Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 166(11): 1025-1037, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33095135

RESUMO

Microbial bioproduction of the aromatic acid anthranilate (ortho-aminobenzoate) has the potential to replace its current, environmentally demanding production process. The host organism employed for such a process needs to fulfil certain demands to achieve industrially relevant product levels. As anthranilate is toxic for microorganisms, the use of particularly robust production hosts can overcome issues from product inhibition. The microorganisms Corynebacterium glutamicum and Pseudomonas putida are known for high tolerance towards a variety of chemicals and could serve as promising platform strains. In this study, the resistance of both wild-type strains towards anthranilate was assessed. To further enhance their native tolerance, adaptive laboratory evolution (ALE) was applied. Sequential batch fermentation processes were developed, adapted to the cultivation demands for C. glutamicum and P. putida, to enable long-term cultivation in the presence of anthranilate. Isolation and analysis of single mutants revealed phenotypes with improved growth behaviour in the presence of anthranilate for both strains. The characterization and improvement of both potential hosts provide an important basis for further process optimization and will aid the establishment of an industrially competitive method for microbial synthesis of anthranilate.


Assuntos
Corynebacterium glutamicum/metabolismo , Pseudomonas putida/metabolismo , ortoaminobenzoatos/metabolismo , Adaptação Fisiológica , Reatores Biológicos , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crescimento & desenvolvimento , Evolução Molecular Direcionada , Microbiologia Industrial , Mutação , Pseudomonas putida/genética , Pseudomonas putida/crescimento & desenvolvimento
2.
Appl Microbiol Biotechnol ; 96(1): 61-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22854892

RESUMO

Anaerobic bacteria are the oldest terrestrial creatures. They occur ubiquitously in soil and in the intestine of higher organisms and play a major role in human health, ecology, and industry. However, until lately no antibiotic or any other secondary metabolite has been known from anaerobes. Mining the genome sequences of Clostridium spp. has revealed a high prevalence of putative biosynthesis genes (PKS and NRPS), and only recently the first antibiotic from the anaerobic world, closthioamide, has been isolated from the cellulose degrading bacterium Clostridium cellulolyticum. The successful genetic induction of antibiotic biosynthesis in an anaerobe encourages further investigations of obligate anaerobes to tap their hidden biosynthetic potential.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/isolamento & purificação , Vias Biossintéticas/genética , Clostridium/genética , Clostridium/metabolismo , Genoma Bacteriano , Humanos
3.
J Am Chem Soc ; 132(40): 13966-8, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20853892

RESUMO

Genetic manipulation of the LuxR-type quorum sensing regulator system in Burkholderia thailandensis caused a significant change in the metabolic profile: it led to activation of the thailandamide biosynthesis gene cluster, dramatically increased thailandamide production, and induced strong pigmentation. A novel polyketide metabolite, thailandamide lactone (2), which cannot be detected in the wild type, was isolated from the mutant broth, and its structure was elucidated by high-resolution mass spectrometry and IR and NMR spectroscopy. In a biological assay using tumor cell lines, 2 showed moderate antiproliferative activities. This finding not only points to complex regulation but also serves as a proof of concept that engineering quorum sensing mutants may enable the discovery of novel bioactive natural products encoded by silent or only weakly expressed biosynthetic pathway genes.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia/metabolismo , Percepção de Quorum , Burkholderia/genética , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular , Espectrofotometria Infravermelho
7.
Front Microbiol ; 6: 1310, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635771

RESUMO

The Pseudomonas putida KT2440 strain was engineered in order to produce anthranilate (oAB, ortho-aminobenzoate), a precursor of the aromatic amino acid tryptophan, from glucose as sole carbon source. To enable the production of the metabolic intermediate oAB, the trpDC operon encoding an anthranilate phosphoribosyltransferase (TrpD) and an indole-3-glycerol phosphate synthase (TrpC), were deleted. In addition, the chorismate mutase (pheA) responsible for the conversion of chorismate over prephenate to phenylpyruvate was deleted in the background of the deletion of trpDC to circumvent a potential drain of precursor. To further increase the oAB production, a feedback insensitive version of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase encoded by the aroG (D146N) gene and an anthranilate synthase (trpE (S40F) G) were overexpressed separately and simultaneously in the deletion mutants. With optimized production conditions in a tryptophan-limited fed-batch process a maximum of 1.54 ± 0.3 g L(-1) (11.23 mM) oAB was obtained with the best performing engineered P. putida KT2440 strain (P. putida ΔtrpDC pSEVA234_aroG (D146N) _trpE (S40F) G).

8.
PLoS One ; 7(1): e29609, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22235310

RESUMO

Modular type I polyketide synthases (PKS) produce a vast array of bacterial metabolites with highly diverse biological functions. Notably, all known polyketides were isolated from aerobic bacteria, and yet no example has been reported for strict anaerobes. In this study we explored the diversity and distribution of PKS genes in the genus Clostridium. In addition to comparative genomic analyses combined with predictions of modular type I polyketide synthase (PKS) gene clusters in sequenced genomes of Clostridium spp., a representative selection of other species inhabiting a variety of ecological niches was investigated by PCR screening for PKS genes. Our data reveal that all studied pathogenic Clostridium spp. are devoid of putative PKS genes. In stark contrast, cryptic PKS genes are widespread in genomes of non-pathogenic Clostridium species. According to phylogenetic analyses, the Clostridium PKS genes have unusual and diverse origins. However, reverse transcription quantitative PCR demonstrates that these genes are silent under standard cultivation conditions, explaining why the related metabolites have been overlooked until now. This study presents clostridia as a putative source for novel bioactive polyketides.


Assuntos
Clostridium/enzimologia , Clostridium/genética , Policetídeo Sintases/genética , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/enzimologia , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/crescimento & desenvolvimento , Clostridium/classificação , Clostridium/crescimento & desenvolvimento , Inativação Gênica , Genômica , Família Multigênica , Filogenia , Policetídeo Sintases/deficiência , Especificidade da Espécie
9.
Curr Opin Chem Biol ; 15(1): 22-31, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21111667

RESUMO

The massive surge in genome sequencing projects has opened our eyes to the overlooked biosynthetic potential and metabolic diversity of microorganisms. While traditional approaches have been successful at identifying many useful therapeutic agents from these organisms, new tactics are needed in order to exploit their true biosynthetic potential. Several genomics-inspired strategies have been successful in unveiling new metabolites that were overlooked under standard fermentation and detection conditions. In addition, genome sequences have given us valuable insight for genetically engineering biosynthesis gene clusters that remain silent or are poorly expressed in the absence of a specific trigger. As more genome sequences are becoming available, we are noticing the emergence of underexplored or neglected organisms as alternative resources for new therapeutic agents.


Assuntos
Produtos Biológicos/análise , Genômica/métodos , Produtos Biológicos/biossíntese , Produtos Biológicos/química , Produtos Biológicos/genética , Simulação por Computador , Engenharia Genética , Genômica/instrumentação , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa