Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Int J Food Sci Nutr ; 75(3): 293-305, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225882

RESUMO

Irritable bowel syndrome (IBS) is a condition affecting the digestive system and can be triggered by several different factors, including diet. To ease symptoms of IBS, a diet low in fermentable oligo-, di-, monosaccharides and polyols (FODMAPs) is often recommended. Pasta, as a staple food in the Western World, is naturally high in FODMAPs. This study investigates the impact of insoluble and soluble dietary fibre ingredients in low-FODMAPs pasta. The assessment included physicochemical, sensory, and nutritional quality. Soluble fibre strengthened gluten network, which caused a lower cooking loss and a lower release of sugars during in vitro starch digestion. Insoluble fibre interfered with the gluten network development to a higher extent causing a higher sugar release during digestion. This study reveals the most suitable fibre ingredients for the development of pasta with elevated nutritional value and sensory characteristics compared to commercial products on the market. This type of pasta has a high potential of being suitable for IBS patients.


Assuntos
Fibras na Dieta , Fermentação , Síndrome do Intestino Irritável , Valor Nutritivo , Fibras na Dieta/análise , Humanos , Síndrome do Intestino Irritável/dietoterapia , Alimentos Fortificados/análise , Monossacarídeos/análise , Polímeros , Glutens/análise , Amido , Digestão , Oligossacarídeos/análise , Culinária/métodos , Dissacarídeos/análise
2.
Crit Rev Food Sci Nutr ; 62(15): 4242-4265, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33480260

RESUMO

A large portion of global food waste is caused by microbial spoilage. The modern approach to preserve food is to apply different hurdles for microbial pathogens to overcome. These vary from thermal processes and chemical additives, to the application of irradiation and modified atmosphere packaging. Even though such preservative techniques exist, loss of food to spoilage still prevails. Plant compounds and peptides represent an untapped source of potential novel natural food preservatives. Of these, antimicrobial peptides (AMPs) are very promising for exploitation. AMPs are a significant component of a plant's innate defense system. Numerous studies have demonstrated the potential application of these AMPs; however, more studies, particularly in the area of food preservation are warranted. This review examines the literature on the application of AMPs and other plant compounds for the purpose of reducing food losses and waste (including crop protection). A focus is placed on the plant defensins, their natural extraction and synthetic production, and their safety and application in food preservation. In addition, current challenges and impediments to their full exploitation are discussed.


Assuntos
Peptídeos Antimicrobianos , Eliminação de Resíduos , Alimentos , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Plantas
3.
J Sci Food Agric ; 102(12): 4977-4987, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33280110

RESUMO

BACKGROUND: The fortification of cereal foods, like pasta, with pseudocereal and legume ingredients promises a substantial improvement of their nutritional quality. However, partial replacement of wheat by pseudocereals and legumes in pasta formulations bears challenges regarding the products' technological and sensory quality. This study investigates the partial replacement of wheat semolina by a combination of high-protein ingredients (HPIs) from buckwheat, faba bean and lupin to reach a protein level of 20% of calories provided by protein. This high-protein hybrid pasta (HPHP) formulation was subjected to a thorough evaluation of technological quality characteristics and compared to regular wheat pasta and pasta formulations containing the single HPIs. Additionally, descriptive sensory profiling was performed to compare organoleptic properties of HPHP with regular wheat pasta. RESULTS: The quality of pasta formulations containing single HPIs was significantly reduced with regard to at least one of the determined quality characteristics. For the HPHP formulation containing all three HPIs, the technological quality was found to be equal to regular wheat pasta. No significant differences were detected for the most indicative quality characteristics cooking loss, firmness and stickiness. This was attributed primarily to compensating effects of the HPIs with respect to different quality characteristics. Sensory analysis revealed only slightly inferior overall quality of HPHP in comparison to regular wheat pasta, especially promoted by similar textural properties. CONCLUSION: The combination of selected HPIs offers the opportunity to produce high-protein hybrid pasta with technological and sensory quality similar to regular wheat pasta at a level of wheat semolina replacement of 25%. © 2020 Society of Chemical Industry.


Assuntos
Fabaceae , Triticum , Culinária , Farinha/análise , Valor Nutritivo , Triticum/química , Verduras
4.
J Sci Food Agric ; 102(12): 5086-5097, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33792053

RESUMO

BACKGROUND: Plant-based milk alternatives are becoming more popular. However, many are low in nutrients, particularly protein. More attention is being given to plant protein isolates / concentrates as potential ingredients in high-protein milk alternative formulations. RESULTS: The effect of lupin protein source on the physicochemical, functional, and nutritional characteristics of model milk alternatives was investigated. Milk alternatives were produced with either blue lupin or white lupin protein isolate, formulated to contain similar levels of protein and fat as low-fat cow's milk. Nutritional composition and predicted glycemic properties were measured. The effect of homogenization pressure on the physicochemical properties and storage stability was also assessed, with cow's milk and soy milk alternative analyzed for comparison. Both blue and white lupin milk alternatives were high in protein, low in fermentable oligo-, di- and monosaccharides, and polyols (FODMAPs), and had a low predicted glycemic index. White lupin milk alternatives had smaller particle size as well as greater stability, with less creaming compared to blue lupin milk alternatives, although the former showed slightly higher sediment layers. Increasing homogenization pressure from 180 to 780 bar resulted in smaller particle size, lower separation rate, and greater foamability for both blue and white lupin milk alternatives. White lupin milk alternative homogenized at 780 bar was found to be the most stable product, with a similar separation rate to cow's milk. CONCLUSIONS: These results indicate that protein source and processing can influence functional properties significantly along with product stability, and this is an important consideration when formulating high-protein milk alternatives. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Lupinus , Hipersensibilidade a Leite , Substitutos do Leite , Leite de Soja , Animais , Bovinos , Emulsões/análise , Feminino , Leite/química , Substitutos do Leite/química
5.
J Sci Food Agric ; 102(12): 5055-5064, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33709392

RESUMO

BACKGROUND: The increasing importance of plant-based proteins in the food sector makes a reliable compositional analysis of plant-based high-protein ingredients a necessity. Specifically, the quantification of short-chain carbohydrates is relevant for multiple areas, including food product development, food labelling and fundamental food chemistry and food technology research. Commonly used extraction procedures for subsequent high-performance liquid chromatographic separation and quantification of short-chain carbohydrates have been discussed controversially regarding a range of complications that can potentially lead to inaccurate sugar determination. The present study compares the sugar levels in wheat flour and wholemeal wheat flour determined with different aqueous and ethanolic extraction procedures. These procedures included measures to prevent enzyme activity and microbial growth, which represent two of the most relevant challenges in sugar extraction from food samples. RESULTS: Differences in sugar levels (sum of sucrose/maltose, glucose and fructose) as high as 1.8% dry matter (wheat flour) were observed between the employed extraction procedures. Ethanolic extraction (80% ethanol in ultrapure water) with the use of the antimicrobial agent sodium azide but without Carrez clarification was identified as most promising for sugar determination in plant-based high-protein ingredients. CONCLUSION: A screening of high-protein ingredients derived from cereals (wheat gluten), pseudocereals (quinoa, amaranth, buckwheat) and legumes (soy, pea, lupin, lentil, carob, chickpea, faba bean) concerning their levels of sucrose, maltose, glucose and fructose confirmed the applicability of the chosen extraction procedure. © 2021 Society of Chemical Industry.


Assuntos
Farinha , Lupinus , Carboidratos/análise , Cromatografia Líquida de Alta Pressão/métodos , Etanol , Farinha/análise , Frutose/análise , Glucose/análise , Lupinus/metabolismo , Maltose , Proteínas de Plantas/metabolismo , Sacarose/análise , Açúcares , Triticum/metabolismo
6.
J Sci Food Agric ; 102(12): 5000-5010, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33314156

RESUMO

BACKGROUND: The fortification of wheat-based staple foods, such as pasta, with pseudocereal and legume flours has received growing research interest in recent years. While it is associated with many challenges regarding technological and sensory quality of the products, it promises a substantial improvement of the nutritional value of pasta. However, investigations of the nutritional quality of fortified pasta often focus on the carbohydrate/starch fraction, and information on changes in protein quality is relatively scarce. This study evaluates the nutritional profile of a high-protein hybrid pasta (HPHP) formulation in which a combination of three high-protein ingredients (HPIs) from buckwheat, faba bean and lupin is used to partially replace wheat semolina. The formulation's macronutrient composition, protein quality and the content of antinutritional compounds are assessed in comparison to regular wheat pasta. RESULTS: The HPHP formulation represents a more favourable macronutrient profile compared to regular wheat pasta, particularly in relation to the isocaloric replacement of wheat starch by non-wheat protein. Furthermore, a more balanced amino acid profile, improved N utilisation and increased protein efficiency ratio (in vivo) were determined for HPHP, which conclusively suggests a substantially enhanced protein quality. The cooking process was shown to significantly reduce levels of vicine/convicine and trypsin inhibitor activity originating from HPIs. The small remaining levels seem not to adversely affect HPHP's nutritional quality. CONCLUSION: This significant upgrade of pasta's nutritional value identifies HPHP, and similar hybrid formulations, as a healthy food choice and valuable alternative to regular wheat pasta, specifically for a protein supply of adequate quality in mostly plant-based diets. © 2020 Society of Chemical Industry.


Assuntos
Fabaceae , Culinária , Fabaceae/química , Farinha/análise , Valor Nutritivo , Amido , Verduras
7.
J Sci Food Agric ; 102(12): 5077-5085, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33745134

RESUMO

BACKGROUND: The amino acid composition, and rheological, thermal and colloidal stability of plant protein-based oil-in-water emulsion systems containing 1.90, 3.50 and 7.70 g 100 mL-1 protein, fat and carbohydrate, respectively, using quinoa and lentil protein ratios of 100:0 and 60:40 were investigated. The emulsion containing lentil protein showed lower initial, peak and final viscosity values (22.7, 61.7 and 61.6 mPa s, respectively) than the emulsion formulated with quinoa protein alone (34.3, 102 and 80.0 mPa s, respectively) on heat treatment. RESULTS: Particle size analysis showed that both samples had small particle sizes (~1.36 µm) after homogenization; however, the sample with 60:40 quinoa:lentil protein ratio showed greater physical stability, likely related to the superior emulsifying properties of lentil protein. However, upon heat treatment, large aggregates (~100 µm) were formed in both samples, reducing the physical stability of the samples. This physical stability was increased with the addition of 0.20% sodium dodecyl sulfate (SDS), whereas it was negatively affected by the addition of α-amylase. Addition of α-amylase led to lower viscosity for both emulsion samples, with measured values of 41.8 and 46.0 mPa s for the 100:0 and 60:40 samples, respectively. This suggests that the heat-induced increases in particle size were partially due to hydrophobic interactions between the proteins as SDS disrupts hydrophobic bonds between proteins. CONCLUSION: These results demonstrated that using a mixture of lentil and quinoa proteins positively affected the physical stability of plant protein-based emulsions, in addition to contributing to a more nutritionally complete amino acid profile - both important considerations in the development of plant-based beverages. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Chenopodium quinoa , Lens (Planta) , Aminoácidos , Emulsões/química , Lens (Planta)/química , Tamanho da Partícula , Proteínas de Plantas/química , Água/química , alfa-Amilases
8.
J Sci Food Agric ; 102(12): 5044-5054, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33682129

RESUMO

BACKGROUND: Infant formula is a human milk substitute for consumption during the first months of life. The protein component of such products is generally of dairy origin. Alternative sources of protein, such as those of plant origin, are of interest due to dairy allergies, intolerances, and ethical and environmental considerations. Lentils have high levels of protein (20-30%) with a good amino acid profile and functional properties. In this study, a model lentil protein-based formula (LF), in powder format, was produced and compared to two commercial plant-based infant formulae (i.e., soy; SF and rice; RF) in terms of physicochemical properties and digestibility. RESULTS: The macronutrient composition was similar between all the samples; however, RF and SF had larger volume-weighted mean particle diameters (D[4,3] of 121-134 µm) than LF (31.9 µm), which was confirmed using scanning electron and confocal laser microscopy. The larger particle sizes of the commercial powders were attributed to their agglomeration during the drying process. Regarding functional properties, the LF showed higher D[4,3] values (17.8 µm) after 18 h reconstitution in water, compared with the SF and RF (5.82 and 4.55 µm, respectively), which could be partially attributed to hydrophobic protein-protein interactions. Regarding viscosity at 95 °C and physical stability, LF was more stable than RF. The digestibility analysis showed LF to have similar values (P < 0.05) to the standard SF. CONCLUSION: These results demonstrated that, from the nutritional and physicochemical perspectives, lentil proteins represent a good alternative to other sources of plant proteins (e.g., soy and rice) in infant nutritional products. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Fórmulas Infantis , Lens (Planta) , Alérgenos , Dessecação , Humanos , Lactente , Fórmulas Infantis/química , Tamanho da Partícula , Pós
9.
Compr Rev Food Sci Food Saf ; 21(2): 1491-1516, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122383

RESUMO

A diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) is a promising therapeutic approach to reduce gastrointestinal symptoms associated with irritable bowel syndrome (IBS). However, a shift toward a more sustainable, healthy diet with higher inclusion of whole-grain cereals (i.e., wheat, rye, barley) and pulses, naturally rich in FODMAPs, poses a severe challenge for susceptible individuals. Dietary restriction of fermentable carbohydrates (commonly called the "low FODMAP diet") has received significant consideration. Hence, the development of functional low FODMAP products is emerging in food science and the food industry. In this review, we evaluate the most promising yet neglected (bio)-technological strategies adopted for modulating the FODMAP contents in complex food systems and the extent of their uptake in the global food market. We extensively investigated the global low FODMAP market, contrasted with the status quo in food science and discussed the key principles and concomitant challenges of targeted FODMAP reduction strategies. Powerful tools are available which are based either on the use of ingredients where FODMAPs have been physically removed (e.g., by membrane filtration) or biotechnologically reduced during the food processing, mediated by added enzymes, microbial enzymes during a fermentation process, and seed endogenous enzymes. However, <10% of the small market of functional products with a low FODMAP claim (total ∼800 products) used any of the targeted FODMAP reduction techniques. The global market is currently dominated by gluten-free products, which are naturally low in FODMAPs and characterized by inferior sensory attributes.


Assuntos
Síndrome do Intestino Irritável , Dieta , Dissacarídeos/uso terapêutico , Humanos , Síndrome do Intestino Irritável/tratamento farmacológico , Monossacarídeos/uso terapêutico , Oligossacarídeos
10.
Compr Rev Food Sci Food Saf ; 21(3): 2930-2955, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35478262

RESUMO

Dietary fiber intakes in Western societies are concerningly low and do not reflect global recommended dietary fiber intakes for chronic disease prevention. Resistant starch (RS) is a fermentable dietary fiber that has attracted research interest. As an isolated ingredient, its fine particle size, relatively bland flavor, and white appearance may offer an appealing fiber source to the Western palate, accustomed to highly refined, processed grains. This review aims to provide a comprehensive insight into the current knowledge (classification, production methods, and characterization methods), health benefits, applications, and acceptability of RS. It further discusses the present market for commercially available RS ingredients and products containing ingredients high in RS. The literature currently highlights beneficial effects for dietary RS supplementation with respect to glucose metabolism, satiety, blood lipid profiles, and colonic health. An exploration of the market for commercial RS ingredients indicates a diverse range of products (from isolated RS2, RS3, and RS4) with numerous potential applications as partial or whole substitutes for traditional flour sources. They may increase the nutritional profile of a food product (e.g., by increasing the fiber content and lowering energy values) without significantly compromising its sensory and functional properties. Incorporating RS ingredients into staple food products (such as bread, pasta, and sweet baked goods) may thus offer an array of nutritional benefits to the consumer and a highly accessible functional ingredient to be greater exploited by the food industry.


Assuntos
Amido Resistente , Amido , Pão , Fibras na Dieta , Palato/metabolismo
11.
Compr Rev Food Sci Food Saf ; 21(1): 435-452, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34919328

RESUMO

Chickpea (Cicer arietinum L.) is a pulse consumed all over the world, representing a good source of protein, as well as fat, fiber, and other carbohydrates. As a result of the growing global population the demand for the protein component of this pulse is increasing and various approaches have been proposed and developed to extract same. In this review the composition, functionality, and applications of chickpea protein ingredients are described. Moreover, methods to enhance protein quality have been identified, as well as applications of the coproducts resulting from protein extraction and processing. The principal dry and wet protein enrichment approaches, resulting in protein concentrates and isolates, include air classification, alkaline/acid extraction, salt extraction, isoelectric precipitation, and membrane filtration. Chickpea proteins exhibit good functional properties such as solubility, water and oil absorption capacity, emulsifying, foaming, and gelling. During protein enrichment, the functionality of protein can be enhanced in addition to primary processing (e.g., germination and dehulling, fermentation, enzymatic treatments). Different applications of chickpea protein ingredients, and their coproducts, have been identified in research, highlighting the potential of these ingredients for novel product development and improvement of the nutritional profile of existing food products. Formulations to meet consumer needs in terms of healthy and sustainable foods have been investigated in the literature and can be further explored. Future research may be useful to improve applications of the specific coproducts that result from the extraction of chickpea proteins, thereby leading to more sustainable processes.


Assuntos
Cicer , Fibras na Dieta , Proteínas
12.
Eur J Nutr ; 60(8): 4393-4411, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34057578

RESUMO

PURPOSE: Brewers' spent grain (BSG) represents the largest by-product of the brewing industry. Its utilisation as an animal feed has become less practical today; however, its high fibre and protein content make it a promising untapped resource for human nutrition. BSG contains mainly insoluble fibre. This fibre, along with protein, is trapped with the complex lignocellulosic cell structure and must be solubilised to release components which may be beneficial to health through modulation of the gut microbiota. METHODS: In this study, the application of a simultaneous saccharification and fermentation process for the extraction and solubilisation of arabinoxylan from BSG is demonstrated. RESULTS: Processing of the BSG was varied to modulate the physicochemical and molecular characteristic of the released arabinoxylan. The maximum level of arabinoxylan solubilisation achieved was approximately 21%, compared to the unprocessed BSG which contained no soluble arabinoxylan (AX). Concentration of the solubilised material produced a sample containing 99% soluble AX. Samples were investigated for their microbiome modulating capacity in in-vitro faecal fermentation trials. Many samples promoted increased Lactobacillus levels (approx. twofold). One sample that contained the highest level of soluble AX was shown to be bifidogenic, increasing the levels of this genus approx. 3.5-fold as well as acetate (p = 0.018) and propionate (p < 0.001) production. CONCLUSION: The findings indicate that AX extracted from BSG has prebiotic potential. The demonstration that BSG is a source of functional fibre is a promising step towards the application of this brewing side-stream as a functional food ingredient for human nutrition.


Assuntos
Grão Comestível , Microbiota , Animais , Fermentação , Humanos , Xilanos
13.
Compr Rev Food Sci Food Saf ; 20(4): 3858-3880, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34125502

RESUMO

Plant-based yogurt alternatives are increasing in market value, while dairy yogurt sales are stagnating or even declining. The plant-based yogurt alternatives market is currently dominated by products based on coconut or soy. Coconut-based products especially are often low in protein and high in saturated fat, while soy products raise consumer concerns regarding genetically modified soybeans, and soy allergies are common. Pulses are ideally suited as a base for plant-based yogurt alternatives due to their high protein content and beneficial amino acid composition. This review provides an overview of pulse nutrients, pro-nutritional and anti-nutritional compounds, how their composition can be altered by fermentation, and the chemistry behind pulse protein coagulation by acid or salt denaturation. An extensive market review on plant-based yogurt alternatives provides an overview of the current worldwide market situation. It shows that pulses are ideal base ingredients for yogurt alternatives due to their high protein content, amino acid composition, and gelling behavior when fermented with lactic acid bacteria. Additionally, fermentation can be used to reduce anti-nutrients such as α-galactosides and vicine or trypsin inhibitors, further increasing the nutritional value of pulse-based yogurt alternatives.


Assuntos
Lactobacillales , Iogurte , Fermentação , Valor Nutritivo , Glycine max
14.
Food Microbiol ; 90: 103464, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32336355

RESUMO

Achieving a high monosaccharide composition in malt wort is instrumental to achieve successful lactic acid bacteria fermentation of malt based beverages. The conversion of monosaccharides to alternative metabolites such as the sweet polyol, mannitol with heterofermentative strains presents a novel approach for sugar reduction and to compensate for the loss of sweetness. This work outlines the application of an adopted mashing regimen with the addition of exogenous enzymes to produce wort with high fructose content which can be applied to different malted grain types with consistently efficacious monosaccharide production for bacterial fermentation. The so produced worts are then fermented with Leuconostoc citreum TR116 a mannitol hyper-producer. Malted barley, oat and wheat were mashed to stimulate protein degradation and release of free amino acids along with the enzymatic conversion of starch to fermentable sugars. Amyloglucosidase and glucose isomerase treatment converted di- and oligo-saccharides to glucose and provided a moderate fructose concentration in malt worts which was consistent across the three cereals. Fructose was completely depleted during fermentation with Lc. Citreum TR116 and converted to mannitol with high efficiency (>90%) while overall sugar reduction was >25% in all malt worts. Differences in amino acid composition of malt worts did not significantly affect growth of Lc. Citreum TR116 but did affect the formation of the aroma compounds diacetyl and isoamyl alcohol. Organic acid production and acidification of wort was similar across cereal substrates and acetic acid formation was linked to yield of mannitol. The results suggest that differences in amino acid and fructose content of malt worts considerably change metabolite formation during fermentation with Lc. Citreum TR116, a mannitol hyper-producer. This work gives new insight into the development of consumer acceptable malt based beverages which will provide further options for the health conscious and diabetic consumer, an important step in the age of sugar overconsumption.


Assuntos
Grão Comestível/microbiologia , Fermentação , Alimentos Fermentados/microbiologia , Leuconostoc/metabolismo , Manitol/metabolismo , Açúcares/metabolismo , Avena/química , Avena/microbiologia , Reatores Biológicos , Frutose/metabolismo , Hordeum/química , Hordeum/microbiologia , Lactobacillales/metabolismo , Leuconostoc/crescimento & desenvolvimento , Triticum/química , Triticum/microbiologia
15.
Molecules ; 26(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396521

RESUMO

In the food industry, food spoilage is a real issue that can lead to a significant amount of waste. Although current preservation techniques are being applied to reduce the occurrence of spoilage microorganisms, the problem persists. Food spoilage yeast are part of this dilemma, with common spoilers such as Zygosaccharomyces, Kluyveromyces, Debaryomyces and Saccharomyces frequently encountered. Antimicrobial peptides derived from plants have risen in popularity due to their ability to reduce spoilage. This study examines the potential application of a synthetic defensin peptide derived from barley endosperm. Its inhibitory effect against common spoilage yeasts, its mechanisms of action (membrane permeabilisation and overproduction of reactive oxygen species), and its stability in different conditions were characterised. The safety of the peptide was evaluated through a haemolysis and cytotoxicity assay, and no adverse effects were found. Both assays were performed to understand the effect of the peptide if it were to be consumed. Its ability to be degraded by a digestive enzyme was also examined for its safety. Finally, the peptide was successfully applied to different beverages and maintained the same inhibitory effects in apple juice as was observed in the antiyeast assays, providing further support for its application in food preservation.


Assuntos
Antifúngicos/farmacologia , Defensinas/farmacologia , Endosperma/metabolismo , Contaminação de Alimentos/análise , Hordeum/química , Leveduras/efeitos dos fármacos , Animais , Células CACO-2 , Proliferação de Células , Microbiologia de Alimentos , Hemólise/efeitos dos fármacos , Humanos , Ovinos
16.
Crit Rev Food Sci Nutr ; 59(21): 3395-3419, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29993266

RESUMO

Economic losses due to post-harvest fungal spoilage and mycotoxin contamination of cereal crops is a frequently encountered issue. Typically, chemical preservatives are used to reduce the initial microbial load and the environmental conditions during storage are controlled to prevent microbial growth. However, in recent years the consumers' desire for more naturally produced foods containing less chemical preservatives has grown increasingly stronger. This article reviews the latest advances in terms of novel approaches for chemical decontamination, namely application cold atmospheric pressure plasma and electrolyzed water, and their suitability for preservation of stored cereal crops. In addition, the alternative use of bio-preservatives, such as starter cultures or purified antimicrobial compounds, to prevent the growth of spoilage organisms or remove in-field accumulated mycotoxins is evaluated. All treatments assessed here show potential for inhibition of microbial spoilage. However, each method encounters draw-backs, making industrial application difficult. Even under optimized processing conditions, it is unlikely that one single treatment can reduce the natural microbial load sufficiently. It is evident that future research needs to examine the combined application of several treatments to exploit their synergistic properties. This would enable sufficient reduction in the microbial load and ensure microbiological safety of cereal crops during long-term storage.


Assuntos
Grão Comestível , Conservação de Alimentos , Micotoxinas , Contaminação de Alimentos , Conservantes de Alimentos , Fungos
17.
J Pept Sci ; 25(1): e3137, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30488526

RESUMO

The development of novel solutions to fight microbial food contaminants rests upon two pillars, which are the development of resistant strains and consumers' desire for a reduced consumption of synthetic drugs. Natural antimicrobial peptides possess the qualities to overcome these issues. De novo synthesis of novel antifungal compounds is a major progress that has been facilitated by the identification of parameters involved in the antimicrobial activity. A 14-residue peptide named KK14, with the sequence KKFFRAWWAPRFLK-NH2 , was designed and inhibited conidial germination and fungal growth of food contaminants within the range 6.25 to 50 µg/ml and 6.25 to 100 µg/ml, respectively. The study of three analogues of the peptide highlighted the role of some residues in the structural conformation of the peptide and its antifungal activity. The substitution of a Pro residue with Arg increased the helical content of the peptide not only its antifungal activity but also its cytotoxicity. The insertion of an unnatural bulky residue ß-diphenylalanine or a full d-enantiomerization overall increased the antifungal potency. The four peptides showed similar behaviour towards salt increase, heat treatment, and pH decrease. Interestingly, the denantiomer remained the most active at high pH and after proteolytic digestion. The four peptides did not present haemolytic activity up to 200 µg/ml but had different behaviours of cytotoxicity. These differences could be crucial for potential application as pharmaceutical or food preservatives.


Assuntos
Antifúngicos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Aspergillus niger/efeitos dos fármacos , Contaminação de Alimentos/prevenção & controle , Fusarium/efeitos dos fármacos , Penicillium/efeitos dos fármacos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Aspergillus niger/crescimento & desenvolvimento , Células CACO-2 , Dipeptídeos , Eritrócitos/efeitos dos fármacos , Sucos de Frutas e Vegetais/microbiologia , Fusarium/crescimento & desenvolvimento , Hemólise/efeitos dos fármacos , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Malus/efeitos dos fármacos , Malus/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Penicillium/crescimento & desenvolvimento , Fenilalanina/análogos & derivados , Fenilalanina/química , Estrutura Secundária de Proteína , Células RAW 264.7 , Ovinos , Cloreto de Sódio/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento , Estereoisomerismo , Relação Estrutura-Atividade
18.
Food Microbiol ; 82: 504-514, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31027812

RESUMO

As a result of the rapidly growing human population, reducing post-harvest crop losses of cereals due to microbial pests has major importance. Plant defensins have the potential to fulfil these demands, being highly specific and efficient antimicrobial agents. Hence, this study aimed to extract and characterise a peptide from cowpea seeds and investigate its antifungal performance. After extraction and partial purification, N-terminal sequencing was used to identify the primary peptide in the extract as cowpea-thionin II. Antifungal activity in vitro was found against Fusarium culmorum (MIC = 50 µg/mL), but Aspergillus niger and Penecillium expansum showed an MIC > 500 µg/mL. The extract was resistant against heat treatment (100 °C, 15 min) but lost its antifungal activity in presence of cations (Na+, K+, Ca2+ and Mg2+, respectively). Membrane permeabilization of fungal hyphae was evident at 25 µg/mL, while induction of oxidative stress only had minor contribution to the antifungal performance. The extract did not induce haemolysis at all concentrations tested (up to 200 µg/mL). Finally, it was successfully used to protect stored wheat grains from fungal spoilage (determined via ergosterol content) when applied at 100 µg/mL. In conclusion, the defensin Cp-thionin II showed the potential for future application as food bio-preservative.


Assuntos
Antifúngicos/farmacologia , Conservantes de Alimentos/farmacologia , Fungos/efeitos dos fármacos , Proteínas de Plantas/farmacologia , Tioninas/farmacologia , Vigna/química , Antifúngicos/química , Antifúngicos/isolamento & purificação , Cátions , Permeabilidade da Membrana Celular/efeitos dos fármacos , Defensinas/química , Defensinas/isolamento & purificação , Defensinas/farmacologia , Grão Comestível/microbiologia , Ergosterol/análise , Ergosterol/metabolismo , Microbiologia de Alimentos , Conservantes de Alimentos/química , Conservantes de Alimentos/isolamento & purificação , Fungos/metabolismo , Fungos/fisiologia , Temperatura Alta , Hifas/efeitos dos fármacos , Hifas/metabolismo , Hifas/fisiologia , Testes de Sensibilidade Microbiana , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Estabilidade Proteica , Sementes/química , Tioninas/química , Tioninas/isolamento & purificação
19.
Compr Rev Food Sci Food Saf ; 18(5): 1327-1360, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33336909

RESUMO

A large range of ingredients for food and food products are subject to fungal contamination, which is a major cause of destruction of crops, exposure of animals and humans to invasive mycotoxins, and food spoilage. The resistance of fungal species to common preservation methods highlights the necessity of new ways to increase the shelf life of raw material for food and food products. Antimicrobial peptides and proteins (AMPs) are essential members of the immune system of most living organisms. Due to their broad range of activity and their stability to commonly used food processes, they represent promising alternatives to traditional preservatives. However, despite the growing number of reports of potential food applications of these AMPs, the number of approved peptides is low. Poor solubility, toxicity, and a time-consuming extraction are hurdles that limit their application in food products. Thanks to a deep understanding of the key determinants of their activity, the development of optimized synthetic peptides has reduced these drawbacks. This review presents natural and synthetic antifungal peptides/proteins (AFPs), effective against food-related fungi, with particular emphasis on AFPs from plant sources. The design of novel antifungal peptides via key elements of antifungal activity is also reviewed. The potential applications of natural and synthetic AFPs as novel antifungal food preservatives are finally discussed.

20.
Compr Rev Food Sci Food Saf ; 18(3): 587-625, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-33336918

RESUMO

Acetic acid bacteria (AAB) have, for centuries, been important microorganisms in the production of fermented foods and beverages such as vinegar, kombucha, (water) kefir, and lambic beer. Their unique form of metabolism, known as "oxidative" fermentation, mediates the transformation of a variety of substrates into products, which are of importance in the food and beverage industry and beyond; the most well-known of which is the oxidation of ethanol into acetic acid. Here, a comprehensive review of the physiology of AAB is presented, with particular emphasis on their importance in the production of vinegar and fermented beverages. In addition, particular reference is addressed toward Gluconobacter oxydans due to its biotechnological applications, such as its role in vitamin C production. The production of vinegar and fermented beverages in which AAB play an important role is discussed, followed by an examination of the literature relating to the health benefits associated with consumption of these products. AAB hold great promise for future exploitation, both due to increased consumer demand for traditional fermented beverages such as kombucha, and for the development of new types of products. Further studies on the health benefits related to the consumption of these fermented products and guidelines on assessing the safety of AAB for use as microbial food cultures (starter cultures) are, however, necessary in order to take full advantage of this important group of microorganisms.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa