RESUMO
PURPOSE: To investigate the number of rare missense variants observed in human genome sequences by ACMG/AMP PP3/BP4 evidence strength, following the ClinGen-calibrated PP3/BP4 computational recommendations. METHODS: Missense variants from the genome sequences of 300 probands from the Rare Genomes Project with suspected rare disease were analyzed using computational prediction tools that were able to reach PP3_Strong and BP4_Moderate evidence strengths (BayesDel, MutPred2, REVEL, and VEST4). The numbers of variants at each evidence strength were analyzed across disease-associated genes and genome-wide. RESULTS: From a median of 75.5 rare (≤1% allele frequency) missense variants in disease-associated genes per proband, a median of one reached PP3_Strong, 3-5 PP3_Moderate, and 3-5 PP3_Supporting. Most were allocated BP4 evidence (median 41-49 per proband) or were indeterminate (median 17.5-19 per proband). Extending the analysis to all protein-coding genes genome-wide, the number of variants reaching PP3_Strong score thresholds increased approximately 2.6-fold compared with disease-associated genes, with a median per proband of 1-3 PP3_Strong, 8-16 PP3_Moderate, and 10-17 PP3_Supporting. CONCLUSION: A small number of variants per proband reached PP3_Strong and PP3_Moderate in 3424 disease-associated genes. Although not the intended use of the recommendations, this was also observed genome-wide. Use of PP3/BP4 evidence as recommended from calibrated computational prediction tools in the clinical diagnostic laboratory is unlikely to inappropriately contribute to the classification of an excessive number of variants as pathogenic or likely pathogenic by ACMG/AMP rules.
RESUMO
BACKGROUND: The increasing adoption of electronic health record (EHR) systems enables automated, large scale, and meaningful analysis of regional population health. We explored how EHR systems could inform surveillance of trauma-related emergency department visits arising from seasonal, holiday-related, and rare environmental events. METHODS: We analyzed temporal variation in diagnosis codes over 24 years of trauma visit data at the three hospitals in the University of Washington Medicine system in Seattle, Washington, USA. We identified seasons and days in which specific codes and categories of codes were statistically enriched, meaning that a significantly greater than average proportion of trauma visits included a given diagnosis code during that time period. RESULTS: We confirmed known seasonal patterns in emergency department visits for trauma. As expected, cold weather-related incidents (e.g. frostbite, snowboarding injury) were enriched in the winter, whereas fair weather-related incidents (e.g. bug bites, boating accidents, bicycle accidents) were enriched in the spring and summer. Our analysis of specific days of the year found that holidays were enriched for alcohol poisoning, assaults, and firework accidents. We also detected one time regional events such as the 2001 Nisqually earthquake and the 2006 Hanukkah Eve Windstorm. CONCLUSIONS: Though EHR systems were developed to prioritize operational rather than analytic priorities and have consequent limitations for surveillance, our EHR enrichment analysis nonetheless re-identified expected temporal population health patterns. EHRs are potentially a valuable source of information to inform public health policy, both in retrospective analysis and in a surveillance capacity.
Assuntos
Registros Eletrônicos de Saúde , Serviço Hospitalar de Emergência/estatística & dados numéricos , Intoxicação/epidemiologia , Vigilância da População/métodos , Ferimentos e Lesões/epidemiologia , Férias e Feriados , Humanos , Intoxicação/terapia , Estações do Ano , Washington/epidemiologia , Tempo (Meteorologia) , Ferimentos e Lesões/terapiaRESUMO
PURPOSE: Family studies are an important but underreported source of information for reclassification of variants of uncertain significance (VUS). We evaluated outcomes of a patient-driven framework that offered familial VUS reclassification analysis to any adult with any clinically ascertained VUS from any laboratory in the United States. METHODS: With guidance from FindMyVariant.org, participants recruited their own relatives for study participation. We genotyped relatives, calculated quantitative cosegregation likelihood ratios, and evaluated variant classifications using Tavtigian's unified framework for Bayesian analysis with American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) criteria. We report participation and VUS reclassification rates from the 50 families enrolled for at least one year and reclassification results for 112 variants from the larger 92-family cohort. RESULTS: For the 50-family cohort, 6.7 relatives per family were invited to participate and 67% of relatives returned samples for genotyping. Sixty-one percent of VUS were reclassified, 84% of which were classified as benign or likely benign. Genotyping relatives identified a de novo variant, phase variants, and relatives with phenotypes highly specific for or incompatible with specific classifications. CONCLUSIONS: Motivated families can contribute to successful VUS reclassification at substantially higher rates than those previously published. Clinical laboratories could consider offering family studies to all patients with VUS.
Assuntos
Predisposição Genética para Doença/classificação , Variação Genética/genética , Análise de Sequência de DNA/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , Família , Feminino , Testes Genéticos/métodos , Genômica/métodos , Genótipo , Técnicas de Genotipagem/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , SoftwareRESUMO
The advent of next-generation sequencing has dramatically decreased the cost for whole-genome sequencing and increased the viability for its application in research and clinical care. The Personal Genome Project (PGP) provides unrestricted access to genomes of individuals and their associated phenotypes. This resource enabled the Critical Assessment of Genome Interpretation (CAGI) to create a community challenge to assess the bioinformatics community's ability to predict traits from whole genomes. In the CAGI PGP challenge, researchers were asked to predict whether an individual had a particular trait or profile based on their whole genome. Several approaches were used to assess submissions, including ROC AUC (area under receiver operating characteristic curve), probability rankings, the number of correct predictions, and statistical significance simulations. Overall, we found that prediction of individual traits is difficult, relying on a strong knowledge of trait frequency within the general population, whereas matching genomes to trait profiles relies heavily upon a small number of common traits including ancestry, blood type, and eye color. When a rare genetic disorder is present, profiles can be matched when one or more pathogenic variants are identified. Prediction accuracy has improved substantially over the last 6 years due to improved methodology and a better understanding of features.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento Completo do Genoma/métodos , Área Sob a Curva , Predisposição Genética para Doença , Projeto Genoma Humano , Humanos , Fenótipo , Locos de Características QuantitativasRESUMO
Purpose: We previously developed an approach to calibrate computational tools for clinical variant classification, updating recommendations for the reliable use of variant impact predictors to provide evidence strength up to Strong. A new generation of tools using distinctive approaches have since been released, and these methods must be independently calibrated for clinical application. Method: Using our local posterior probability-based calibration and our established data set of ClinVar pathogenic and benign variants, we determined the strength of evidence provided by three new tools (AlphaMissense, ESM1b, VARITY) and calibrated scores meeting each evidence strength. Results: All three tools reached the Strong level of evidence for variant pathogenicity and Moderate for benignity, though sometimes for few variants. Compared to previously recommended tools, these yielded at best only modest improvements in the tradeoffs of evidence strength and false positive predictions. Conclusion: At calibrated thresholds, three new computational predictors provided evidence for variant pathogenicity at similar strength to the four previously recommended predictors (and comparable with functional assays for some variants). This calibration broadens the scope of computational tools for application in clinical variant classification. Their new approaches offer promise for future advancement of the field.
RESUMO
Purpose: To investigate the number of rare missense variants observed in human genome sequences by ACMG/AMP PP3/BP4 evidence strength, following the calibrated PP3/BP4 computational recommendations. Methods: Missense variants from the genome sequences of 300 probands from the Rare Genomes Project with suspected rare disease were analyzed using computational prediction tools able to reach PP3_Strong and BP4_Moderate evidence strengths (BayesDel, MutPred2, REVEL, and VEST4). The numbers of variants at each evidence strength were analyzed across disease-associated genes and genome-wide. Results: From a median of 75.5 rare (≤1% allele frequency) missense variants in disease-associated genes per proband, a median of one reached PP3_Strong, 3-5 PP3_Moderate, and 3-5 PP3_Supporting. Most were allocated BP4 evidence (median 41-49 per proband) or were indeterminate (median 17.5-19 per proband). Extending the analysis to all protein-coding genes genome-wide, the number of PP3_Strong variants increased approximately 2.6-fold compared to disease-associated genes, with a median per proband of 1-3 PP3_Strong, 8-16 PP3_Moderate, and 10-17 PP3_Supporting. Conclusion: A small number of variants per proband reached PP3_Strong and PP3_Moderate in 3,424 disease-associated genes, and though not the intended use of the recommendations, also genome-wide. Use of PP3/BP4 evidence as recommended from calibrated computational prediction tools in the clinical diagnostic laboratory is unlikely to inappropriately contribute to the classification of an excessive number of variants as Pathogenic or Likely Pathogenic by ACMG/AMP rules.
RESUMO
Regular, systematic, and independent assessment of computational tools used to predict the pathogenicity of missense variants is necessary to evaluate their clinical and research utility and suggest directions for future improvement. Here, as part of the sixth edition of the Critical Assessment of Genome Interpretation (CAGI) challenge, we assess missense variant effect predictors (or variant impact predictors) on an evaluation dataset of rare missense variants from disease-relevant databases. Our assessment evaluates predictors submitted to the CAGI6 Annotate-All-Missense challenge, predictors commonly used by the clinical genetics community, and recently developed deep learning methods for variant effect prediction. To explore a variety of settings that are relevant for different clinical and research applications, we assess performance within different subsets of the evaluation data and within high-specificity and high-sensitivity regimes. We find strong performance of many predictors across multiple settings. Meta-predictors tend to outperform their constituent individual predictors; however, several individual predictors have performance similar to that of commonly used meta-predictors. The relative performance of predictors differs in high-specificity and high-sensitivity regimes, suggesting that different methods may be best suited to different use cases. We also characterize two potential sources of bias. Predictors that incorporate allele frequency as a predictive feature tend to have reduced performance when distinguishing pathogenic variants from very rare benign variants, and predictors supervised on pathogenicity labels from curated variant databases often learn label imbalances within genes. Overall, we find notable advances over the oldest and most cited missense variant effect predictors and continued improvements among the most recently developed tools, and the CAGI Annotate-All-Missense challenge (also termed the Missense Marathon) will continue to assess state-of-the-art methods as the field progresses. Together, our results help illuminate the current clinical and research utility of missense variant effect predictors and identify potential areas for future development.
RESUMO
BACKGROUND: While many patients seem to recover from SARS-CoV-2 infections, many patients report experiencing SARS-CoV-2 symptoms for weeks or months after their acute COVID-19 ends, even developing new symptoms weeks after infection. These long-term effects are called post-acute sequelae of SARS-CoV-2 (PASC) or, more commonly, Long COVID. The overall prevalence of Long COVID is currently unknown, and tools are needed to help identify patients at risk for developing long COVID. METHODS: A working group of the Rapid Acceleration of Diagnostics-radical (RADx-rad) program, comprised of individuals from various NIH institutes and centers, in collaboration with REsearching COVID to Enhance Recovery (RECOVER) developed and organized the Long COVID Computational Challenge (L3C), a community challenge aimed at incentivizing the broader scientific community to develop interpretable and accurate methods for identifying patients at risk of developing Long COVID. From August 2022 to December 2022, participants developed Long COVID risk prediction algorithms using the National COVID Cohort Collaborative (N3C) data enclave, a harmonized data repository from over 75 healthcare institutions from across the United States (U.S.). FINDINGS: Over the course of the challenge, 74 teams designed and built 35 Long COVID prediction models using the N3C data enclave. The top 10 teams all scored above a 0.80 Area Under the Receiver Operator Curve (AUROC) with the highest scoring model achieving a mean AUROC of 0.895. Included in the top submission was a visualization dashboard that built timelines for each patient, updating the risk of a patient developing Long COVID in response to clinical events. INTERPRETATION: As a result of L3C, federal reviewers identified multiple machine learning models that can be used to identify patients at risk for developing Long COVID. Many of the teams used approaches in their submissions which can be applied to future clinical prediction questions. FUNDING: Research reported in this RADx® Rad publication was supported by the National Institutes of Health. Timothy Bergquist, Johanna Loomba, and Emily Pfaff were supported by Axle Subcontract: NCATS-STSS-P00438.
Assuntos
COVID-19 , Aprendizado de Máquina , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/isolamento & purificação , Estados Unidos/epidemiologia , Algoritmos , Síndrome de COVID-19 Pós-Aguda , Estudos de Coortes , CrowdsourcingRESUMO
Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20%. Due to their rarity, the diagnosis of these entities is often delayed, their treatment is mainly based on historic treatment concepts, and clinical trials require multi-institutional collaborations. The MICCAI Brain Tumor Segmentation (BraTS) Challenge is a landmark community benchmark event with a successful history of 12 years of resource creation for the segmentation and analysis of adult glioma. Here we present the CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge, which represents the first BraTS challenge focused on pediatric brain tumors with data acquired across multiple international consortia dedicated to pediatric neuro-oncology and clinical trials. The BraTS-PEDs 2023 challenge focuses on benchmarking the development of volumentric segmentation algorithms for pediatric brain glioma through standardized quantitative performance evaluation metrics utilized across the BraTS 2023 cluster of challenges. Models gaining knowledge from the BraTS-PEDs multi-parametric structural MRI (mpMRI) training data will be evaluated on separate validation and unseen test mpMRI dataof high-grade pediatric glioma. The CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs 2023 challenge brings together clinicians and AI/imaging scientists to lead to faster development of automated segmentation techniques that could benefit clinical trials, and ultimately the care of children with brain tumors.
RESUMO
OBJECTIVE: To assess whether rituximab (RTX) is associated with worse COVID-19 outcomes among patients with rheumatoid arthritis (RA). METHODS: We used the National COVID Cohort Collaborative (N3C), the largest US cohort of COVID-19 cases and controls, to identify patients with RA (International Classification of Diseases (ICD)-10 code, M05.X or M06.X). Key outcomes were COVID-19-related hospitalization, intensive care unit (ICU) admission, 30-day mortality, and World Health Organization (WHO) classification for COVID-19 severity. We used multivariable logistic regression models to assess the association between RTX use and the odds of COVID-19 outcomes compared with the use of conventional synthetic disease modifying anti-rheumatic drugs (csDMARDs), adjusting for demographics, medical comorbidities, smoking status, body mass index, US region and COVID-19 treatments. RESULTS: A total of 69,549 patients met our eligibility criteria of which 22,956 received a COVID-19 positive diagnosis between 1/1/2020 and 9/16/2021. Median (IQR) age of the cohort was 63 (52-72) years, 76% of the cohort was female, 68% was non-Hispanic/Latinx White, and 73% was non-smokers. Prior to their first COVID-19 diagnosis, 364 patients were exposed to RTX. Compared to the use of csDMARDs, RTX use was associated with an increased odds of COVID-19-related hospitalization (adjusted odds ratio [aOR] 2.1, 95% confidence interval 1.5-3.0), ICU admission (aOR 5.2, 1.8-15.4) and invasive ventilation (aOR 2.7, 1.4-5.5). Results were confirmed in multiple sensitivity analyses. CONCLUSION: Our findings can guide patients, providers, and policymakers regarding the increased risks associated with RTX use during the COVID-19 pandemic. These results can help risk stratification and prognosis-assessment.
Assuntos
Antirreumáticos , Artrite Reumatoide , COVID-19 , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Rituximab/efeitos adversos , Estudos Retrospectivos , Estudos de Coortes , Pandemias , Teste para COVID-19 , Artrite Reumatoide/complicações , Antirreumáticos/efeitos adversosRESUMO
Patients with multiple myeloma (MM), an age-dependent neoplasm of antibody-producing plasma cells, have compromised immune systems and might be at increased risk for severe COVID-19 outcomes. This study characterizes risk factors associated with clinical indicators of COVID-19 severity and all-cause mortality in myeloma patients utilizing NCATS' National COVID Cohort Collaborative (N3C) database. The N3C consortium is a large, centralized data resource representing the largest multi-center cohort of COVID-19 cases and controls nationwide (>16 million total patients, and >6 million confirmed COVID-19+ cases to date). Our cohort included myeloma patients (both inpatients and outpatients) within the N3C consortium who have been diagnosed with COVID-19 based on positive PCR or antigen tests or ICD-10-CM diagnosis code. The outcomes of interest include all-cause mortality (including discharge to hospice) during the index encounter and clinical indicators of severity (i.e., hospitalization/emergency department/ED visit, use of mechanical ventilation, or extracorporeal membrane oxygenation (ECMO)). Finally, causal inference analysis was performed using the Coarsened Exact Matching (CEM) and Propensity Score Matching (PSM) methods. As of 05/16/2022, the N3C consortium included 1,061,748 cancer patients, out of which 26,064 were MM patients (8,588 were COVID-19 positive). The mean age at COVID-19 diagnosis was 65.89 years, 46.8% were females, and 20.2% were of black race. 4.47% of patients died within 30 days of COVID-19 hospitalization. Overall, the survival probability was 90.7% across the course of the study. Multivariate logistic regression analysis showed histories of pulmonary and renal disease, dexamethasone, proteasome inhibitor/PI, immunomodulatory/IMiD therapies, and severe Charlson Comorbidity Index/CCI were significantly associated with higher risks of severe COVID-19 outcomes. Protective associations were observed with blood-or-marrow transplant/BMT and COVID-19 vaccination. Further, multivariate Cox proportional hazard analysis showed that high and moderate CCI levels, International Staging System (ISS) moderate or severe stage, and PI therapy were associated with worse survival, while BMT and COVID-19 vaccination were associated with lower risk of death. Finally, matched sample average treatment effect on the treated (SATT) confirmed the causal effect of BMT and vaccination status as top protective factors associated with COVID-19 risk among US patients suffering from multiple myeloma. To the best of our knowledge, this is the largest nationwide study on myeloma patients with COVID-19.
Assuntos
COVID-19 , Mieloma Múltiplo , Feminino , Humanos , Masculino , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19/uso terapêutico , Mieloma Múltiplo/epidemiologia , Mieloma Múltiplo/terapia , Fatores de Proteção , Teste para COVID-19 , Fatores de Risco , VacinaçãoRESUMO
OBJECTIVE: Applications of machine learning in healthcare are of high interest and have the potential to improve patient care. Yet, the real-world accuracy of these models in clinical practice and on different patient subpopulations remains unclear. To address these important questions, we hosted a community challenge to evaluate methods that predict healthcare outcomes. We focused on the prediction of all-cause mortality as the community challenge question. MATERIALS AND METHODS: Using a Model-to-Data framework, 345 registered participants, coalescing into 25 independent teams, spread over 3 continents and 10 countries, generated 25 accurate models all trained on a dataset of over 1.1 million patients and evaluated on patients prospectively collected over a 1-year observation of a large health system. RESULTS: The top performing team achieved a final area under the receiver operator curve of 0.947 (95% CI, 0.942-0.951) and an area under the precision-recall curve of 0.487 (95% CI, 0.458-0.499) on a prospectively collected patient cohort. DISCUSSION: Post hoc analysis after the challenge revealed that models differ in accuracy on subpopulations, delineated by race or gender, even when they are trained on the same data. CONCLUSION: This is the largest community challenge focused on the evaluation of state-of-the-art machine learning methods in a healthcare system performed to date, revealing both opportunities and pitfalls of clinical AI.
Assuntos
Crowdsourcing , Medicina , Humanos , Inteligência Artificial , Aprendizado de Máquina , AlgoritmosRESUMO
Introduction: With persistent incidence, incomplete vaccination rates, confounding respiratory illnesses, and few therapeutic interventions available, COVID-19 continues to be a burden on the pediatric population. During a surge, it is difficult for hospitals to direct limited healthcare resources effectively. While the overwhelming majority of pediatric infections are mild, there have been life-threatening exceptions that illuminated the need to proactively identify pediatric patients at risk of severe COVID-19 and other respiratory infectious diseases. However, a nationwide capability for developing validated computational tools to identify pediatric patients at risk using real-world data does not exist. Methods: HHS ASPR BARDA sought, through the power of competition in a challenge, to create computational models to address two clinically important questions using the National COVID Cohort Collaborative: (1) Of pediatric patients who test positive for COVID-19 in an outpatient setting, who are at risk for hospitalization? (2) Of pediatric patients who test positive for COVID-19 and are hospitalized, who are at risk for needing mechanical ventilation or cardiovascular interventions? Results: This challenge was the first, multi-agency, coordinated computational challenge carried out by the federal government as a response to a public health emergency. Fifty-five computational models were evaluated across both tasks and two winners and three honorable mentions were selected. Conclusion: This challenge serves as a framework for how the government, research communities, and large data repositories can be brought together to source solutions when resources are strapped during a pandemic.
RESUMO
BACKGROUND: Stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow precision clinical management strategies. However, long COVID is incompletely understood and characterised by a wide range of manifestations that are difficult to analyse computationally. Additionally, the generalisability of machine learning classification of COVID-19 clinical outcomes has rarely been tested. METHODS: We present a method for computationally modelling PASC phenotype data based on electronic healthcare records (EHRs) and for assessing pairwise phenotypic similarity between patients using semantic similarity. Our approach defines a nonlinear similarity function that maps from a feature space of phenotypic abnormalities to a matrix of pairwise patient similarity that can be clustered using unsupervised machine learning. FINDINGS: We found six clusters of PASC patients, each with distinct profiles of phenotypic abnormalities, including clusters with distinct pulmonary, neuropsychiatric, and cardiovascular abnormalities, and a cluster associated with broad, severe manifestations and increased mortality. There was significant association of cluster membership with a range of pre-existing conditions and measures of severity during acute COVID-19. We assigned new patients from other healthcare centres to clusters by maximum semantic similarity to the original patients, and showed that the clusters were generalisable across different hospital systems. The increased mortality rate originally identified in one cluster was consistently observed in patients assigned to that cluster in other hospital systems. INTERPRETATION: Semantic phenotypic clustering provides a foundation for assigning patients to stratified subgroups for natural history or therapy studies on PASC. FUNDING: NIH (TR002306/OT2HL161847-01/OD011883/HG010860), U.S.D.O.E. (DE-AC02-05CH11231), Donald A. Roux Family Fund at Jackson Laboratory, Marsico Family at CU Anschutz.
Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , Progressão da Doença , SARS-CoV-2RESUMO
Automated brain tumor segmentation methods have become well-established and reached performance levels offering clear clinical utility. These methods typically rely on four input magnetic resonance imaging (MRI) modalities: T1-weighted images with and without contrast enhancement, T2-weighted images, and FLAIR images. However, some sequences are often missing in clinical practice due to time constraints or image artifacts, such as patient motion. Consequently, the ability to substitute missing modalities and gain segmentation performance is highly desirable and necessary for the broader adoption of these algorithms in the clinical routine. In this work, we present the establishment of the Brain MR Image Synthesis Benchmark (BraSyn) in conjunction with the Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2023. The primary objective of this challenge is to evaluate image synthesis methods that can realistically generate missing MRI modalities when multiple available images are provided. The ultimate aim is to facilitate automated brain tumor segmentation pipelines. The image dataset used in the benchmark is diverse and multi-modal, created through collaboration with various hospitals and research institutions.
RESUMO
Meningiomas are the most common primary intracranial tumor in adults and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on multiparametric MRI (mpMRI) for diagnosis, treatment planning, and longitudinal treatment monitoring; yet automated, objective, and quantitative tools for non-invasive assessment of meningiomas on mpMRI are lacking. The BraTS meningioma 2023 challenge will provide a community standard and benchmark for state-of-the-art automated intracranial meningioma segmentation models based on the largest expert annotated multilabel meningioma mpMRI dataset to date. Challenge competitors will develop automated segmentation models to predict three distinct meningioma sub-regions on MRI including enhancing tumor, non-enhancing tumor core, and surrounding nonenhancing T2/FLAIR hyperintensity. Models will be evaluated on separate validation and held-out test datasets using standardized metrics utilized across the BraTS 2023 series of challenges including the Dice similarity coefficient and Hausdorff distance. The models developed during the course of this challenge will aid in incorporation of automated meningioma MRI segmentation into clinical practice, which will ultimately improve care of patients with meningioma.
RESUMO
Gliomas are the most common type of primary brain tumors. Although gliomas are relatively rare, they are among the deadliest types of cancer, with a survival rate of less than 2 years after diagnosis. Gliomas are challenging to diagnose, hard to treat and inherently resistant to conventional therapy. Years of extensive research to improve diagnosis and treatment of gliomas have decreased mortality rates across the Global North, while chances of survival among individuals in low- and middle-income countries (LMICs) remain unchanged and are significantly worse in Sub-Saharan Africa (SSA) populations. Long-term survival with glioma is associated with the identification of appropriate pathological features on brain MRI and confirmation by histopathology. Since 2012, the Brain Tumor Segmentation (BraTS) Challenge have evaluated state-of-the-art machine learning methods to detect, characterize, and classify gliomas. However, it is unclear if the state-of-the-art methods can be widely implemented in SSA given the extensive use of lower-quality MRI technology, which produces poor image contrast and resolution and more importantly, the propensity for late presentation of disease at advanced stages as well as the unique characteristics of gliomas in SSA (i.e., suspected higher rates of gliomatosis cerebri). Thus, the BraTS-Africa Challenge provides a unique opportunity to include brain MRI glioma cases from SSA in global efforts through the BraTS Challenge to develop and evaluate computer-aided-diagnostic (CAD) methods for the detection and characterization of glioma in resource-limited settings, where the potential for CAD tools to transform healthcare are more likely.
RESUMO
Medical artificial intelligence (AI) has tremendous potential to advance healthcare by supporting and contributing to the evidence-based practice of medicine, personalizing patient treatment, reducing costs, and improving both healthcare provider and patient experience. Unlocking this potential requires systematic, quantitative evaluation of the performance of medical AI models on large-scale, heterogeneous data capturing diverse patient populations. Here, to meet this need, we introduce MedPerf, an open platform for benchmarking AI models in the medical domain. MedPerf focuses on enabling federated evaluation of AI models, by securely distributing them to different facilities, such as healthcare organizations. This process of bringing the model to the data empowers each facility to assess and verify the performance of AI models in an efficient and human-supervised process, while prioritizing privacy. We describe the current challenges healthcare and AI communities face, the need for an open platform, the design philosophy of MedPerf, its current implementation status and real-world deployment, our roadmap and, importantly, the use of MedPerf with multiple international institutions within cloud-based technology and on-premises scenarios. Finally, we welcome new contributions by researchers and organizations to further strengthen MedPerf as an open benchmarking platform.
RESUMO
PURPOSE: To provide real-world evidence on risks and outcomes of breakthrough COVID-19 infections in vaccinated patients with cancer using the largest national cohort of COVID-19 cases and controls. METHODS: We used the National COVID Cohort Collaborative (N3C) to identify breakthrough infections between December 1, 2020, and May 31, 2021. We included patients partially or fully vaccinated with mRNA COVID-19 vaccines with no prior SARS-CoV-2 infection record. Risks for breakthrough infection and severe outcomes were analyzed using logistic regression. RESULTS: A total of 6,860 breakthrough cases were identified within the N3C-vaccinated population, among whom 1,460 (21.3%) were patients with cancer. Solid tumors and hematologic malignancies had significantly higher risks for breakthrough infection (odds ratios [ORs] = 1.12, 95% CI, 1.01 to 1.23 and 4.64, 95% CI, 3.98 to 5.38) and severe outcomes (ORs = 1.33, 95% CI, 1.09 to 1.62 and 1.45, 95% CI, 1.08 to 1.95) compared with noncancer patients, adjusting for age, sex, race/ethnicity, smoking status, vaccine type, and vaccination date. Compared with solid tumors, hematologic malignancies were at increased risk for breakthrough infections (adjusted OR ranged from 2.07 for lymphoma to 7.25 for lymphoid leukemia). Breakthrough risk was reduced after the second vaccine dose for all cancers (OR = 0.04; 95% CI, 0.04 to 0.05), and for Moderna's mRNA-1273 compared with Pfizer's BNT162b2 vaccine (OR = 0.66; 95% CI, 0.62 to 0.70), particularly in patients with multiple myeloma (OR = 0.35; 95% CI, 0.15 to 0.72). Medications with major immunosuppressive effects and bone marrow transplantation were strongly associated with breakthrough risk among the vaccinated population. CONCLUSION: Real-world evidence shows that patients with cancer, especially hematologic malignancies, are at higher risk for developing breakthrough infections and severe outcomes. Patients with vaccination were at markedly decreased risk for breakthrough infections. Further work is needed to assess boosters and new SARS-CoV-2 variants.
Assuntos
COVID-19 , Neoplasias Hematológicas , Vacina BNT162 , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/epidemiologia , Neoplasias Hematológicas/terapia , Humanos , SARS-CoV-2RESUMO
Accurate stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow precision clinical management strategies. However, the natural history of long COVID is incompletely understood and characterized by an extremely wide range of manifestations that are difficult to analyze computationally. In addition, the generalizability of machine learning classification of COVID-19 clinical outcomes has rarely been tested. We present a method for computationally modeling PASC phenotype data based on electronic healthcare records (EHRs) and for assessing pairwise phenotypic similarity between patients using semantic similarity. Our approach defines a nonlinear similarity function that maps from a feature space of phenotypic abnormalities to a matrix of pairwise patient similarity that can be clustered using unsupervised machine learning procedures. Using k-means clustering of this similarity matrix, we found six distinct clusters of PASC patients, each with distinct profiles of phenotypic abnormalities. There was a significant association of cluster membership with a range of pre-existing conditions and with measures of severity during acute COVID-19. Two of the clusters were associated with severe manifestations and displayed increased mortality. We assigned new patients from other healthcare centers to one of the six clusters on the basis of maximum semantic similarity to the original patients. We show that the identified clusters were generalizable across different hospital systems and that the increased mortality rate was consistently observed in two of the clusters. Semantic phenotypic clustering can provide a foundation for assigning patients to stratified subgroups for natural history or therapy studies on PASC.