Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nature ; 513(7517): 261-5, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25043005

RESUMO

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth's oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the 'dangler' Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.


Assuntos
Cristalografia por Raios X , Cianobactérias/química , Modelos Moleculares , Complexo de Proteína do Fotossistema II/química , Estrutura Terciária de Proteína
2.
Nat Methods ; 13(1): 59-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26619013

RESUMO

We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).


Assuntos
Cristalografia/métodos , Complexo de Proteína do Fotossistema II/metabolismo , Ribossomos/metabolismo , Modelos Moleculares
3.
Nat Methods ; 11(5): 545-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24633409

RESUMO

X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.


Assuntos
Lasers , Substâncias Macromoleculares/química , Bacillus/enzimologia , Cálcio/química , Calibragem , Simulação por Computador , Cristalização , Cristalografia por Raios X , Elétrons , Desenho de Equipamento , Funções Verossimilhança , Modelos Químicos , Conformação Molecular , Muramidase/química , Nanotecnologia , Reprodutibilidade dos Testes , Software , Termolisina/química , Raios X , Zinco/química
4.
Nature ; 470(7332): 73-7, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21293373

RESUMO

X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 µm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.


Assuntos
Cristalografia por Raios X/métodos , Nanopartículas/química , Nanotecnologia/métodos , Complexo de Proteína do Fotossistema I/química , Cristalografia por Raios X/instrumentação , Lasers , Modelos Moleculares , Nanotecnologia/instrumentação , Conformação Proteica , Fatores de Tempo , Raios X
5.
Nature ; 470(7332): 78-81, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21293374

RESUMO

X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.


Assuntos
Mimiviridae/química , Difração de Raios X/instrumentação , Difração de Raios X/métodos , Elétrons , Temperatura Alta , Lasers , Fótons , Fatores de Tempo , Raios X
6.
Nat Methods ; 9(3): 263-5, 2012 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-22286383

RESUMO

X-ray free electron laser (X-FEL)-based serial femtosecond crystallography is an emerging method with potential to rapidly advance the challenging field of membrane protein structural biology. Here we recorded interpretable diffraction data from micrometer-sized lipidic sponge phase crystals of the Blastochloris viridis photosynthetic reaction center delivered into an X-FEL beam using a sponge phase micro-jet.


Assuntos
Cristalografia por Raios X/métodos , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Ligação Proteica , Conformação Proteica/efeitos da radiação , Raios X
7.
Nat Methods ; 9(3): 259-62, 2012 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-22286384

RESUMO

Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo-grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology.


Assuntos
Cristalografia por Raios X/métodos , Cristalografia/métodos , Proteínas/química , Proteínas/ultraestrutura , Ligação Proteica/efeitos da radiação , Conformação Proteica/efeitos da radiação , Proteínas/efeitos da radiação , Solubilidade/efeitos da radiação , Raios X
8.
J Chem Phys ; 142(4): 044505, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25637993

RESUMO

The structure of bulk liquid water was recently probed by x-ray scattering below the temperature limit of homogeneous nucleation (TH) of ∼232 K [J. A. Sellberg et al., Nature 510, 381-384 (2014)]. Here, we utilize a similar approach to study the structure of bulk liquid water below TH using oxygen K-edge x-ray emission spectroscopy (XES). Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387-400 (2008)] at higher temperatures, we expected the ratio of the 1b1' and 1b1″ peaks associated with the lone-pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen (H-) bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone-pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more important.

9.
Proc Natl Acad Sci U S A ; 109(47): 19103-7, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23129631

RESUMO

The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this "probe-before-destroy" approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kß(1,3) XES spectra of Mn(II) and Mn(2)(III,IV) complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. The technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.

10.
Proc Natl Acad Sci U S A ; 109(25): 9721-6, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22665786

RESUMO

Most of the dioxygen on earth is generated by the oxidation of water by photosystem II (PS II) using light from the sun. This light-driven, four-photon reaction is catalyzed by the Mn(4)CaO(5) cluster located at the lumenal side of PS II. Various X-ray studies have been carried out at cryogenic temperatures to understand the intermediate steps involved in the water oxidation mechanism. However, the necessity for collecting data at room temperature, especially for studying the transient steps during the O-O bond formation, requires the development of new methodologies. In this paper we report room temperature X-ray diffraction data of PS II microcrystals obtained using ultrashort (< 50 fs) 9 keV X-ray pulses from a hard X-ray free electron laser, namely the Linac Coherent Light Source. The results presented here demonstrate that the "probe before destroy" approach using an X-ray free electron laser works even for the highly-sensitive Mn(4)CaO(5) cluster in PS II at room temperature. We show that these data are comparable to those obtained in synchrotron radiation studies as seen by the similarities in the overall structure of the helices, the protein subunits and the location of the various cofactors. This work is, therefore, an important step toward future studies for resolving the structure of the Mn(4)CaO(5) cluster without any damage at room temperature, and of the reaction intermediates of PS II during O-O bond formation.


Assuntos
Cristalografia por Raios X/métodos , Complexo de Proteína do Fotossistema II/química , Catálise , Cristalização , Modelos Moleculares
11.
Phys Rev Lett ; 113(15): 153002, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25375708

RESUMO

We report on oxygen K-edge soft x-ray emission spectroscopy from a liquid water jet at the Linac Coherent Light Source. We observe significant changes in the spectral content when tuning over a wide range of incident x-ray fluences. In addition the total emission yield decreases at high fluences. These modifications result from reabsorption of x-ray emission by valence-excited molecules generated by the Auger cascade. Our observations have major implications for future x-ray emission studies at intense x-ray sources. We highlight the importance of the x-ray pulse length with respect to the core-hole lifetime.


Assuntos
Modelos Teóricos , Espectrometria por Raios X/métodos , Absorção Fisico-Química , Lasers , Raios X
12.
Anal Chem ; 85(7): 3464-71, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23517430

RESUMO

Atomic resolution structures of large biomacromolecular complexes can now be recorded at room temperature from crystals with submicrometer dimensions using intense femtosecond pulses delivered by the world's largest and most powerful X-ray machine, a laser called the Linac Coherent Light Source. Abundant opportunities exist for the bioanalytical sciences to help extend this revolutionary advance in structural biology to the ultimate goal of recording molecular-movies of noncrystalline biomacromolecules. This Feature will introduce the concept of serial femtosecond crystallography to the nonexpert, briefly review progress to date, and highlight some potential contributions from the analytical sciences.


Assuntos
Cristalografia por Raios X/instrumentação , Nanopartículas/química , Proteínas/química , Animais , Cristalografia por Raios X/métodos , Desenho de Equipamento , Humanos , Lasers
13.
Artigo em Inglês | MEDLINE | ID: mdl-23989164

RESUMO

High-resolution ribosome structures determined by X-ray crystallography have provided important insights into the mechanism of translation. Such studies have thus far relied on large ribosome crystals kept at cryogenic temperatures to reduce radiation damage. Here, the application of serial femtosecond X-ray crystallography (SFX) using an X-ray free-electron laser (XFEL) to obtain diffraction data from ribosome microcrystals in liquid suspension at ambient temperature is described. 30S ribosomal subunit microcrystals diffracted to beyond 6 Šresolution, demonstrating the feasibility of using SFX for ribosome structural studies. The ability to collect diffraction data at near-physiological temperatures promises to provide fundamental insights into the structural dynamics of the ribosome and its functional complexes.


Assuntos
Elétrons , Subunidades Ribossômicas Menores de Bactérias/ultraestrutura , Thermus thermophilus/química , Cristalização , Cristalografia por Raios X , Lasers , Subunidades Ribossômicas Menores de Bactérias/química , Temperatura , Difração de Raios X
14.
Nature ; 448(7154): 676-9, 2007 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-17687320

RESUMO

Extremely intense and ultrafast X-ray pulses from free-electron lasers offer unique opportunities to study fundamental aspects of complex transient phenomena in materials. Ultrafast time-resolved methods usually require highly synchronized pulses to initiate a transition and then probe it after a precisely defined time delay. In the X-ray regime, these methods are challenging because they require complex optical systems and diagnostics. Here we propose and apply a simple holographic measurement scheme, inspired by Newton's 'dusty mirror' experiment, to monitor the X-ray-induced explosion of microscopic objects. The sample is placed near an X-ray mirror; after the pulse traverses the sample, triggering the reaction, it is reflected back onto the sample by the mirror to probe this reaction. The delay is encoded in the resulting diffraction pattern to an accuracy of one femtosecond, and the structural change is holographically recorded with high resolution. We apply the technique to monitor the dynamics of polystyrene spheres in intense free-electron-laser pulses, and observe an explosion occurring well after the initial pulse. Our results support the notion that X-ray flash imaging can be used to achieve high resolution, beyond radiation damage limits for biological samples. With upcoming ultrafast X-ray sources we will be able to explore the three-dimensional dynamics of materials at the timescale of atomic motion.


Assuntos
Holografia/métodos , Poliestirenos/química , Raios X , Elétrons , Lasers , Microesferas , Fatores de Tempo
15.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 11): 1584-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23090408

RESUMO

An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14-3.1 µl min(-1) to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min(-1) and diffracted to beyond 4 Å resolution, producing 14,000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption.


Assuntos
Cristalografia por Raios X/instrumentação , Cristalização , Cristalografia por Raios X/economia , Campos Eletromagnéticos , Desenho de Equipamento , Cinética , Lasers , Tamanho da Amostra , Termolisina/química
16.
Opt Express ; 20(3): 2706-16, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22330507

RESUMO

We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.


Assuntos
Cristalografia por Raios X/métodos , Ferredoxinas/ultraestrutura , Lasers , Nanoestruturas/ultraestrutura , Difração de Raios X/métodos , Elétrons , Conformação Proteica , Raios X
17.
Opt Express ; 19(17): 16542-9, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21935018

RESUMO

Single-particle experiments using X-ray Free Electron Lasers produce more than 10(5) snapshots per hour, consisting of an admixture of blank shots (no particle intercepted), and exposures of one or more particles. Experimental data sets also often contain unintentional contamination with different species. We present an unsupervised method able to sort experimental snapshots without recourse to templates, specific noise models, or user-directed learning. The results show 90% agreement with manual classification.

18.
Phys Rev Lett ; 104(6): 064801, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20366823

RESUMO

Intense and ultrashort x-ray pulses from free-electron lasers open up the possibility for near-atomic resolution imaging without the need for crystallization. Such experiments require high photon fluences and pulses shorter than the time to destroy the sample. We describe results with a new femtosecond pump-probe diffraction technique employing coherent 0.1 keV x rays from the FLASH soft x-ray free-electron laser. We show that the lifetime of a nanostructured sample can be extended to several picoseconds by a tamper layer to dampen and quench the sample explosion, making <1 nm resolution imaging feasible.


Assuntos
Difração de Raios X/métodos , Elétrons , Lasers , Raios X
19.
Anal Chem ; 80(14): 5350-7, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18558726

RESUMO

Two similar mycobacteria, Mycobacteria tuberculosis H37Ra and Mycobacteria smegmatis are rapidly detected and identified within samples containing a complex background of respiratory effluents using single-particle aerosol mass spectrometry (SPAMS). M. tuberculosis H37Ra (TBa), an avirulent strain, is used as a surrogate for virulent tuberculosis; M. smegmatis (MSm) is utilized as a near-neighbor confounder for TBa. Bovine lung surfactant and human exhaled breath condensate are used as first-order surrogates for infected human lung expirations from patients with pulmonary tuberculosis. This simulated background sputum is mixed with TBa or MSm and nebulized to produce conglomerate aerosol particles, single particles that contain a bacterium embedded within a background respiratory matrix. Mass spectra of single conglomerate particles exhibit ions associated with both respiratory effluents and mycobacteria. Spectral features distinguishing TBa from MSm in pure and conglomerate particles are shown. SPAMS pattern matching alarm algorithms are able to distinguish TBa-containing particles from background matrix and MSm for >50% of the test particles, which is sufficient to enable a high probability of detection and a low false alarm rate if an adequate number of such particles are present. These results indicate the potential usefulness of SPAMS for rapid, reagentless tuberculosis screening.


Assuntos
Mycobacterium tuberculosis/isolamento & purificação , Respiração , Algoritmos , Animais , Testes Respiratórios , Bovinos , Gases/análise , Humanos , Espectrometria de Massas , Modelos Biológicos , Fatores de Tempo , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/microbiologia
20.
J Am Soc Mass Spectrom ; 19(3): 315-24, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18155920

RESUMO

The Bioaerosol Mass Spectrometry (BAMS) system was developed for the real-time detection and identification of biological aerosols using laser desorption ionization. Greater differentiation of particle types is desired; consequently MALDI techniques are being investigated. The small sample size ( approximately 1 microm3), lack of substrate, and ability to simultaneously monitor both positive and negative ions provide a unique opportunity to gain new insight into the MALDI process. Several parameters known to influence MALDI molecular ion yield and formation are investigated here in the single particle phase. A comparative study of five matrices (2,6-dihydroxyacetophenone, 2,5-dihydroxybenzoic acid, alpha-cyano-4-hydroxycinnamic acid, ferulic acid, and sinapinic acid) with a single analyte (angiotensin I) is presented and reveals effects of matrix selection, matrix-to-analyte molar ratio, and aerosol particle diameter. The strongest analyte ion signal is found at a matrix-to-analyte molar ratio of 100:1. At this ratio, the matrices yielding the least and greatest analyte molecular ion formation are ferulic acid and alpha-cyano-4-hydroxycinnamic acid, respectively. Additionally, a significant positive correlation is found between aerodynamic particle diameter and analyte molecular ion yield for all matrices. SEM imaging of select aerosol particle types reveals interesting surface morphology and structure.


Assuntos
Aerossóis/química , Íons/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Acetofenonas/química , Algoritmos , Angiotensina I/análise , Angiotensina I/química , Ácidos Cumáricos/química , Gentisatos/química , Lasers , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa