Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 242(0): 443-463, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36205304

RESUMO

Bimetallic gold-platinum nanoparticles have been widely studied in the fields of nanoalloys, catalysis and plasmonics. Many preparation methods can lead to the formation of these bimetallic nanoparticles (NPs), and the structure and related properties of the nanoalloy often depend on the preparation method used. Here we investigate the ability of thermal dimethylformamide (DMF) reduction to prepare bimetallic gold-platinum sub-nm clusters supported on titania. We find that deposition of Pt preferentially occurs on gold. Formation of sub-nm clusters (vs. NPs) appears to be dependent on the metal concentration used: clusters can be obtained for metal loadings up to 4 wt% but 7-8 nm NPs are formed for metal loadings above 8 wt%, as shown using high resolution transmission electron microscopy (HRTEM). X-ray photoelectron spectroscopy (XPS) shows electron-rich Au and Pt components in a pure metallic form and significant platinum enrichment of the surface, which increases with increasing Pt/Au ratio and suggests the presence of Au@Pt core-shell type structures. By contrast, titania-supported bimetallic particles (typically >7 nm) obtained by sodium borohydride (NaBH4) reduction in DMF, contain Au/Pt Janus-type objects in addition to oxidized forms of Pt as evidenced by HRTEM, which is in agreement with the lower Pt surface enrichment found by XPS. Both types of supported nanostructures contain a gold-platinum interface, as shown by the chemical interface damping, i.e. gold plasmon damping by Pt, found using UV-visible spectroscopy. Evaluation of the materials for plasmon-induced continuous flow CO2 reduction with water, shows that: (1) subnanometer metallic clusters are not suitable for CO2 reduction with water, producing hydrogen from the competing water reduction instead, thereby highlighting the plasmonic nature of the reaction; (2) the highest methane production rates are obtained for the highest Pt enrichments of the surface, i.e. the core-shell-like structures achieved by the thermal DMF reduction method; (3) selectivity towards CO2 reduction vs. the competing water reduction is enhanced by loading of the plasmonic NPs, i.e. coverage of the titania semi-conductor by plasmonic NPs. Full selectivity is achieved for loadings above 6 wt%, regardless of the NPs composition and alloy structure.

2.
Faraday Discuss ; 227: 259-273, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33346750

RESUMO

2D materials are attracting increasing attention in many strategic applications. In particular, ultra-thin non-layered oxides have been shown to outperform their 3D counter-parts in several health and energy applications, such as the removal of toxic carbon monoxide by low temperature oxidation and the development of high performance supercapacitors. The general reason for that is the increased surface-to-volume ratio, which maximizes exposure of active species and enhances exchange between the (limited) bulk and the surface. The challenge is to synthesize such 2D configurations of 3D oxides, which generally requires quite harsh multi-step, multi-reagent chemical processes. Here we show that natural graphite can be used as a templating matrix to grow non-stoichiometric 2D transition metal oxides. We focus on highly porous, highly reduced cobalt oxides grown from cobalt nitrate and sodium borohydride under sonication. Extensive characterization, including nitrogen physisorption, thermogravimetric analysis (TGA), scanning and transmission electron microscopy (SEM/TEM), X-ray diffraction (XRD), temperature programmed oxidation and reduction (TPO/TPR), Fourier transformed infrared (FTIR) and Raman spectroscopies, highlights the specific features of the 2D morphologies (nanosheets and nanofilms) obtained. For comparison, 3D morphologies of Co3O4 spinel nanocrystallites are grown from stacked 2D cobalt phthalocyanine-graphene precursors upon controlled thermal oxidation. Finally, low temperature CO oxidation catalysis evidences the superior performance of the graphene-supported CoO-like cobalt oxide 2D nanosheets.

3.
Faraday Discuss ; 214(0): 417-439, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-30839019

RESUMO

The induction of chemical processes by plasmonic systems is a rapidly growing field with potentially many strategic applications. One of them is the transformation of solar energy into chemical fuel by the association of plasmonic metal nanoparticles (M NPs) and a semi-conductor (SC). When the localized surface plasmon resonance (LSPR) and the SC absorption do not match, one limitation of these systems is the efficiency of hot electron transfer from M NPs to SC through the Schottky barrier formed at the M NP/SC interfaces. Here we show that high surface area 1 wt% Au/TiO2-UV100, prepared by adsorption of a NaBH4-protected 3 nm gold sol, readily catalyzes the photoreduction of carbon dioxide with water into methane under both solar and visible-only irradiation with a CH4vs. H2 selectivity of 63%. Tuning Au NP size and titania surface area, in particular via thermal treatments, highlights the key role of the metal dispersion and of the accessible Au-TiO2 perimeter interface on the direct SC-based solar process. The impact of Au NP density in turn provides evidence for the dual role of gold as co-catalyst and recombination sites for charge carriers. It is shown that the plasmon-induced process contributes up to 20% of the solar activity. The plasmon-based contribution is enhanced by a large Au NP size and a high degree of crystallinity of the SC support. By minimizing surface hydroxylation while retaining a relatively high surface area of 120 m2 g-1, pre-calcining TiO2-UV100 at 450 °C leads to an optimum monometallic system in terms of activity and selectivity under both solar and visible irradiation. A state-of-the-art methane selectivity of 100% is achieved in the hot electron process.

7.
J Am Chem Soc ; 135(2): 804-10, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23268596

RESUMO

Selective functionalization of methane at moderate temperature is of crucial economic, environmental, and scientific importance. Here, we report that methane reacts with heteropolyacids (HPAs) chemisorbed on silica to produce acetic acid under soft conditions. Specially, when chemisorbed on silica, H(4)SiW(12)O(40), H(3)PW(12)O(40), H(4)SiMo(12)O(40), and H(3)PMo(12)O(40) activate the primary C-H bond of methane at room temperature and atmospheric pressure. With these systems, acetic acid is produced directly from methane, in a single step, in the absence of Pd and without adding CO. Extensive surface characterization by solid-state NMR spectroscopy, IR spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy suggests that C-H activation of methane is triggered by the protons in the HPA-silica interface with concerted reduction of the Keggin cage, leading to water formation and hydration of the interface. This is the simplest and mildest way reported to date to functionalize methane.

9.
ACS Appl Mater Interfaces ; 13(51): 61015-61026, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34918899

RESUMO

Gold-catalyzed CO oxidation is a reaction of both practical and fundamental interest. In particular, rate-determining oxygen activation pathways have attracted a lot of attention. They have been found to depend on the surface chemistry of the catalyst support, titania providing the most active catalysts and carbon nitride leading to inactive catalysts. Here, we show that C3N4-TiO2 composites with rather similar surface chemistries can be engineered by using titania nanotubes as hard templates and by performing the polycondensation of melamine and dicyandiamide in air and in ammonia. By varying the C3N4 content from 2 to 75 wt %, the mesoporosity can be tuned from 8 to 40 nm. A systematic study of CO oxidation turnover numbers in the absence and in the presence of hydrogen over the composites loaded with well-calibrated 2-4 nm gold nanoparticles clearly shows that (1) the chemical composition of the support surface has much less impact on PROX (preferential oxidation of CO in excess hydrogen) than on dry CO oxidation, (2) NH2-terminated supports are as active as OH-terminated supports in PROX, (3) hydrogen/water-mediated CO oxidation pathways are active on C3N4-based Au catalysts, and (4) PROX activity requires a rather large porosity (40 nm), which suggests the involvement of much larger intermediates than the usually postulated peroxo-type species.

10.
Front Chem ; 8: 735, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33110908

RESUMO

Graphite is a widely available natural form of carbon with peculiar chemical and surface properties. It is essentially hydrophobic and consists in very stable stacks of graphene layers held together by highly delocalized π-π interactions. Its use in chemistry and in particular for catalytic applications requires modification of its structure to increase its surface area. This is commonly achieved by harsh oxidation methods which also modifies the chemical composition of graphite and enables subsequent deposition of catalytic phases via common impregnation/reduction methods. Here we show that copper phthalocyanine (CuPc) can be incorporated into unmodified bulk graphite by the straight-forward sonication of a dimethylformamide solution containing CuPc and graphite flakes. Immobilization of the CuPc complex in the graphitic matrix is shown to rely on π-π interactions between the Pc ligand and graphenic surfaces. This strong CuPc-graphene interaction facilitates oxidation of the graphitic matrix upon oxidation of the immobilized complex, as shown by thermogravimetric analysis in air. Nevertheless, a soft oxidation treatment can be designed to produce CuO nanoparticles (NPs) without degrading the dispersing graphitic matrix. These well-dispersed CuO NPs are shown (1) to decrease the degree of stacking of graphite in the solid-state by intercalation in-between graphitic stacks, (2) to be more easily reducible than bulk CuO, and (3) to be catalytically active for the oxidation of carbon monoxide. The higher mass-specific CO oxidation rates observed, as compared with CuO/alumina benchmarks, highlight the beneficial role of the carbon support and the relevance of this new strategy toward the design of copper oxide catalysts from copper phthalocyanine metal complexes.

11.
J Am Chem Soc ; 131(41): 14667-9, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19780552

RESUMO

Well-defined and perfectly dispersed [( identical withSiO)Au(I)] surface species supported on silica have been obtained via surface organometallic chemistry and transformed upon mild reduction (H(2), 300 degrees C) into small (1.8 +/- 0.6 nm) Au particles supported on silica passivated with SiMe(3) functionalities. Improved performance in liquid-phase aerobic epoxidation has been achieved, and the intrinsic activity of gold in oxidation is revealed.

12.
Chem Commun (Camb) ; (21): 3116-8, 2009 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-19462105

RESUMO

Citrate-functionalized titania nanocrystallites are successfully synthesized from a heteroleptic titanium alkoxide precursor in a low temperature, hydrolytic process and used as gold catalyst supports for CO oxidation and aerobic stilbene epoxidation.


Assuntos
Ouro/química , Nanopartículas , Titânio/química , Catálise , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Chem Commun (Camb) ; (2): 186-8, 2007 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-17180241

RESUMO

The gold reference catalyst Au/TiO(2) exhibits high activity in the stereoselective epoxidation of trans-stilbene in methylcyclohexane in the presence of 5 mol% TBHP, by taking part in a chain reaction involving the activation of molecular oxygen by a radical produced from methylcyclohexane.

14.
ACS Appl Mater Interfaces ; 9(36): 30643-30653, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28812875

RESUMO

Bimetallic nanoparticles have been the subject of numerous research studies in the nanotechnology field, in particular for catalytic applications. Control of the size, morphology, and composition has become a key challenge due to the relationship between these parameters and the catalytic behavior of the particles in terms of activity, selectivity, and stability. Here, we present a one-pot air synthesis of 2 nm Ni9Pt1 nanoparticles with a narrow size distribution. Control of the size and composition of the alloy particles is achieved at ambient temperature, in the aqueous phase, by the simultaneous reduction of nickel and platinum precursors with hydrazine, using a reverse microemulsion system. After deposition on an alumina support, this Ni-rich nanoalloy exhibits unprecedented stability under the harsh conditions of methane dry reforming.

15.
Chem Commun (Camb) ; 52(15): 3179-82, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26808262

RESUMO

3 nm gold nanoparticles obtained by direct chemical reduction of AuPPh3Cl in the presence of hydrophobic silica are highly active and selective over a prolonged period of time in the low temperature oxidation of CO in the presence of hydrogen.

16.
Chem Commun (Camb) ; (13): 1781-3, 2005 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-15791331

RESUMO

Superior enantioselectivity in the dihydroxylation of trans-stilbene catalysed by anchored triosmium carbonyl species without using a chiral modifier is observed inside sterically congested MCM-41 channels; this effect is more pronounced through the introduction of surface Al sites into the silicate.

17.
Chem Commun (Camb) ; (3): 388-90, 2005 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-15645047

RESUMO

The intimate mixture of a skeletal gold structure with ZrO2 nanoparticles obtained simply by oxidation of Au(0.5)Zr(0.5) alloy at room temperature turns out to be an efficient catalyst for the selective oxidation of CO in the presence of hydrogen.

18.
ChemSusChem ; 8(7): 1254-63, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25755222

RESUMO

The straightforward solid-state grinding of a mixture of Ni nitrate and Nb oxalate crystals led to, after mild calcination (T<400 °C), nanostructured Ni-Nb oxide composites. These new materials efficiently catalyzed the oxidative dehydrogenation (ODH) of ethane to ethylene at a relatively low temperature (T<300 °C). These catalysts appear to be much more stable than the corresponding composites prepared by other chemical methods; more than 90 % of their original intrinsic activity was retained after 50 h with time on-stream. Furthermore, the stability was much less affected by the Nb content than in composites prepared by classical "wet" syntheses. These materials, obtained in a solvent-free way, are thus promising green and sustainable alternatives to the current Ni-Nb candidates for the low-temperature ODH of ethane.


Assuntos
Etano/química , Níquel/química , Nióbio/química , Óxidos/química , Temperatura , Catálise , Técnicas de Química Sintética , Química Verde , Hidrogenação
19.
Dalton Trans ; 39(36): 8457-63, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20607187

RESUMO

Aerobic partial oxidations of alkanes and alkenes are important processes of the petrochemical industry. The radical mechanisms involved can be catalyzed by soluble salts of transition metals (Co, Cu, Mn...). We show here that the model methylcyclohexane/stilbene co-oxidation reaction can be efficiently catalyzed at lower temperature by supported gold nanoparticles. The support has little influence on gold intrinsic activity but more on the apparent reaction rates which are a combination of catalytic activity and diffusion limitations. These are here minimized by using gadolinium-doped titania nanocrystallites as support for gold nanoparticles. This material is obtained by mild hydrolysis of a new Gd(4)TiO(O(i)Pr)(14) bimetallic oxoalkoxide. It leads to enhanced wettability of the < 3 nm gold particles in the tert-butyl hydroperoxide (TBHP)-initiated epoxidation of stilbene in methylcyclohexane; Au/TiO(2):Gd(3+) is in turn as active as the state-of-the-art hydrophobic Au/SiO(2) catalyst. The rate-determining step of this reaction is identified as the gold-catalyzed homolytic decomposition of TBHP generating radicals and initiating the methylcyclohexane-mediated epoxidation of stilbene, yielding a methylcyclohexan-1-ol/trans-stilbene oxide mixture. Methylcyclohexan-1-ol can also be obtained in the absence of the alkene in the gold-catalyzed solvent-free autoxidation of methylcyclohexane, evidencing the catalytic potential of gold nanoparticles for low temperature C-H activation.

20.
Chem Commun (Camb) ; 46(29): 5361-3, 2010 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-20559599

RESUMO

An octylsilane-stabilized colloidal dispersion of 2 nm crystalline gold nanoparticles is highly active and selective for the aerobic oxidations of stilbene and cyclohexene in methylcyclohexane.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa