Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(22): e202400004, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38361470

RESUMO

Four donor-acceptor boron difluoride complexes based on the carbazole electron donor and the [1,3,5,2]oxadiazaborinino[3,4-a][1,8]naphthyridine acceptor were designed, synthesized, and systematically spectroscopically investigated in solutions, in dye-doped polymer films, and in the solid states. The dyes exhibit an intense blue to red solid-state emission with photoluminescence quantum yields of up to 59 % in pure dye samples and 86 % in poly(methyl methacrylate) films. All boron complexes show aggregation-induced emission and reversible mechanofluorochromism. The optical properties of these dyes and their solid state luminescence can be tuned by substitution pattern, i. e., the substituents at the naphthyridine unit. Exchange of CH3- for CF3-groups does not only increase the intramolecular charge transfer character, but also provides a crystallization-induced emission enhancement.

2.
Small ; 18(29): e2107976, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35732601

RESUMO

The spatial distribution and concentration of lanthanide activator and sensitizer dopant ions are of key importance for the luminescence color and efficiency of upconverting nanoparticles (UCNPs). Quantifying dopant ion distributions and intermixing, and correlating them with synthesis methods require suitable analytical techniques. Here, X-ray photoelectron spectroscopy depth-profiling with tender X-rays (2000-6000 eV), providing probe depths ideally matched to UCNP sizes, is used to measure the depth-dependent concentration ratios of Er3+ to Yb3+ , [Er3+ ]/[Yb3+ ], in three types of UCNPs prepared using different reagents and synthesis methods. This is combined with data simulations and inductively coupled plasma-optical emission spectroscopy (ICP-OES) measurements of the lanthanide ion concentrations to construct models of the UCNPs' dopant ion distributions. The UCNP sizes and architectures are chosen to demonstrate the potential of this approach. Core-only UCNPs synthesized with XCl3 ·6H2 O precursors (ß-phase) exhibit a homogeneous distribution of lanthanide ions, but a slightly surface-enhanced [Er3+ ]/[Yb3+ ] is observed for UCNPs prepared with trifluroacetate precursors (α-phase). Examination of Yb-core@Er-shell UCNPs reveals a co-doped, intermixed region between the single-doped core and shell. The impact of these different dopant ion distributions on the UCNP's optical properties is discussed to highlight their importance for UCNP functionality and the design of efficient UCNPs.


Assuntos
Érbio , Fluoretos , Nanopartículas , Itérbio , Ítrio , Cátions , Érbio/química , Fluoretos/química , Luminescência , Nanopartículas/química , Espectroscopia Fotoeletrônica , Raios X , Itérbio/química , Ítrio/química
3.
Anal Bioanal Chem ; 414(15): 4331-4345, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35471249

RESUMO

Core-shell nanoparticles have attracted much attention in recent years due to their unique properties and their increasing importance in many technological and consumer products. However, the chemistry of nanoparticles is still rarely investigated in comparison to their size and morphology. In this review, the possibilities, limits, and challenges of X-ray photoelectron spectroscopy (XPS) for obtaining more insights into the composition, thickness, and homogeneity of nanoparticle coatings are discussed with four examples: CdSe/CdS quantum dots with a thick coating and a small core; NaYF4-based upconverting nanoparticles with a large Yb-doped core and a thin Er-doped coating; and two types of polymer nanoparticles with a poly(tetrafluoroethylene) core with either a poly(methyl methacrylate) or polystyrene coating. Different approaches for calculating the thickness of the coating are presented, like a simple numerical modelling or a more complex simulation of the photoelectron peaks. Additionally, modelling of the XPS background for the investigation of coating is discussed. Furthermore, the new possibilities to measure with varying excitation energies or with hard-energy X-ray sources (hard-energy X-ray photoelectron spectroscopy) are described. A discussion about the sources of uncertainty for the determination of the thickness of the coating completes this review. Graphical abstract.


Assuntos
Nanopartículas , Pontos Quânticos , Nanopartículas/química , Espectroscopia Fotoeletrônica , Polímeros , Poliestirenos
4.
Anal Chem ; 91(12): 7756-7764, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31091879

RESUMO

We present the design and fabrication of pH responsive ratiometric dual component sensor systems based on multicolor emissive upconversion nanoparticles (UCNP) and pH sensitive BODIPY dyes with tunable p Ka values embedded into a polymeric hydrogel matrix. The use of NIR excitable NaYF4:Yb3+,Tm3+ UCNPs enables background free read-out. Furthermore, the spectrally matching optical properties of the UCNPs and the dyes allow the UCNPs to serve as excitation light source for the analyte-responsive BODIPY as well as intrinsic reference. The blue upconversion luminescence (UCL) of NaYF4:Yb3+,Tm3+ UCNPs excited at 980 nm, that overlaps with the absorption of the pH-sensitive fluorophore, provides reabsorption based excitation of the dye, the spectrally distinguishable green fluorescence of which is switched ON upon protonation, preventing photoinduced electron transfer (PET) within the dye moiety, and the pH-inert red UCL act as reference. The intensities ratios of the dye's fluorescence and the analyte-inert red Tm3+ UCL correlate directly with pH, which was successfully utilized for monitoring time-dependent pH changes of a suspension of quiescent E. coli metabolizing d-glucose.

5.
Langmuir ; 35(15): 5093-5113, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30870593

RESUMO

An emerging class of inorganic optical reporters are near-infrared (NIR) excitable lanthanide-based upconversion nanoparticles (UCNPs) with multicolor emission and long luminescence lifetimes in the range of several hundred microseconds. For the design of chemical sensors and optical probes that reveal analyte-specific changes in their spectroscopic properties, these nanomaterials must be combined with sensitive indicator dyes that change their absorption and/or fluorescence properties selectively upon interaction with their target analyte, utilizing either resonance energy transfer (RET) processes or reabsorption-related inner filter effects. The rational development of UCNP-based nanoprobes for chemical sensing and imaging in a biological environment requires reliable methods for the surface functionalization of UCNPs, the analysis and quantification of surface groups, a high colloidal stability of UCNPs in aqueous media as well as the chemically stable attachment of the indicator molecules, and suitable instrumentation for the spectroscopic characterization of the energy-transfer systems and the derived nanosensors. These topics are highlighted in the following feature article, and examples of functionalized core-shell nanoprobes for the sensing of different biologically relevant analytes in aqueous environments will be presented. Special emphasis is placed on the intracellular sensing of pH.

6.
Sci Rep ; 13(1): 2288, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759652

RESUMO

Lanthanide-based, spectrally shifting, and multi-color luminescent upconverting nanoparticles (UCNPs) have received much attention in the last decades because of their applicability as reporter for bioimaging, super-resolution microscopy, and sensing as well as barcoding and anti-counterfeiting tags. A prerequisite for the broad application of UCNPs in areas such as sensing and encoding are simple, robust, and easily upscalable synthesis protocols that yield large quantities of UCNPs with sizes of 20 nm or more with precisely controlled and tunable physicochemical properties from low-cost reagents with a high reproducibility. In this context, we studied the reproducibility, robustness, and upscalability of the synthesis of ß-NaYF4:Yb, Er UCNPs via thermal decomposition. Reaction parameters included solvent, precursor chemical compositions, ratio, and concentration. The resulting UCNPs were then examined regarding their application-relevant physicochemical properties such as size, size distribution, morphology, crystal phase, chemical composition, and photoluminescence. Based on these screening studies, we propose a small volume and high-concentration synthesis approach that can provide UCNPs with different, yet controlled size, an excellent phase purity and tunable morphology in batch sizes of up to at least 5 g which are well suited for the fabrication of sensors, printable barcodes or authentication and recycling tags.

7.
J Phys Chem Lett ; 14(14): 3436-3444, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37010896

RESUMO

The frequency-domain (FD) method provides an alternative to the commonly used time-domain (TD) approach in characterizing the luminescence kinetics of luminophores, with its own strengths, e.g., the capability to decouple multiple lifetime components with higher reliability and accuracy. While extensively explored for characterizing luminophores with down-shifted emission, this method has not been investigated for studying nonlinear luminescent materials such as lanthanide-doped upconversion nanoparticles (UCNPs), featuring more complicated kinetics. In this work, employing a simplified rate-equation model representing a standard two-photon energy-transfer upconversion process, we thoroughly analyzed the response of the luminescence of UCNPs in the FD method. We found that the FD method can potentially obtain from a single experiment the effective decay rates of three critical energy states of the sensitizer/activator ions involved in the upconversion process. The validity of the FD method is demonstrated by experimental data, agreeing reasonably well with the results obtained by TD methods.

8.
Sci Rep ; 12(1): 3770, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260656

RESUMO

Upconversion nanoparticles (UCNPs) have attracted considerable attention owing to their unique photophysical properties. Their utilization in biomedical applications depends on the understanding of their transformations under physiological conditions and their potential toxicity. In this study, NaYF4:Yb,Er UCNPs, widely used for luminescence and photophysical studies, were modified with a set of four different coordinatively bound surface ligands, i.e., citrate, alendronate (AA), ethylendiamine tetra(methylene phosphonate) (EDTMP), and poly(maleic anhydride-alt-1-octadecene) (PMAO), as well as silica coatings with two different thicknesses. Subsequently, the aging-induced release of fluoride ions in water and cell culture media and their cytotoxic profile to human keratinocytes were assessed in parallel to the cytotoxic evaluation of the ligands, sodium fluoride and the lanthanide ions. The cytotoxicity studies of UCNPs with different surface modifications demonstrated the good biocompatibility of EDTMP-UCNPs and PMAO-UCNPs, which is in line with the low amount of fluoride ions released from these samples. An efficient prevention of UCNP dissolution and release of cytotoxic ions, as well as low cytotoxicity was also observed for UCNPs with a sufficiently thick silica shell. Overall, our results provide new insights into the understanding of the contribution of surface chemistry to the stability, dissolution behavior, and cytotoxicity of UCNPs. Altogether, the results obtained are highly important for future applications of UCNPs in the life sciences and bioimaging studies.


Assuntos
Nanopartículas , Ítrio , Humanos , Fluoretos/química , Ligantes , Nanopartículas/química , Dióxido de Silício , Solubilidade , Ítrio/química
9.
Metallomics ; 14(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36367500

RESUMO

This paper discusses the feasibility of a novel strategy based on the combination of bioprinting nano-doping technology and laser ablation-inductively coupled plasma time-of-flight mass spectrometry analysis for the preparation and characterization of gelatin-based multi-element calibration standards suitable for quantitative imaging. To achieve this, lanthanide up-conversion nanoparticles were added to a gelatin matrix to produce the bioprinted calibration standards. The features of this bioprinting approach were compared with manual cryosectioning standard preparation, in terms of throughput, between batch repeatability and elemental signal homogeneity at 5 µm spatial resolution. By using bioprinting, the between batch variability for three independent standards of the same concentration of 89Y (range 0-600 mg/kg) was reduced to 5% compared to up to 27% for cryosectioning. On this basis, the relative standard deviation (RSD) obtained between three independent calibration slopes measured within 1 day also reduced from 16% (using cryosectioning) to 5% (using bioprinting), supporting the use of a single standard preparation replicate for each of the concentrations to achieve good calibration performance using bioprinting. This helped reduce the analysis time by approximately 3-fold. With cryosectioning each standard was prepared and sectioned individually, whereas using bio-printing it was possible to have up to six different standards printed simultaneously, reducing the preparation time from approximately 2 h to under 20 min (by approximately 6-fold). The bio-printed calibration standards were found stable for a period of 2 months when stored at ambient temperature and in the dark.


Assuntos
Bioimpressão , Espectrometria de Massas , Padrões de Referência , Nanopartículas , Calibragem
10.
Nanoscale ; 12(23): 12589-12601, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32500913

RESUMO

We demonstrate the potential of time-resolved luminescence spectroscopy for the straightforward assessment and in situ monitoring of the stability of upconversion nanocrystals (UCNPs). Therefore, we prepared hexagonal NaYF4:Yb3+,Er3+ UCNPs with various coatings with a focus on phosphonate ligands of different valency, using different ligand exchange procedures, and studied their dissolution behaviour in phosphate-buffered saline (PBS) dispersions at 20 °C and 37 °C with various analytical methods. The amount of the released UCNPs constituting fluoride ions was quantified by potentiometry using a fluoride ion-sensitive electrode and particle disintegration was confirmed by transmission electron microscopy studies of the differently aged UCNPs. In parallel, the luminescence features of the UCNPs were measured with special emphasis on the lifetime of the sensitizer emission to demonstrate its suitability as screening parameter for UCNP stability and changes in particle composition. The excellent correlation between the changes in luminescence lifetime and fluoride concentration highlights the potential of our luminescence lifetime method for UCNP stability screening and thereby indirect monitoring of the release of potentially hazardous fluoride ions during uptake and dissolution in biological systems. Additionally, the developed in situ optical method was used to distinguish the dissolution dynamics of differently sized and differently coated UCNPs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa