Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Mol Divers ; 27(6): 2505-2522, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36376718

RESUMO

The Hantaan virus (HTN) is a member of the hantaviridae family. It is a segmented type, negative-strand virus (sNSVs). It causes hemorrhagic fever with renal syndrome, which includes fever, vascular hemorrhage, and renal failure. This illness is one of the most serious hemorrhagic diseases in the world, and it is a major public health concern due to its high mortality rate. The Hantaan virus RNA-dependent RNA polymerase complex (RdRp) is involved in viral RNA transcription and replication for the survival and transmission of this virus. Therefore, it is a primary target for antiviral drug development. Interference with the endonucleolytic "cap-snatching" reaction by the HTN virus RdRp endonuclease domain is a particularly appealing approach for drug discovery against this virus. This RdRp endonuclease domain of the HTN virus has a metal-dependent catalytic activity. We targeted this metal-dependent enzymatic activity to identify inhibitors that can bind and disrupt this endonuclease enzyme activity using in-silico approaches i.e., molecular docking, molecular dynamics simulation, predicted absorption, distribution, metabolism, excretion, toxicity (ADMET) and drug-likeness studies. The docking studies showed that peramivir, and ingavirin compounds can effectively bind with the manganese ions and engage with other active site residues of this protein. Molecular simulations also showed stable binding of these ligands with the active site of HTN RdRp. Simulation analysis showed that they were in constant contact with the active site manganese ions and amino acid residues of the HTN virus endonuclease domain. This study will help in better understanding the HTN and related viruses.


Assuntos
Vírus Hantaan , RNA Polimerase Dependente de RNA , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Vírus Hantaan/genética , Vírus Hantaan/metabolismo , Simulação de Acoplamento Molecular , Manganês/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Endonucleases/química , Endonucleases/genética , Endonucleases/metabolismo , Íons
2.
Mar Drugs ; 21(5)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37233467

RESUMO

Seaweed has been known to possess beneficial effects forhuman health due to the presence of functional bioactive components. The n-butanol and ethyl acetate extracts of Dictyota dichotoma showed ash (31.78%), crude fat (18.93%), crude protein (14.5%), and carbohydrate (12.35%) contents. About 19 compounds were identified in the n-butanol extract, primarily undecane, cetylic acid, hexadecenoic acid, Z-11-, lageracetal, dodecane, and tridecane, whereas 25 compounds were identified in the ethyl acetate extract, mainly tetradecanoic, hexadecenoic acid, Z-11-, undecane, and myristic acid. FT-IR spectroscopy confirmed the presence of carboxylic acid, phenols, aromatics, ethers, amides, sulfonates, and ketones. Moreover, total phenolic contents (TPC) and total flavonoid contents (TFC) in ethyl acetate extract were 2.56 and 2.51 mg GAE/g and in n-butanol extract were 2.11 and 2.25 mg QE/g, respectively. Ethyl acetate and n-butanol extracts at a high concentration of 100 mg mL-1 showed 66.64 and 56.56 % inhibition of DPPH, respectively. Antimicrobial activity revealed that Candida albicans was the most susceptible microorganism, followed by Bacillus subtilis, Staphylococcus aureus, and Escherichia coli, whereas Pseudomonas aeruginosa showed the least inhibition at all concentrations. The in vivo hypoglycemic study revealed that both extracts exhibited concentration-dependent hypoglycemic activities. In conclusion, this macroalgae exhibited antioxidant, antimicrobial, and hypoglycemic potentials.


Assuntos
Anti-Infecciosos , Phaeophyceae , Alga Marinha , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Hipoglicemiantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , 1-Butanol , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química
3.
World J Microbiol Biotechnol ; 39(12): 345, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843704

RESUMO

Macroalgae has the potential to be a precious resource in food, pharmaceutical, and nutraceutical industries. Therefore, the present study was carried out to identify and quantify the phyco-chemicals and to assess the nutritional profile, antimicrobial, antioxidant, and anti-diabetic properties of Nitella hyalina extracts. Nutritional composition revealed0.05 ± 2.40% ash content, followed by crude protein (24.66 ± 0.95%), crude fat (17.66 ± 1.42%), crude fiber (2.17 ± 0.91%), moisture content (15.46 ± 0.48%) and calculated energy value (173.50 ± 2.90 Kcal/100 g). 23 compounds were identified through GC-MS analysis in ethyl acetate extract, with primary compounds being Palmitic acid, methyl ester, (Z)-9-Hexadecenoic acid, methyl ester, and Methyl tetra decanoate. Whereas 15 compounds were identified in n-butanol extract, with the major compounds being Tetra decanoic acid, 9-hexadecanoic acid, Methyl pentopyranoside, and undecane. FT-IR spectroscopy confirmed the presence of alcoholic phenol, saturated aliphatic compounds, lipids, carboxylic acid, carbonyl, aromatic components, amine, alkyl halides, alkene, and halogen compounds. Moreover, n-butanol contains 1.663 ± 0.768 mg GAE/g, of total phenolic contents (TPC,) and 2.050 ± 0.143 QE/g of total flavonoid contents (TFC), followed by ethyl acetate extract, i.e. 1.043 ± 0.961 mg GAE/g and 1.730 ± 0.311 mg QE/g respectively. Anti-radical scavenging effect in a range of 34.55-46.35% and 35.39-41.79% was measured for n-butanol and ethyl acetate extracts, respectively. Antimicrobial results declared that n-butanol extract had the highest growth inhibitory effect, followed by ethyl acetate extract. Pseudomonas aeruginosa was reported to be the most susceptible strain, followed by Staphylococcus aureus and Escherichia coli, while Candida albicans showed the least inhibition at all concentrations. In-vivo hypoglycemic study revealed that both extracts exhibited dose-dependent activity. Significant hypoglycemic activity was observed at a dose of 300 mg/kg- 1 after 6 h i.e. 241.50 ± 2.88, followed by doses of 200 and 100 mg/kg- 1 (245.17 ± 3.43 and 250.67 ± 7.45, respectively) for n-butanol extract. In conclusion, the macroalgae demonstrated potency concerning antioxidant, antimicrobial, and hypoglycemic properties.


Assuntos
Anti-Infecciosos , Nitella , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Hipoglicemiantes/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , 1-Butanol , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Ésteres
4.
Mol Cell Biochem ; 477(4): 1139-1153, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35076817

RESUMO

Nepetalactones belongs to the group of iridoid monoterpenoids, which are present in the aerial parts of nepeta plants. Nepetalactone is an attractant to feline animals causing euphoric effects, while it is a repellent to mosquitoes and cockroaches. It is also a pheromone for several insect aphid species. The main objective of this research was to study the electronic and spectral properties of nepetalactones. We investigated its structural properties using hybrid density-functional theory of B3LYP and WB97XD functional with the 6-311++G(d,p) basis set to optimize the geometry, and then computed the electronic structure, HOMO-LUMO, natural bond orbitals, molecular electronic potential and its contour map. We also obtained spectral signatures of NMR, IR and UV-Vis, and compared them with experimental data from the literature. The DFT study provided different electronic and spectral information that will be of value for further research on making new derivatives of nepetalactones for commercial purposes. Nepetalactones have a promising future in the development of novel mosquito repellents for the control of malaria and arboviral diseases.


Assuntos
Monoterpenos Ciclopentânicos/química , Repelentes de Insetos/química , Pironas/química , Animais , Gatos , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Proc Natl Acad Sci U S A ; 116(38): 18917-18922, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31484762

RESUMO

Photosystem II (PSII) performs the solar-driven oxidation of water used to fuel oxygenic photosynthesis. The active site of water oxidation is the oxygen-evolving complex (OEC), a Mn4CaO5 cluster. PSII requires degradation of key subunits and reassembly of the OEC as frequently as every 20 to 40 min. The metals for the OEC are assembled within the PSII protein environment via a series of binding events and photochemically induced oxidation events, but the full mechanism is unknown. A role of proton release in this mechanism is suggested here by the observation that the yield of in vitro OEC photoassembly is higher in deuterated water, D2O, compared with H2O when chloride is limiting. In kinetic studies, OEC photoassembly shows a significant lag phase in H2O at limiting chloride concentrations with an apparent H/D solvent isotope effect of 0.14 ± 0.05. The growth phase of OEC photoassembly shows an H/D solvent isotope effect of 1.5 ± 0.2. We analyzed the protonation states of the OEC protein environment using classical Multiconformer Continuum Electrostatics. Combining experiments and simulations leads to a model in which protons are lost from amino acid that will serve as OEC ligands as metals are bound. Chloride and D2O increase the proton affinities of key amino acid residues. These residues tune the binding affinity of Mn2+/3+ and facilitate the deprotonation of water to form a proposed µ-hydroxo bridged Mn2+Mn3+ intermediate.


Assuntos
Cloretos/química , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Água/química , Domínio Catalítico , Deutério , Cinética , Manganês/química , Oxirredução , Complexo de Proteína do Fotossistema II/química , Prótons , Solventes/química , Solventes/metabolismo , Eletricidade Estática , Água/metabolismo
6.
Drug Dev Ind Pharm ; 48(11): 611-622, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36420771

RESUMO

OBJECTIVE: Ketorolac tromethamine (KT), selected as a model drug, is used in management of moderate to severe acute pain. It has a short half-life (∼5.5 h) and requires frequent dose administration when needed for longer period of time. In our current project, we designed pH responsive hydrogel blends of chondroitin sulfate/pluronic F-127 (CS/Pl) for the controlled release of ketorolac. METHODS: Hydrogel blends were fabricated using free radical polymerization reaction technique utilizing different ratios of chondroitin sulfate (CS) (polymer) and pluronic F-127 (polymer), acrylic acid (monomer), N,N'-methyl-bisacrylamide (MBA) (cross-linker), initiator ammonium persulfate (APS) and tween-80 (surfactant). The fabricated hydrogel blends were studied and evaluated for pH responsiveness, swelling, water absorbency, in vitro drug release, and morphological characteristics such as SEM, XRD, FTIR, and TGA/DSC. Acute toxicity study was performed on rabbits. RESULTS: Maximum swelling and water absorbency were shown by CS/Pl blends being significantly greater at 7.4 (basic pH) than in 1.2 (acidic pH). In vitro dissolution demonstrated pH responsive controlled KT release following zero order at higher pH (7.4) medium up to 36 h. FTIR studies confirmed the structures of our blends; SEM results showed porous framework; thermal studies revealed higher stability of hydrogels than the individual polymers; and XRD confirmed the nature of our blends. Toxicity study revealed the nontoxic nature of the hydrogel blends. CONCLUSION: The prepared CS/Pl hydrogels demonstrated stimuli-controlled release with delivery of drug for prolonged period of time and thus can minimize dosing frequency, safe drug delivery, increased patient compliance and easiness.


Assuntos
Cetorolaco , Poloxâmero , Animais , Coelhos , Preparações de Ação Retardada , Sulfatos de Condroitina , Hidrogéis/química , Polímeros/química , Concentração de Íons de Hidrogênio , Água
7.
Molecules ; 27(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35408541

RESUMO

Chrozophora tinctoria (Euphorbiaceae) has been used as an emetic, anthelminthic, and cathartic agent in traditional medicine. We used gas chromatography-mass spectrometry (GC-MS) to characterize the composition of ethyl acetate (EAC) and dichloromethane (DCMC) fractions from the whole Chrozophora tinctoria plant. EAC and DCMC fractions were evaluated for acetylcholinesterase (AChE) inhibitory activity and acute toxicity. Their effects on intestinal propulsive movement and spasmogenic activity of the gastrointestinal tract (GIT) muscle were also assessed. The compounds detected in both fractions were mostly fatty acids, with about seven compounds in EAC and 10 in DCMC. These included pharmacologically active compounds such as imipramine, used to treat depression, or hexadecanoic acid methyl ester, an antioxidant. Both EAC and DCMC fractions inhibited acetylcholinesterase (AChE) activity with IC50 values of 10 µg and 130 µg, respectively. Both the fractions were found to be toxic in a dose-dependent manner, inducing emesis at 0.5 g or higher and lethargy and mortality from 3-5 g upwards. Similarly, both of the fractions showed laxative activity in metronidazole- and loperamide-induced constipation models. EAC relaxed the intestinal muscle at a lower dose (1 mg/mL) than DCMC. Similarly, the EAC extract showed a significant relaxation effect (EC50 = 0.67 ± 0.15 mg/mL) on KCL-induced contraction in rabbit jejunum as compared to DCMC (EC50 = 5.04 ± 0.05 mg/kg). The present study strongly supports the folklore that this valuable plant is a cathartic agent. Further work is required to isolate and validate the bioactive compounds that act as diarrheal agents in Chrozophora tinctoria.


Assuntos
Euphorbiaceae , Extratos Vegetais , Acetilcolinesterase , Animais , Catárticos , Euphorbiaceae/química , Laxantes/farmacologia , Extratos Vegetais/química , Coelhos
8.
Molecules ; 27(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36014480

RESUMO

Since its emergence in early 2019, the respiratory infectious virus, SARS-CoV-2, has ravaged the health of millions of people globally and has affected almost every sphere of life. Many efforts are being made to combat the COVID-19 pandemic's emerging and recurrent waves caused by its evolving and more infectious variants. As a result, novel and unexpected targets for SARS-CoV-2 have been considered for drug discovery. 2'-O-Methyltransferase (nsp10/nsp16) is a significant and appealing target in the SARS-CoV-2 life cycle because it protects viral RNA from the host degradative enzymes via a cap formation process. In this work, we propose prospective allosteric inhibitors that target the allosteric site, SARS-CoV-2 MTase. Four drug libraries containing ~119,483 compounds were screened against the allosteric site of SARS-CoV-2 MTase identified in our research. The identified best compounds exhibited robust molecular interactions and alloscore-score rankings with the allosteric site of SARS-CoV-2 MTase. Moreover, to further assess the dynamic stability of these compounds (CHEMBL2229121, ZINC000009464451, SPECS AK-91811684151, NCI-ID = 715319), a 100 ns molecular dynamics simulation, along with its holo-form, was performed to provide insights on the dynamic nature of these allosteric inhibitors at the allosteric site of the SARS-CoV-2 MTase. Additionally, investigations of MM-GBSA binding free energies revealed a good perspective for these allosteric inhibitor-enzyme complexes, indicating their robust antagonistic action on SARS-CoV-2 (nsp10/nsp16) methyltransferase. We conclude that these allosteric repressive agents should be further evaluated through investigational assessments in order to combat the proliferation of SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , Metiltransferases/metabolismo , SARS-CoV-2 , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Sítio Alostérico , Humanos , Pandemias , Estudos Prospectivos
9.
Molecules ; 27(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35807565

RESUMO

Chrozophora tinctoria is an annual plant of the family Euphorbiaceae, traditionally used as a laxative, a cathartic and an emetic. A methanolic extract of Chrozophora tinctoria (MEC) whole plant and an n-butanol fraction of Chrozophora tinctoria (NBFC) were analyzed by gas chromatography-mass spectrometry (GC-MS) to detect the phytochemicals. MEC and NBFC were tested for in vitro anti acetylcholinesterase (AChE) potential. The effect of both samples on intestinal propulsive movement and spasmolytic activity in the gastrointestinal tract (GIT) was also studied. About twelve compounds in MEC and three compounds in NBFC were tentatively identified through GC-MS. Some of them are compounds with known therapeutic activity, such as toluene; imipramine; undecane; 14-methyl-pentadecanoic acid methyl ester; and hexadecanoic acid. Both NBFC and MEC samples were checked for acute toxicity and were found to be highly toxic in a dose-dependent manner, causing diarrhea and emesis at 1 g/kg concentration in pigeons, with the highest lethargy and mortality above 3 g/kg. Both the samples of Chrozophora tinctoria revealed significant (p ≤ 0.01) laxative activity against metronidazole (7 mg/kg) and loperamide hydrochloride (4 mg/kg)-induced constipation. NBFC (81.18 ± 2.5%) and MEC (68.28 ± 2.4%) significantly increased charcoal meal intestinal transit compared to distal water (41.15 ± 4.3%). NBFC exhibited a significant relaxant effect (EC50 = 3.40 ± 0.20 mg/mL) in spontaneous rabbit jejunum as compared to MEC (EC50 = 4.34 ± 0.68 mg/kg). Similarly, the impact of NBFC on KCl-induced contraction was more significant than that of MEC (EC50 values of 7.22 ± 0.06 mg/mL and 7.47 ± 0.57 mg/mL, respectively). The present study scientifically validates the folk use of Chrozophora tinctoria in the management of gastrointestinal diseases such as constipation. Further work is needed to isolate the phytochemicals that act as diarrheal agents in Chrozophora tinctoria.


Assuntos
Euphorbiaceae , Laxantes , Animais , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Euphorbiaceae/química , Laxantes/farmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Coelhos
10.
Drug Dev Ind Pharm ; 47(12): 1952-1965, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35502653

RESUMO

OBJECTIVE: Purpose of the current study was to improve the oral effectiveness of 5-fluorouracil (5-FU) by developing novel controlled, combinatorial drug delivery system (nCDDS) for co-delivery of 5-FU and leucovorin calcium (LC) for colon targeting. SIGNIFICANCE: On the basis of results obtained, novel controlled, combinatorial drug delivery system could be an effective strategy for the colon targeting of 5-FU and LC. METHODS: Free radical polymerization method was tuned and used to fabricate this nCDDS. The nCDDS is synthesized in two steps, first synthesis of 5-FU/LC calcium loaded nanogels and second, pre-synthesized 5-FU and LC loaded nanogels were dispersed in pectin based polymerized matrix hard gel. The nanogels and nCDDS gels were characterized for network structure, thermal stability, and surface morphology. Swelling and in vitro release studies were carried out at different pH 1.2 and 7.4 both for naive nanogels and combined matrix gels. In vivo study of combinatorial gel was performed on rabbits by using HPLC method to estimate plasma drug concentration and pharmacokinetics parameters. RESULTS: Structure and thermal analysis confirmed the formation of stable polymeric network. SEM of nanogels and combinatorial gels showed that the spongy and rough edges particles and uniformly distributed in the combinatorial gel. The prepared nCDDS showed excellent water loving capacity and pH responsiveness. Combinatorial gel showed excellent characteristic for colonic delivery of drugs, which were confirmed by various in vitro and in vivo characterizations. Acute oral toxicity study of combinatorial gel confirmed the biocompatible and nontoxic characteristics of developed formulation. CONCLUSION: Conclusively, it can be found that nCDDS showed excellent properties regarding drug targeting in a controllable manner as compared to naive PEGylated nanogels.


Assuntos
Cálcio , Fluoruracila , Animais , Colo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Fluoruracila/química , Géis/química , Leucovorina , Nanogéis , Coelhos
11.
Drug Dev Ind Pharm ; 47(3): 465-476, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33651645

RESUMO

Poor solubility is an ongoing issue and the graph of poorly soluble drugs has increased markedly which critically affect their dissolution, bioavailability, and clinical effects. This common issue needs to be addressed, for this purpose a series of polyethylene glycol (PEG-4000) based nanogels were developed by free radical polymerization technique to enhance the solubility, dissolution, and bioavailability of poorly soluble drug meloxicam (MLX), as improved solubility is the significant application of nanosystems. Developed nanogels formulations were characterized by FTIR, XRD, SEM, zeta sizer, percent equilibrium swelling, drug loaded content (DLC), drug entrapment efficiency (DEE), solubility studies, and in vitro dissolution studies. Furthermore, cytotoxicity studies were conducted in order to determine the bio-compatibility of the nanogels drug delivery system to biological environment. Nanogels particle size was found to be 156.19 ± 09.33 d.nm. Solubility study confirmed that the solubility of poorly soluble drug MLX was significantly enhanced up to 36 folds as compared to reference product (Mobic®). The toxicity study conducted on rabbits and MTT assay endorsed the safety of the developed nanogels formulations to the biological system.


Assuntos
Polietilenoglicóis , Animais , Meloxicam , Nanogéis , Polimerização , Coelhos , Solubilidade
12.
Molecules ; 27(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35011458

RESUMO

The COVID-19 pandemic has caused millions of fatalities since 2019. Despite the availability of vaccines for this disease, new strains are causing rapid ailment and are a continuous threat to vaccine efficacy. Here, molecular docking and simulations identify strong inhibitors of the allosteric site of the SARS-CoV-2 virus RNA dependent RNA polymerase (RdRp). More than one hundred different flavonoids were docked with the SARS-CoV-2 RdRp allosteric site through computational screening. The three top hits were Naringoside, Myricetin and Aureusidin 4,6-diglucoside. Simulation analyses confirmed that they are in constant contact during the simulation time course and have strong association with the enzyme's allosteric site. Absorption, distribution, metabolism, excretion and toxicity (ADMET) data provided medicinal information of these top three hits. They had good human intestinal absorption (HIA) concentrations and were non-toxic. Due to high mutation rates in the active sites of the viral enzyme, these new allosteric site inhibitors offer opportunities to drug SARS-CoV-2 RdRp. These results provide new information for the design of novel allosteric inhibitors against SARS-CoV-2 RdRp.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Biologia Computacional/métodos , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Flavonoides/farmacologia , SARS-CoV-2/enzimologia , Sítio Alostérico , COVID-19/virologia , Domínio Catalítico , Desenho de Fármacos , Humanos , Absorção Intestinal , Simulação de Acoplamento Molecular
13.
Molecules ; 26(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652639

RESUMO

Hepatitis C is affecting millions of people around the globe annually, which leads to death in very high numbers. After many years of research, hepatitis C virus (HCV) remains a serious threat to the human population and needs proper management. The in silico approach in the drug discovery process is an efficient method in identifying inhibitors for various diseases. In our study, the interaction between Epigallocatechin-3-gallate, a component of green tea, and envelope glycoprotein E2 of HCV is evaluated. Epigallocatechin-3-gallate is the most promising polyphenol approved through cell culture analysis that can inhibit the entry of HCV. Therefore, various in silico techniques have been employed to find out other potential inhibitors that can behave as EGCG. Thus, the homology modelling of E2 protein was performed. The potential lead molecules were predicted using ligand-based as well as structure-based virtual screening methods. The compounds obtained were then screened through PyRx. The drugs obtained were ranked based on their binding affinities. Furthermore, the docking of the topmost drugs was performed by AutoDock Vina, while its 2D interactions were plotted in LigPlot+. The lead compound mms02387687 (2-[[5-[(4-ethylphenoxy) methyl]-4-prop-2-enyl-1,2,4-triazol-3-yl] sulfanyl]-N-[3(trifluoromethyl) phenyl] acetamide) was ranked on top, and we believe it can serve as a drug against HCV in the future, owing to experimental validation.


Assuntos
Catequina/análogos & derivados , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Proteínas do Envelope Viral/genética , Antivirais/química , Antivirais/farmacologia , Catequina/química , Catequina/farmacologia , Hepacivirus/genética , Hepacivirus/patogenicidade , Hepatite C/virologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Polifenóis/química , Polifenóis/farmacologia , Chá/química , Envelope Viral/química , Proteínas do Envelope Viral/antagonistas & inibidores , Internalização do Vírus/efeitos dos fármacos
14.
Molecules ; 26(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800212

RESUMO

Mushroom polysaccharides are active medicinal compounds that possess immune-modulatory and anticancer properties. Currently, the mushroom polysaccharides krestin, lentinan, and polysaccharopeptides are used as anticancer drugs. They are an unexplored source of natural products with huge potential in both the medicinal and nutraceutical industries. The northern parts of Pakistan have a rich biodiversity of mushrooms that grow during different seasons of the year. Here we selected an edible Morchella esculenta (true morels) of the Ascomycota group for polysaccharide isolation and characterization. Polysaccharopeptides and polysaccharides from this mushroom were isolated using the green chemistry, hot water treatment method. Fourier transform infrared spectroscopy revealed the sugar nature and possible beta-glucan type structure of these polysaccharides. Antioxidant assays showed that the deproteinized polysaccharides have moderate free radical scavenging activity. These isolated polysaccharides exhibited good acetylcholinesterase (AChE) and butyryl cholinesterase (BChE) inhibition activities. Therefore, these polysaccharides may be valuable for the treatment of Alzheimer's and Parkinson's diseases. Further bioassays are needed to discover the true potential of M. esculenta polysaccharides for medicinal purposes.


Assuntos
Ascomicetos/metabolismo , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Acetilcolinesterase , Agaricales/química , Antineoplásicos/farmacologia , Antioxidantes/química , Ascomicetos/efeitos dos fármacos , Inibidores da Colinesterase/isolamento & purificação , Inibidores da Colinesterase/farmacologia , Química Verde/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
15.
Small ; 16(25): e2001551, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32459055

RESUMO

The luminous efficiency of inorganic white light-emitting diodes, to be used by the next generation as light initiators, is continuously progressing and is an emerging interest for researchers. However, low color-rendering index (Ra), high correlated color temperature (CCT), and poor stability limit its wider application. Herein, it is reported that Sm3+ - and Eu3+ -doped calcium scandate (CaSc2 O4 (CSO)) are an emerging deep-red-emitting material with promising light absorption, enhanced emission properties, and excellent thermal stability that make it a promising candidate with potential applications in emission display, solid-state white lighting, and the device performance of perovskite solar cells (PSCs). The average crystal structures of Sm3+ -doped CSO are studied by synchrotron X-ray data that correspond to an extremely rigid host structure. Samarium ion is incorporated as a sensitizer that enhances the emission intensity up to 30%, with a high color purity of 88.9% with a 6% increment. The impacts of hosting the sensitizer are studied by quantifying the lifetime curves. The CaSc2 O4 :0.15Eu3+ ,0.03Sm3+ phosphor offers significant resistance to thermal quenching. The incorporation of lanthanide ion-doped phosphors CSOE into PSCs is investigated along with their potential applications. The CSOE-coated PSCs devices exhibit a high current density and a high power conversion efficiency (15.96%) when compared to the uncoated control devices.

16.
Molecules ; 25(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935863

RESUMO

Herein, we report the development of chitosan (CH)-based bio-composite modified with acrylonitrile (AN) in the presence of carbon disulfide. The current work aimed to increase the Lewis basic centers on the polymeric backbone using single-step three-components (chitosan, carbon disulfide, and acrylonitrile) reaction. For a said purpose, the thiocarbamate moiety was attached to the pendant functional amine (NH2) of chitosan. Both the pristine CH and modified CH-AN bio-composites were first characterized using numerous analytical and imaging techniques, including 13C-NMR (solid-form), Fourier-transform infrared spectroscopy (FTIR), elemental investigation, thermogravimetric analysis, and scanning electron microscopy (SEM). Finally, the modified bio-composite (CH-AN) was deployed for the decontamination of cations from the aqueous media. The sorption ability of the CH-AN bio-composite was evaluated by applying it to lead and copper-containing aqueous solution. The chitosan-based CH-AN bio-composite exhibited greater sorption capacity for lead (2.54 mmol g-1) and copper (2.02 mmol g-1) than precursor chitosan from aqueous solution based on Langmuir sorption isotherm. The experimental findings fitted better to Langmuir model than Temkin and Freundlich isotherms using linear regression method. Different linearization of Langmuir model showed different error functions and isothermal parameters. The nonlinear regression analysis showed lower values of error functions as compared with linear regression analysis. The chitosan with thiocarbamate group is an outstanding material for the decontamination of toxic elements from the aqueous environment.


Assuntos
Cátions/química , Quitosana/química , Descontaminação/métodos , Tiocarbamatos/química , Acrilonitrila/química , Adsorção , Dissulfeto de Carbono/química , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Água/química
17.
Molecules ; 25(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187049

RESUMO

Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.


Assuntos
Flavonoides/química , Flavonoides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Antivirais/química , Antivirais/farmacologia , Sistema Cardiovascular/efeitos dos fármacos , Flavonoides/economia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Camundongos , Sistema Nervoso/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Plantas/química , Polifenóis/química , Polifenóis/farmacologia , Quercetina/química , Quercetina/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/prevenção & controle
18.
Saudi Pharm J ; 28(12): 1580-1591, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33424251

RESUMO

Zika virus (ZIKV) is one of the mosquito borne flavivirus with several outbreaks in past few years in tropical and subtropical regions. The non-structural proteins of flaviviruses are suitable active targets for inhibitory drugs due to their role in pathogenicity. In ZIKV, the non-structural protein 5 (NS5) RNA-Dependent RNA polymerase replicates its genome. Here we have performed virtual screening to identify suitable ligands that can potentially halt the ZIKV NS5 RNA dependent RNA polymerase (RdRp). During this process, we searched and screened a library of ligands against ZIKV NS5 RdRp. The selected ligands with significant binding energy and ligand-receptor interactions were further processed. Among the selected docked conformations, top five was further optimized at atomic level using molecular dynamic simulations followed by binding free energy calculations. The interactions of ligands with the target structure of ZIKV RdRp revealed that they form strong bonds within the active sites of the receptor molecule. The efficacy of these drugs against ZIKV can be further analyzed through in-vitro and in-vivo studies.

19.
Mikrochim Acta ; 186(7): 471, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31240490

RESUMO

An amperometric nonenzymatic dopamine sensor has been developed. Cobalt oxide (Co3O4) nanoparticles were uniformly dispersed inside mesoporous SiO2/C. A sol-gel process was used for the preparation of this mesoporous composite material (SiO2/C). This mesoporous composite has a pore size of around 13-14 nm, a large surface area (SBET 421 m2·g-1) and large pore volume (0.98 cm3·g-1) as determined by the BET technique. The material compactness was confirmed by SEM images which showing that there is no phase segregation at the magnification applied. The chemical homogeneity of the materials was confirmed by EDX mapping. The SiO2/C/Co3O4 nanomaterial was pressed in desk format to fabricate a working electrode for nonenzymatic amperometric sensing of dopamine at a pH value of 7.0 and at a typical working potential of 0.25 V vs SCE. The detection limit, linear response range and sensitivity are 0.018 µmol L-1, 10-240 µmol L-1, and 80 µA·µmol L-1 cm-2, respectively. The response timé of the electrode is less than 1 s in the presence of 60 µmol L-1 of dopamine. The sensor showed chemically stability, high sensitivity and is not interfered by other electroactive molecules present in blood. The repeatability of this sensor was evaluated as 1.9% (RSD; for n = 10 at a 40 µmol L-1 dopamine level. Graphical abstract Schematic presentation of the preparation of a nanostructured composite of type SiO2/C/Co3O4 for electrooxidative sensing of dopamine.


Assuntos
Carbono/química , Dopamina/análise , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Dióxido de Silício/química , Cerâmica/química , Cobalto/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Limite de Detecção , Reprodutibilidade dos Testes
20.
Molecules ; 24(4)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769819

RESUMO

Steviosides, rebaudiosides and their analogues constitute a major class of naturally occurring biologically active diterpene compounds. The wide spectrum of pharmacological activity of this group of compounds has developed an interest among medicinal chemists to synthesize, purify, and analyze more selective and potent isosteviol derivatives. It has potential biological applications and improves the field of medicinal chemistry by designing novel drugs with the ability to cope against resistance developing diseases. The outstanding advancement in the design and synthesis of isosteviol and its derivative has proved its effectiveness and importance in the field of medicinal chemical research. The present review is an effort to integrate recently developed novel drugs syntheses from isosteviol and potentially active pharmacological importance of the isosteviol derivatives covering the recent advances.


Assuntos
Química Farmacêutica , Diterpenos do Tipo Caurano/química , Diterpenos/química , Diterpenos/síntese química , Diterpenos/uso terapêutico , Diterpenos do Tipo Caurano/síntese química , Diterpenos do Tipo Caurano/uso terapêutico , Desenho de Fármacos , Humanos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa