Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(5): E781-E790, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096373

RESUMO

Arthropods transmit diverse infectious agents; however, the ways microbes influence their vector to enhance colonization are poorly understood. Ixodes scapularis ticks harbor numerous human pathogens, including Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis. We now demonstrate that A. phagocytophilum modifies the I. scapularis microbiota to more efficiently infect the tick. A. phagocytophilum induces ticks to express Ixodes scapularis antifreeze glycoprotein (iafgp), which encodes a protein with several properties, including the ability to alter bacterial biofilm formation. IAFGP thereby perturbs the tick gut microbiota, which influences the integrity of the peritrophic matrix and gut barrier-critical obstacles for Anaplasma colonization. Mechanistically, IAFGP binds the terminal d-alanine residue of the pentapeptide chain of bacterial peptidoglycan, resulting in altered permeability and the capacity of bacteria to form biofilms. These data elucidate the molecular mechanisms by which a human pathogen appropriates an arthropod antibacterial protein to alter the gut microbiota and more effectively colonize the vector.


Assuntos
Anaplasma phagocytophilum/fisiologia , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Ixodes/microbiologia , Animais , Proteínas Anticongelantes/metabolismo , Proteínas de Artrópodes/metabolismo , Ehrlichiose , Camundongos , Peptidoglicano/metabolismo
2.
PLoS One ; 14(3): e0213841, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30901338

RESUMO

Probiotic products are becoming more prevalent as awareness of the role of beneficial microbes in health increases. Ingredient labels of these products often omit identifications at the strain level, making it difficult to track down applicable published research. In this study, we investigated whether products labeled with the same species name contained different strains of those species. From 21 commercially available probiotic supplements and beverages, we cultured five main species: Bacillus coagulans, Bacillus subtilis, Lactobacillus plantarum, Lactobacillus rhamnosus, and the yeast Saccharomyces boulardii. To confirm the identity of each bacterial isolate, we applied standard molecular approaches: 16S rRNA gene sequencing and Matrix Assisted Laser Desorption Ionization Time-of-Flight mass spectrometry (MALDI-TOF MS). Phenotypic profiling and identification were performed with the Biolog Microbial Identification system. All of the bacterial isolates were correctly identified by at least one approach. Sequencing the 16S rRNA gene led to 82% of species identifications matching the product label, with 71% of isolates identified by MALDI-TOF MS and 60% identified correctly with the Biolog system. Analysis of the Biolog phenotypic profiles revealed different patterns of carbon source usage by each species, with sugars preferentially utilized by all except B. subtilis. To assess the strain-level differences, we compared strains of the same species and found variability in carbohydrate utilization and tolerance to environmental stressors (salt, acidity, antibiotics). By demonstrating that products listing the same species often contain strains with different 16S sequences and phenotypes, this study highlights that current labels of probiotic supplements do not sufficiently convey the strain diversity in these products.


Assuntos
Bacillus/genética , Lactobacillus/genética , Probióticos/análise , Saccharomyces/genética , Bacillus/isolamento & purificação , Lactobacillus/isolamento & purificação , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Saccharomyces/isolamento & purificação , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Front Microbiol ; 8: 488, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28392782

RESUMO

Streptococcus mutans is the primary agent of dental cavities, in large part due to its ability to adhere to teeth and create a molecular scaffold of glucan polysaccharides on the tooth surface. Disrupting the architecture of S. mutans biofilms could help undermine the establishment of biofilm communities that cause cavities and tooth decay. Here we present a synthetic peptide P1, derived from a tick antifreeze protein, which significantly reduces S. mutans biofilm formation. Incubating cells with this peptide decreased biofilm biomass by approximately 75% in both a crystal violet microplate assay and an in vitro tooth model using saliva-coated hydroxyapatite discs. Bacteria treated with peptide P1 formed irregular biofilms with disconnected aggregates of cells and exopolymeric matrix that readily detached from surfaces. Peptide P1 can bind directly to S. mutans cells but does not possess bactericidal activity. Anti-biofilm activity was correlated with peptide aggregation and ß-sheet formation in solution, and alternative synthetic peptides of different lengths or charge distribution did not inhibit biofilms. This anti-biofilm peptide interferes with S. mutans biofilm formation and architecture, and may have future applications in preventing bacterial buildup on teeth.

4.
Cell Rep ; 9(2): 417-24, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25373896

RESUMO

As microbial drug-resistance increases, there is a critical need for new classes of compounds to combat infectious diseases. The Ixodes scapularis tick antifreeze glycoprotein, IAFGP, functions as an antivirulence agent against diverse bacteria, including methicillin-resistant Staphylococcus aureus. Recombinant IAFGP and a peptide, P1, derived from this protein bind to microbes and alter biofilm formation. Transgenic iafgp-expressing flies and mice challenged with bacteria, as well as wild-type animals administered P1, were resistant to infection, septic shock, or biofilm development on implanted catheter tubing. These data show that an antifreeze protein facilitates host control of bacterial infections and suggest therapeutic strategies for countering pathogens.


Assuntos
Antibacterianos/farmacologia , Proteínas Anticongelantes/farmacologia , Proteínas de Insetos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Proteínas Anticongelantes/genética , Biofilmes/efeitos dos fármacos , Resistência à Doença/genética , Drosophila/genética , Drosophila/microbiologia , Proteínas de Insetos/genética , Ixodes/química , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa