Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Plant J ; 117(2): 483-497, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37901950

RESUMO

Plants grown under low magnesium (Mg) soils are highly susceptible to encountering light intensities that exceed the capacity of photosynthesis (A), leading to a depression of photosynthetic efficiency and eventually to photooxidation (i.e., leaf chlorosis). Yet, it remains unclear which processes play a key role in limiting the photosynthetic energy utilization of Mg-deficient leaves, and whether the plasticity of A in acclimation to irradiance could have cross-talk with Mg, hence accelerating or mitigating the photodamage. We investigated the light acclimation responses of rapeseed (Brassica napus) grown under low- and adequate-Mg conditions. Magnesium deficiency considerably decreased rapeseed growth and leaf A, to a greater extent under high than under low light, which is associated with higher level of superoxide anion radical and more severe leaf chlorosis. This difference was mainly attributable to a greater depression in dark reaction under high light, with a higher Rubisco fallover and a more limited mesophyll conductance to CO2 (gm ). Plants grown under high irradiance enhanced the content and activity of Rubisco and gm to optimally utilize more light energy absorbed. However, Mg deficiency could not fulfill the need to activate the higher level of Rubisco and Rubisco activase in leaves of high-light-grown plants, leading to lower Rubisco activation and carboxylation rate. Additionally, Mg-deficient leaves under high light invested more carbon per leaf area to construct a compact leaf structure with smaller intercellular airspaces, lower surface area of chloroplast exposed to intercellular airspaces, and CO2 diffusion conductance through cytosol. These caused a more severe decrease in within-leaf CO2 diffusion rate and substrate availability. Taken together, plant plasticity helps to improve photosynthetic energy utilization under high light but aggravates the photooxidative damage once the Mg nutrition becomes insufficient.


Assuntos
Anemia Hipocrômica , Brassica napus , Brassica napus/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Magnésio , Dióxido de Carbono , Fotossíntese/fisiologia , Folhas de Planta/metabolismo
2.
J Exp Bot ; 73(6): 1789-1799, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35134869

RESUMO

The provision of sustainable, sufficient, and nutritious food to the growing population is a major challenge for agriculture and the plant research community. In this respect, the mineral micronutrient content of food crops deserves particular attention. Micronutrient deficiencies in cultivated soils and plants are a global problem that adversely affects crop production and plant nutritional value, as well as human health and well-being. In this review, we call for awareness of the importance and relevance of micronutrients in crop production and quality. We stress the need for better micronutrient nutrition in human populations, not only in developing but also in developed nations, and describe strategies to identify and characterize new varieties with high micronutrient content. Furthermore, we explain how adequate nutrition of plants with micronutrients impacts metabolic functions and the capacity of plants to express tolerance mechanisms against abiotic and biotic constraints. Finally, we provide a brief overview and a critical discussion on current knowledge, future challenges, and specific technological needs for research on plant micronutrient homeostasis. Research in this area is expected to foster the sustainable development of nutritious and healthy food crops for human consumption.


Assuntos
Micronutrientes , Oligoelementos , Agricultura/métodos , Produtos Agrícolas/metabolismo , Alimentos Fortificados , Homeostase , Humanos , Micronutrientes/metabolismo
3.
Plant J ; 101(3): 555-572, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31571297

RESUMO

Dissection of the genetic basis of wheat ionome is crucial for understanding the physiological and biochemical processes underlying mineral accumulation in seeds, as well as for efficient crop breeding. Most of the elements essential for plants are metals stored in seeds as chelate complexes with phytic acid or sulfur-containing compounds. We assume that the involvement of phosphorus and sulfur in metal chelation is the reason for strong phenotypic correlations within ionome. Adjustment of element concentrations for the effect of variation in phosphorus and sulfur seed content resulted in drastic change of phenotypic correlations between the elements. The genetic architecture of wheat grain ionome was characterized by quantitative trait loci (QTL) analysis using a cross between durum and wild emmer wheat. QTL analysis of the adjusted traits and two-trait analysis of the initial traits paired with either P or S considerably improved QTL detection power and accuracy, resulting in the identification of 105 QTLs and 617 QTL effects for 11 elements. Candidate gene search revealed some potential functional associations between QTLs and corresponding genes within their intervals. Thus, we have shown that accounting for variation in P and S is crucial for understanding of the physiological and genetic regulation of mineral composition of wheat grain ionome and can be implemented for other plants.


Assuntos
Fósforo/metabolismo , Locos de Características Quantitativas/genética , Enxofre/metabolismo , Triticum/genética , Cruzamento , Grão Comestível , Fenótipo , Sementes/genética , Sementes/fisiologia , Triticum/fisiologia
4.
J Nutr ; 149(5): 840-846, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31004128

RESUMO

BACKGROUND: Limited data exist on human zinc absorption from wheat biofortified via foliar (FBW) or root (hydroponically fortified wheat, HBW) zinc application. Stable isotope labels added at point of consumption (extrinsic labeling) might not reflect absorption from native zinc obtained by intrinsic labeling. OBJECTIVES: We measured fractional and total zinc absorption (FAZ, TAZ) in FBW and HBW wheat, compared with control wheat (CW) and fortified wheat (FW). The effect of labeling method was assessed in HBW (study 1), and the effect of milling extraction rate (EXR, 80% and 100%) in FBW (studies 2 and 3). METHODS: Generally healthy adults (n = 71, age: 18-45 y, body mass index: 18.5-25 kg/m2) were allocated to 1 of the studies, in which they served as their own controls. In study 1, men and women consumed wheat porridges colabeled intrinsically and extrinsically with 67Zn and 70Zn. In studies 2 and 3, women consumed wheat flatbreads (chapatis) labeled extrinsically. Zinc absorption was measured with the oral to intravenous tracer ratio method with a 4-wk wash-out period between meals. Data were analyzed with linear mixed models. RESULTS: In study 1 there were no differences in zinc absorption from extrinsic versus intrinsic labels in either FW or HBW. Similarly, FAZ and TAZ from FW and HBW did not differ. TAZ was 70-76% higher in FW and HBW compared with CW (P < 0.01). In studies 2 and 3, TAZ from FW and FBW did not differ but was 20-48% higher compared with CW (P < 0.001). Extraction rate had no effect on TAZ. CONCLUSIONS: Colabeling demonstrates that extrinsic zinc isotopic labels can be used to accurately quantify zinc absorption from wheat in humans. Biofortification through foliar zinc application, root zinc application, or fortification provides higher TAZ compared with unfortified wheat. In biofortified wheat, extraction rate (100-80%) has a limited impact on total zinc absorption. These studies were registered on clinicaltrials.gov (NCT01775319).


Assuntos
Biofortificação , Grão Comestível/química , Alimentos Fortificados , Absorção Intestinal , Triticum/química , Zinco/farmacocinética , Adolescente , Adulto , Disponibilidade Biológica , Pão , Feminino , Farinha , Humanos , Hidroponia , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Zinco/sangue , Isótopos de Zinco/análise
5.
J Integr Plant Biol ; 60(3): 232-241, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29131514

RESUMO

Seed size and composition are important traits in food crops and can be affected by nutrient availability in the soil. Phosphorus (P) is a non-renewable, essential macronutrient, and P deficiency limits soybean (Glycine max) yield and quality. To investigate the associations of seed traits in low- and high-P environments, soybean recombinant inbred lines (RILs) from a cross of cultivars Fiskeby III and Mandarin (Ottawa) were grown under contrasting P availability environments. Traits including individual seed weight, seed number, and intact mature pod weight were significantly affected by soil P levels and showed transgressive segregation among the RILs. Surprisingly, P treatments did not affect seed composition or weight, suggesting that soybean maintains sufficient P in seeds even in low-P soil. Quantitative trait loci (QTLs) were detected for seed weight, intact pods, seed volume, and seed protein, with five significant QTLs identified in low-P environments and one significant QTL found in the optimal-P environment. Broad-sense heritability estimates were 0.78 (individual seed weight), 0.90 (seed protein), 0.34 (seed oil), and 0.98 (seed number). The QTLs identified under low P point to genetic regions that may be useful to improve soybean performance under limiting P conditions.


Assuntos
Biomassa , Glycine max/genética , Fósforo/farmacologia , Locos de Características Quantitativas/genética , Sementes/genética , Genoma de Planta , Endogamia , Fenótipo , Glycine max/efeitos dos fármacos , Glycine max/fisiologia , Estresse Fisiológico/efeitos dos fármacos
6.
New Phytol ; 211(4): 1255-65, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27159614

RESUMO

Low concentration of zinc (Zn) in the endosperm of cereals is a major factor contributing to Zn deficiency in human populations. We have investigated how combined Zn and nitrogen (N) fertilization affects the speciation and localization of Zn in durum wheat (Triticum durum). Zn-binding proteins were analysed with liquid chromatography ICP-MS and Orbitrap MS(2) , respectively. Laser ablation ICP-MS with simultaneous Zn, sulphur (S) and phosphorus (P) detection was used for bioimaging of Zn and its potential ligands. Increasing the Zn and N supply had a major impact on the Zn concentration in the endosperm, reaching concentrations higher than current breeding targets. The S concentration also increased, but S was only partly co-localized with Zn. The mutual Zn and S enrichment was reflected in substantially more Zn bound to small cysteine-rich proteins (apparent size 10-30 kDa), whereas the response of larger proteins (apparent size > 50 kDa) was only modest. Most of the Zn-responsive proteins were associated with redox- and stress-related processes. This study offers a methodological platform to deepen the understanding of processes behind endosperm Zn enrichment. Novel information is provided on how the localization and speciation of Zn is modified during Zn biofortification of grains.


Assuntos
Estado Nutricional , Sementes/metabolismo , Triticum/metabolismo , Zinco/metabolismo , Endosperma/metabolismo , Espectrometria de Massas , Nitrogênio/metabolismo , Especificidade de Órgãos , Proteínas de Plantas/metabolismo , Enxofre/metabolismo
7.
J Sci Food Agric ; 96(5): 1409-14, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-26619956

RESUMO

The health and wellbeing of future generations will depend on humankind's ability to deliver sufficient nutritious food to a world population in excess of 9 billion. Feeding this many people by 2050 will require science-based solutions that address sustainable agricultural productivity and enable healthful dietary patterns in a more globally equitable way. This topic was the focus of a multi-disciplinary international conference hosted by Nestlé in June 2015, and provides the inspiration for the present article. The conference brought together a diverse range of expertise and organisations from the developing and industrialised world, all with a common interest in safeguarding the future of food. This article provides a snapshot of three of the recurring topics that were discussed during this conference: soil health, plant science and the future of farming practice. Crop plants and their cultivation are the fundamental building blocks for a food secure world. Whether these are grown for food or feed for livestock, they are the foundation of food and nutrient security. Many of the challenges for the future of food will be faced where the crops are grown: on the farm. Farmers need to plant the right crops and create the right conditions to maximise productivity (yield) and quality (e.g. nutritional content), whilst maintaining the environment, and earning a living. New advances in science and technology can provide the tools and know-how that will, together with a more entrepreneurial approach, help farmers to meet the inexorable demand for the sustainable production of nutritious foods for future generations.


Assuntos
Agricultura/tendências , Abastecimento de Alimentos , Agricultura/métodos , Botânica/tendências , Conservação dos Recursos Naturais , Produtos Agrícolas/crescimento & desenvolvimento , Abastecimento de Alimentos/métodos , Humanos , Micronutrientes/análise , Valor Nutritivo , Plantas/química , Solo/química
8.
Physiol Plant ; 151(3): 348-57, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24673110

RESUMO

The role of urea in the translocation of (59) Fe from (59) FeEDTA-treated leaves was studied in durum wheat (Triticum durum) grown for 2 weeks in nutrient solution and until grain maturation in soil culture. Five-cm long tips of the first leaf of young wheat seedlings or flag leaves at the early milk stage were immersed twice daily for 10 s in (59) FeEDTA solutions containing increasing amounts of urea (0, 0.2, 0.4 and 0.8% w/v) over 5 days. In the experiment with young wheat seedlings, urea inclusion in the (59) FeEDTA solution increased significantly translocation of (59) Fe from the treated leaf into roots and the untreated part of shoots. When (59) Fe-treated leaves were induced into senescence by keeping them in the dark, there was a strong (59) Fe translocation from these leaves. Adding urea to the (59) Fe solution did not result in an additional increase in Fe translocation from the dark-induced senescent leaves. In the experiment conducted in the greenhouse in soil culture until grain maturation, translocation of (59) Fe from the flag leaves into grains was also strongly promoted by urea, whereas (59) Fe translocation from flag leaves into the untreated shoot was low and not affected by urea. In conclusion, urea contributes to transportation of the leaf-absorbed Fe into sink organs. Probably, nitrogen compounds formed after assimilation of foliar-applied urea (such as amino acids) contributed to Fe chelation and translocation to grains in wheat.


Assuntos
Ácido Edético/farmacologia , Compostos Férricos/farmacologia , Compostos Ferrosos/farmacologia , Triticum/efeitos dos fármacos , Ureia/farmacologia , Transporte Biológico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ácido Edético/metabolismo , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Quelantes de Ferro/farmacologia , Radioisótopos de Ferro/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Soluções/farmacologia , Triticum/metabolismo , Triticum/fisiologia
10.
Eur J Rheumatol ; 9(1): 36-41, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35110135

RESUMO

OBJECTIVE: The knowledge of physicians about complementary and alternative medicine (CAM) applications is limited. However, especially in chronic diseases, patients and their relatives can often refer to CAM applications. Rheumatic diseases are chronic in nature presenting with a wide clinical spectrum. Despite developing treatment options, achieving treatment goals may not always be possible. For this reason, patients seek different treatment and use traditional and complementary medicine. The aim of this study was to investigate causes, consequences, and the frequency of applying to CAM in rheumatic diseases. METHODS: Ninety-five patients admitted to the rheumatology outpatient clinic were enrolled in the study. Health assessment questionnaire and short-form-36 were used to determine the quality of life of patients. Anxiety and depression symptoms were screened by the Hospital Anxiety and Depression scale, a questionnaire that was filled-in by the patients themselves. Also, patients were questioned about their place of residence, level of education, diagnosis, CAM modality types, application reasons, and outcomes. Chi-square test was used to analyze categorical data. Parametric data were analyzed using Student t-test, and nonparametric data were analyzed using Mann-Whitney U test. RESULTS: Thirty-two of our patients had applied to CAM modalities (phytotherapy [34.45%], cupping therapy [21.8%], acupuncture [12.5%], hirudotherapy [12.5%], food supplement [12.5%], and ozone treatment [6.25%]). Only 31.3% of the patients informed their doctors about CAM applications. 47.8% of fibromyalgia patients and 29.2% of patients with inflammatory rheumatic diseases had applied to CAM. Gender, working status, income level, smoking, and alcohol habits were not associated with the application to CAM. However, none of the residents of the village, 14.3% of the residents of the district center, and 41.1% of the residents of the city center had applied to CAM modality. The rate of applying to CAM was 18.2% for those who cannot read and write. The application ratio of CAM is over 40% among secondary school, high school, and university graduates. CONCLUSION: Among patients with rheumatic diseases, application to CAM is quite common. Very few patients inform their physicians about applying to CAM. Contrary to what is presumed, the rate of applying CAM applications is lower among those living in rural areas and with low education levels.

11.
Biol Trace Elem Res ; 200(8): 3774-3784, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34637103

RESUMO

The present study aimed to investigate the effects of feeding zinc (Zn)-biofortified wheat on performance, digestibility, and concentrations of minerals in quails. Zinc biofortification of wheat has been realized in the field by ergonomically applying Zn to foliar two and three times, which increased grain Zn from 18 mg/kg (control) to 34 and 64 mg/kg. A total of 180 quails were divided into six groups, each containing 30 birds, and fed diets containing wheat grain with either 18, 34, or 64 mg/kg with or without zinc picolinate (ZnPic) supplementation. Bodyweight, feed intake, feed efficiency, and cold carcass weights were greater (P = 0.0001) when the quails were fed a diet containing the biofortified wheat-containing 64 mg Zn/kg. Nitrogen, ash, Ca, P, Zn, Cu, and Fe retentions were greater with the Zn-biofortified wheat-containing 64 mg Zn/kg (P ≤ 0.026). The nutrient excretions were low with feeding a diet containing biofortified wheat-containing 64 mg Zn/kg (P ≤ 0.023). Serum, liver, and heart Zn concentrations increased with feeding biofortified wheat-containing 64 mg Zn/kg (P ≤ 0.002). Thigh meat Fe concentrations increased with increasing Zn concentrations of the wheat samples used (P = 0.0001), whereas the liver Cu concentrations decreased with feeding the wheat-containing 64 mg Zn/kg (P = 0.004). The Zn-biofortified wheat-containing greater Zn concentrations, particularly 64 mg Zn/kg, is a good replacement for corn in the poultry diet as long as its availability and low cost for better performance, greater digestibility, and elevated tissue Zn and Fe concentrations.


Assuntos
Triticum , Zinco , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Grão Comestível , Minerais , Nutrientes , Codorniz
12.
New Phytol ; 189(2): 438-48, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21029104

RESUMO

This study focussed on the effect of increasing nitrogen (N) supply on root uptake and root-to-shoot translocation of zinc (Zn) as well as retranslocation of foliar-applied Zn in durum wheat (Triticum durum). Nutrient solution experiments were conducted to examine the root uptake and root-to-shoot translocation of (65) Zn in seedlings precultured with different N supplies. In additional experiments, the effect of varied N nutrition on retranslocation of foliar-applied (65) Zn was tested at both the vegetative and generative stages. When N supply was increased, the (65) Zn uptake by roots was enhanced by up to threefold and the (65) Zn translocation from roots to shoots increased by up to eightfold, while plant growth was affected to a much smaller degree. Retranslocation of (65) Zn from old into young leaves and from flag leaves to grains also showed marked positive responses to increasing N supply. The results demonstrate that the N-nutritional status of wheat affects major steps in the route of Zn from the growth medium to the grain, including its uptake, xylem transport and remobilization via phloem. Thus, N is a critical player in the uptake and accumulation of Zn in plants, which deserves special attention in biofortification of food crops with Zn.


Assuntos
Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Triticum/metabolismo , Zinco/metabolismo , Transporte Biológico , Biomassa , Escuridão , Folhas de Planta/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Triticum/crescimento & desenvolvimento
13.
Physiol Plant ; 141(3): 265-75, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21143238

RESUMO

Quantitative trait loci (QTLs) for yield and drought-related traits were exchanged via marker-assisted selection between elite cultivars of two cotton species, Gossypium barbadense (GB) cv. F-177 and Gossypium hirsutum (GH) cv. Siv'on. Three of the resultant near-isogenic lines (NILs), each introgressed with a different QTL region, expressed an advantage in osmotic adjustment (OA) and other drought-related traits relative to their recipient parents. These NILs and the parental genotypes were field-grown under well-watered and water-limited conditions, and characterized for their metabolic and mineral compositions. Comparisons were then made between (1) GB and GH genotypes, (2) the contrasting water regimes and (3) each NIL and its recipient parent. Hierarchical clustering analysis clearly distinguished between GB and GH genotypes based on either metabolite or mineral composition. Comparisons between well-watered and water-limited conditions in each of the genotypes showed differing trends in the various solutes. The greater concentrations of potassium, magnesium and calcium under water stress, when compared with well-watered conditions, may have enhanced OA or osmoprotection. All NILs exhibited significantly modified solute composition relative to their recipient parents. In particular, increased levels of alanine, aspartic acid, citric acid, malic acid, glycerol, myoinositol, threonic acid, potassium, magnesium and calcium were found under drought conditions in one or more of the NILs relative to their recipient parents. The increased values of these solutes could contribute to the superior capacity of these NILs to cope with drought.


Assuntos
Secas , Gossypium/genética , Locos de Características Quantitativas , Água/fisiologia , Aminoácidos/análise , Cruzamento , Carboidratos/análise , Análise por Conglomerados , Cromatografia Gasosa-Espectrometria de Massas , Genótipo , Gossypium/metabolismo , Minerais/análise
14.
Physiol Plant ; 142(3): 287-96, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21338370

RESUMO

Root release of phytosiderophores (PSs) is an important step in iron (Fe) acquisition of grasses, and this adaptive reaction of plants is affected by various plant and environmental factors. The objectives of this study were to study the effects of varied nitrogen (N) supply on (1) root and leaf concentrations of methionine, a precursor in the PS biosynthesis, (2) PS release from roots, (3) mobilization and uptake of Fe from (59) Fe-labeled Fe(III)-hydroxide [(59) Fe(OH)(3) ] and (4) root uptake of (59) Fe-labeled Fe(III)-deoxymugineic acid (DMA) by durum wheat (Triticum durum, cv. Balcali2000) plants grown in a nutrient solution. Enhanced N supply from 0.5 to 6 mM in a nutrient solution significantly increased the root release of PS under Fe deficiency. High N supply was also highly effective in increasing mobilization and root uptake of Fe from (59) Fe-hydroxide under low Fe supply. With adequate Fe, N nutrition did not affect mobilization and uptake of Fe from (59) Fe(OH)(3) . Root uptake and shoot translocation of Fe supplied as (59) Fe(III)-DMA were also stimulated by increasing N supply. Leaf concentration of methionine was reduced by low Fe supply, and this decline was pronounced in high N plants. The results show that the root release of PS, mobilization of Fe from (59) Fe(OH)(3) and root uptake and shoot translocation of Fe(III)-PS by durum wheat are markedly affected by N nutritional status of plants. These positive N effects may have important implications for Fe nutrition of human populations and should be considered in biofortification of food crops with Fe.


Assuntos
Deficiências de Ferro , Ferro/metabolismo , Nitrogênio/farmacologia , Raízes de Plantas/metabolismo , Sideróforos/metabolismo , Triticum/efeitos dos fármacos , Triticum/metabolismo , Biomassa , Ácido Edético/farmacologia , Compostos Férricos/farmacologia , Metionina/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Triticum/crescimento & desenvolvimento
16.
Plants (Basel) ; 11(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35009058

RESUMO

Potassium (K) is the most abundant cation in plants, playing an important role in osmoregulation. Little is known about the effect of genotypic variation in the tolerance to osmotic stress under different K treatments in barley. In this study, we measured the interactive effects of osmotic stress and K supply on growth and stress responses of two barley cultivars (Hordeum vulgare L.) and monitored reactive oxygen species (ROS) along with enzymatic antioxidant activity and their respective gene expression level. The selected cultivars (cv. Milford and cv. Sahin-91Sahin-91) were exposed to osmotic stress (-0.7 MPa) induced by polyethylene glycol 6000 (PEG) under low (0.04 mM) and adequate (0.8 mM) K levels in the nutrient solution. Leaf samples were collected and analyzed for levels of K, ROS, kinetic activity of antioxidants enzymes and expression levels of respective genes during the stress period. The results showed that optimal K supply under osmotic stress significantly decreases ROS production and adjusts antioxidant activity, leading to the reduction of oxidative stress in the studied plants. The cultivar Milford had a lower ROS level and a better tolerance to stress compared to the cultivar Sahin-91. We conclude that optimized K supply is of great importance in mitigating ROS-related damage induced by osmotic stress, specifically in drought-sensitive barley cultivars.

17.
Plants (Basel) ; 10(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670608

RESUMO

Agronomic biofortification is one of the main strategies for alleviation of micronutrient deficiencies in human populations and promoting sustainable production of food and feed. The aim of this study was to investigate the effect of nitrogen (N)fertilization on biofortification of maize crop (Zea mays L.) with zinc (Zn), iron (Fe) and selenium (Se) grown on a micronutrient deficient soil under greenhouse conditions. Factorial design experiment was set under greenhouse conditions. The experiment consisted of two levels of each N, Zn, Fe and Se. The levels for N were 125 and 250 mg N kg-1 soil; Zn were 1 and 5 mg Zn kg-1 soil; levels of Fe were 0 and 10 mg Fe kg-1 soil; levels of Se were 0 and 0.02 mg Se kg-1 soil. An additional experiment was also conducted to study the effect of the Zn form applied as a ZnO or ZnSO4 on shoot growth, shoot Zn concentration and total shoot Zn uptake per plant. Shoot Zn concentrations increased by increasing soil Zn application both with ZnSO4 and ZnO treatments, but the shoot Zn concentration and total Zn uptake were much greater with ZnSO4 than the ZnO application. Under given experimental conditions, increasing soil N supply improved shoot N concentration; but had little effect on shoot dry matter production. The concentrations of Zn and Fe in shoots were significantly increased by increasing N application. In case of total uptake of Zn and Fe, the positive effect of N nutrition was more pronounced. Although Se soil treatment had significant effect, N application showed no effect on Se concentration and accumulation in maize shoots. The obtained results show that N fertilization is an effective tool in improving the Zn and Fe status of silage maize and contribute to the better-quality feed.

18.
Nutrients ; 13(2)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530419

RESUMO

Recent human cohort studies reported positive associations between organic food consumption and a lower incidence of obesity, cancer, and several other diseases. However, there are very few animal and human dietary intervention studies that provide supporting evidence or a mechanistic understanding of these associations. Here we report results from a two-generation, dietary intervention study with male Wistar rats to identify the effects of feeds made from organic and conventional crops on growth, hormonal, and immune system parameters that are known to affect the risk of a number of chronic, non-communicable diseases in animals and humans. A 2 × 2 factorial design was used to separate the effects of contrasting crop protection methods (use or non-use of synthetic chemical pesticides) and fertilizers (mineral nitrogen, phosphorus and potassium (NPK) fertilizers vs. manure use) applied in conventional and organic crop production. Conventional, pesticide-based crop protection resulted in significantly lower fiber, polyphenol, flavonoid, and lutein, but higher lipid, aldicarb, and diquat concentrations in animal feeds. Conventional, mineral NPK-based fertilization resulted in significantly lower polyphenol, but higher cadmium and protein concentrations in feeds. Feed composition differences resulting from the use of pesticides and/or mineral NPK-fertilizer had a significant effect on feed intake, weight gain, plasma hormone, and immunoglobulin concentrations, and lymphocyte proliferation in both generations of rats and in the second generation also on the body weight at weaning. Results suggest that relatively small changes in dietary intakes of (a) protein, lipids, and fiber, (b) toxic and/or endocrine-disrupting pesticides and metals, and (c) polyphenols and other antioxidants (resulting from pesticide and/or mineral NPK-fertilizer use) had complex and often interactive effects on endocrine, immune systems and growth parameters in rats. However, the physiological responses to contrasting feed composition/intake profiles differed substantially between the first and second generations of rats. This may indicate epigenetic programming and/or the generation of "adaptive" phenotypes and should be investigated further.


Assuntos
Agricultura/métodos , Produção Agrícola , Dieta , Alimentos Orgânicos , Ração Animal/análise , Animais , Cádmio , Produtos Agrícolas/química , Ingestão de Alimentos , Fazendas , Feminino , Fertilizantes , Humanos , Masculino , Esterco , Nitrogênio , Praguicidas , Fenótipo , Fósforo , Potássio , Ratos Wistar , Reino Unido
19.
Ann Bot ; 105(7): 1211-20, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20202969

RESUMO

BACKGROUND AND AIMS: Micronutrient malnutrition, particularly zinc and iron deficiency, afflicts over three billion people worldwide due to low dietary intake. In the current study, wild emmer wheat (Triticum turgidum ssp. dicoccoides), the progenitor of domesticated wheat, was tested for (1) genetic diversity in grain nutrient concentrations, (2) associations among grain nutrients and their relationships with plant productivity, and (3) the association of grain nutrients with the eco-geographical origin of wild emmer accessions. METHODS: A total of 154 genotypes, including wild emmer accessions from across the Near Eastern Fertile Crescent and diverse wheat cultivars, were characterized in this 2-year field study for grain protein, micronutrient (zinc, iron, copper and manganese) and macronutrient (calcium, magnesium, potassium, phosphorus and sulphur) concentrations. KEY RESULTS: Wide genetic diversity was found among the wild emmer accessions for all grain nutrients. The concentrations of grain zinc, iron and protein in wild accessions were about two-fold greater than in the domesticated genotypes. Concentrations of these compounds were positively correlated with one another, with no clear association with plant productivity, suggesting that all three nutrients can be improved concurrently with no yield penalty. A subset of 12 populations revealed significant genetic variation between and within populations for all minerals. Association between soil characteristics at the site of collection and grain nutrient concentrations showed negative associations between soil clay content and grain protein and between soil-extractable zinc and grain zinc, the latter suggesting that the greatest potential for grain nutrient minerals lies in populations from micronutrient-deficient soils. CONCLUSIONS: Wild emmer wheat germplasm offers unique opportunities to exploit favourable alleles for grain nutrient properties that were excluded from the domesticated wheat gene pool.


Assuntos
Variação Genética/genética , Triticum/genética , Triticum/metabolismo , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Front Plant Sci ; 11: 797, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595681

RESUMO

Magnesium (Mg) is a particular mineral nutrient greatly affecting the size and activity of sink organs. Wax gourd crop with its fruits having fresh weight up to 20-50 kg per single fruit serves as an excellent experimental plant species for better understanding the role of varied Mg nutrition in sink strength and yield formation. This study aimed to investigate the effects of Mg deficiency on fruit yield and seed vigor in wax gourd grown under field conditions. Plants were grown under field conditions until maturity with increasing soil Mg applications. At the beginning of fruit formation, leaves were used to analyze concentrations of sucrose, starch and Mg as well as phloem export of sucrose. At maturity, fruit yield was determined and the seeds collected were used in germination studies and starch analysis. Low Mg supply resulted in a significant impairment in fruit fresh yield, which was closely associated with higher accumulation of starch and sucrose in source leaves and lower amount of sucrose in phloem exudate. Seeds obtained from Mg deficiency plants exhibited lower amount of starch and substantial reduction in both germination capacity and seedling establishment when compared to the seeds from the Mg adequate plants. Our study revealed that magnesium deficiency significantly diminished fruit yield of field-grown wax gourd, most probably by limiting the carbohydrate transport from source organs to developing fruit. Ensuring sufficient Mg supply to plant species with high sink size such as wax gourd, during the reproductive growth stage, is a critical factor for achieving higher fruit yield formation and also better vigor of next-generation seeds.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa