Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 2): 130574, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453125

RESUMO

The prevalent use of disposable plastic tableware presents notable environmental and health risks. An alternative, polylactic acid (PLA), often does not meet usage requirements due to its low crystallization rate. This research introduces an amide-based nucleating agent, BRE-T-100, developed through a straightforward method to enhance the heat resistance and crystallization rate of PLA. This study systematically investigates the impact of BRE-T-100 and other nucleating agents on the properties of PLA composites. The incorporation of 0.8 % BRE-T-100 increases the crystallization temperature of PLA from 109.6 °C to 131.9 °C. Further, the total crystallization time of PLA composites at 120 °C is reduced to <60 s, while maintaining good transparency. BRE-T-100 exhibits superior comprehensive properties compared to talcum, TMC-200, and TMC-300 and is nearly on par with LAK-301. Its application as a nucleating agent in PLA-based disposable tableware shows promise.


Assuntos
Amidas , Temperatura Alta , Poliésteres/química , Temperatura
2.
Chem Commun (Camb) ; 60(10): 1321-1324, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38197262

RESUMO

The application of selenium-based non-covalent bond catalysis in living cationic polymerization has rarely been reported. In this work, the cationic polymerization of p-methoxystyrene (pMOS) was performed using a bidentate selenium bond catalyst - a new water-tolerant Lewis acid catalyst. A polymer with controllable molecular weight and narrow molecular weight distribution can be obtained at room temperature, with a maximum molecular weight of 23.3 kDa. This selenium bond compound can also catalyze the controllable cationic polymerization of p-methoxy styrene under environmental conditions. By changing the monomer feeding ratio, a secondary feeding experiment and DFT analysis, it is shown that the selenium bond catalyst can induce polymer chain growth by reversibly activating dormant covalent bonds (C-OH).

3.
ACS Macro Lett ; 12(6): 710-718, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37195102

RESUMO

Synthesizing block-sequence-controlled poly(α-hydroxy acids) of three or four α-hydroxy acids remains challenging in one step. In this study, a strategy was employed using three monomers of O-carboxyanhydrides (OCAs) consisting of one α-hydroxy acid (A), asymmetric cyclic diester (B and C, two different α-hydroxy acids of B and C), and symmetric cyclic diester (one α-hydroxy acid of D) with remarkably different activities toward a stereoselective, regioselective, and chemoselective initiator of a zirconium complex. Then, via a self-switchable approach, these monomers can be copolymerized in a well-controlled block sequence of Ax(BC)yDz and Ax(BC)yAz without an external stimulus. Moreover, upon addition of more monomer mixtures during the copolymerization process, more complicated sequence-controlled poly(α-hydroxy acids) can be achieved with up to 15 blocks.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa