates for further development as a treatment for AUDs.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Consumo de Bebidas Alcoólicas/prevenção & controle , Comportamento de Procura de Droga/efeitos dos fármacos , Derivados da Morfina/farmacologia , Receptores Opioides delta/antagonistas & inibidores , Ioimbina/farmacologia , Animais , Condicionamento Operante/efeitos dos fármacos , Corticosterona/fisiologia , Sinais (Psicologia) , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Masculino , Mesencéfalo/metabolismo , Quinolinas/farmacologia , Ratos , Ratos Long-Evans , Esquema de Reforço , Autoadministração , Estresse Psicológico/psicologia
17.
Neuropharmacology ; 220: 109239, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126727

RESUMO

Cocaine abuse increases the incidence of HIV-1-associated neurocognitive disorders. We have demonstrated that HIV-1 transactivator of transcription (Tat) allosterically modulates dopamine (DA) reuptake through the human DA transporter (hDAT), potentially contributing to Tat-induced cognitive impairment and potentiation of cocaine conditioned place preference (CPP). This study determined the effects of a novel allosteric modulator of DAT, SRI-32743, on the interactions of HIV-1 Tat, DA, cocaine, and [3H]WIN35,428 with hDAT in vitro. SRI-32743 (50 nM) attenuated Tat-induced inhibition of [3H]DA uptake and decreased the cocaine-mediated dissociation of [3H]WIN35,428 binding in CHO cells expressing hDAT, suggesting a SRI-32743-mediated allosteric modulation of the Tat-DAT interaction. In further in vivo studies utilizing doxycycline-inducible Tat transgenic (iTat-tg) mice, 14 days of Tat expression significantly reduced the recognition index by 31.7% in the final phase of novel object recognition (NOR) and potentiated cocaine-CPP 2.7-fold compared to responses of vehicle-treated control iTat-tg mice. The Tat-induced NOR deficits and potentiation of cocaine-CPP were not observed in saline-treated iTat-tg or doxycycline-treated G-tg (Tat-null) mice. Systemic administration (i.p.) of SRI-32743 prior to behavioral testing ameliorated Tat-induced impairment of NOR (at a dose of 10 mg/kg) and the Tat-induced potentiation of cocaine-CPP (at doses of 1 or 10 mg/kg). These findings demonstrate that Tat and cocaine interactions with DAT may be regulated by compounds interacting at the DAT allosteric modulatory sites, suggesting a potential therapeutic intervention for HIV-infected patients with concurrent cocaine abuse.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , HIV-1 , Animais , Cocaína/metabolismo , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Cricetinae , Cricetulus , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Doxiciclina , Humanos , Camundongos , Camundongos Transgênicos , Recompensa , Transativadores , Fator de Transcrição DP1/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
18.
J Neurosci Res ; 89(1): 58-72, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21046675

RESUMO

Neuronal noncytokine-dependent p50/p65 nuclear factor-κB (the primary NF-κB complex in the brain) activation has been shown to exert neuroprotective actions. Thus neuronal activation of NF-κB could represent a viable neuroprotective target. We have developed a cell-based assay able to detect NF-κB expression enhancement, and through its use we have identified small molecules able to up-regulate NF-κB expression and hence trigger its activation in neurons. We have successfully screened approximately 300,000 compounds and identified 1,647 active compounds. Cluster analysis of the structures within the hit population yielded 14 enriched chemical scaffolds. One high-potency and chemically attractive representative of each of these 14 scaffolds and four singleton structures were selected for follow-up. The experiments described here highlighted that seven compounds caused noncanonical long-lasting NF-κB activation in primary astrocytes. Molecular NF-κB docking experiments indicate that compounds could be modulating NF-κB-induced NF-κB expression via enhancement of NF-κB binding to its own promoter. Prototype compounds increased p65 expression in neurons and caused its nuclear translocation without affecting the inhibitor of NF-κB (I-κB). One of the prototypical compounds caused a large reduction of glutamate-induced neuronal death. In conclusion, we have provided evidence that we can use small molecules to activate p65 NF-κB expression in neurons in a cytokine receptor-independent manner, which results in both long-lasting p65 NF-κB translocation/activation and decreased glutamate neurotoxicity.


Assuntos
NF-kappa B/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/fisiologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Humanos , NF-kappa B/agonistas , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/isolamento & purificação , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transfecção
19.
PLoS One ; 16(5): e0250649, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33945569

RESUMO

Treatment for the lethal primary adult brain tumor glioblastoma (GBM) includes the chemotherapy temozolomide (TMZ), but TMZ resistance is common and correlates with promoter methylation of the DNA repair enzyme O-6-methylguanine-DNA methyltransferase (MGMT). To improve treatment of GBMs, including those resistant to TMZ, we explored the potential of targeting dopamine receptor signaling. We found that dopamine receptor 3 (DRD3) is expressed in GBM and is also a previously unexplored target for therapy. We identified novel antagonists of DRD3 that decreased the growth of GBM xenograft-derived neurosphere cultures with minimal toxicity against human astrocytes and/or induced pluripotent stem cell-derived neurons. Among a set of DRD3 antagonists, we identified two compounds, SRI-21979 and SRI-30052, that were brain penetrant and displayed a favorable therapeutic window analysis of The Cancer Genome Atlas data demonstrated that higher levels of DRD3 (but not DRD2 or DRD4) were associated with worse prognosis in primary, MGMT unmethylated tumors. These data suggested that DRD3 antagonists may remain efficacious in TMZ-resistant GBMs. Indeed, SRI-21979, but not haloperidol, significantly reduced the growth of TMZ-resistant GBM cells. Together our data suggest that DRD3 antagonist-based therapies may provide a novel therapeutic option for the treatment of GBM.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/patologia , Receptores de Dopamina D3/antagonistas & inibidores , Temozolomida/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos
20.
Cancer Res ; 81(8): 2220-2233, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33602784

RESUMO

The development of novel therapeutics that exploit alterations in the activation state of key cellular signaling pathways due to mutations in upstream regulators has generated the field of personalized medicine. These first-generation efforts have focused on actionable mutations identified by deep sequencing of large numbers of tumor samples. We propose that a second-generation opportunity exists by exploiting key downstream "nodes of control" that contribute to oncogenesis and are inappropriately activated due to loss of upstream regulation and microenvironmental influences. The RNA-binding protein HuR represents such a node. Because HuR functionality in cancer cells is dependent on HuR dimerization and its nuclear/cytoplasmic shuttling, we developed a new class of molecules targeting HuR protein dimerization. A structure-activity relationship algorithm enabled development of inhibitors of HuR multimer formation that were soluble, had micromolar activity, and penetrated the blood-brain barrier. These inhibitors were evaluated for activity validation and specificity in a robust cell-based assay of HuR dimerization. SRI-42127, a molecule that met these criteria, inhibited HuR multimer formation across primary patient-derived glioblastoma xenolines (PDGx), leading to arrest of proliferation, induction of apoptosis, and inhibition of colony formation. SRI-42127 had favorable attributes with central nervous system penetration and inhibited tumor growth in mouse models. RNA and protein analysis of SRI-42127-treated PDGx xenolines across glioblastoma molecular subtypes confirmed attenuation of targets upregulated by HuR. These results highlight how focusing on key attributes of HuR that contribute to cancer progression, namely cytoplasmic localization and multimerization, has led to the development of a novel, highly effective inhibitor. SIGNIFICANCE: These findings utilize a cell-based mechanism of action assay with a structure-activity relationship compound development pathway to discover inhibitors that target HuR dimerization, a mechanism required for cancer promotion.


Assuntos
Carcinogênese/efeitos dos fármacos , Proteína Semelhante a ELAV 1/química , Multimerização Proteica/efeitos dos fármacos , Algoritmos , Animais , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/fisiologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Nus , Medicina de Precisão , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Ensaio Tumoral de Célula-Tronco , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa