RESUMO
Pancreatic ductal adenocarcinoma (PDA) is a lethal disease notoriously resistant to therapy1,2. This is mediated in part by a complex tumour microenvironment3, low vascularity4, and metabolic aberrations5,6. Although altered metabolism drives tumour progression, the spectrum of metabolites used as nutrients by PDA remains largely unknown. Here we identified uridine as a fuel for PDA in glucose-deprived conditions by assessing how more than 175 metabolites impacted metabolic activity in 21 pancreatic cell lines under nutrient restriction. Uridine utilization strongly correlated with the expression of uridine phosphorylase 1 (UPP1), which we demonstrate liberates uridine-derived ribose to fuel central carbon metabolism and thereby support redox balance, survival and proliferation in glucose-restricted PDA cells. In PDA, UPP1 is regulated by KRAS-MAPK signalling and is augmented by nutrient restriction. Consistently, tumours expressed high UPP1 compared with non-tumoural tissues, and UPP1 expression correlated with poor survival in cohorts of patients with PDA. Uridine is available in the tumour microenvironment, and we demonstrated that uridine-derived ribose is actively catabolized in tumours. Finally, UPP1 deletion restricted the ability of PDA cells to use uridine and blunted tumour growth in immunocompetent mouse models. Our data identify uridine utilization as an important compensatory metabolic process in nutrient-deprived PDA cells, suggesting a novel metabolic axis for PDA therapy.
Assuntos
Glucose , Neoplasias Pancreáticas , Ribose , Microambiente Tumoral , Uridina , Animais , Camundongos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ribose/metabolismo , Uridina/química , Glucose/deficiência , Divisão Celular , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases , Uridina Fosforilase/deficiência , Uridina Fosforilase/genética , Uridina Fosforilase/metabolismo , HumanosRESUMO
BACKGROUND & AIMS: Understanding the burden of pancreatic cystic lesions (PCLs) in the general population is important for clinicians and policymakers. In this systematic review, we sought to estimate the global prevalence of PCLs using magnetic resonance imaging (MRI) and to investigate factors that contribute to its variation. METHODS: We searched MEDLINE, EMBASE, and Cochrane Central, from database inception through February 2023. We included full-text articles that reported the prevalence of PCLs using MRI in the general population. A proportional meta-analysis was performed, and the prevalence of PCLs was pooled using a random-effects model. RESULTS: Fifteen studies with 65,607 subjects were identified. The pooled prevalence of PCLs was 16% (95% confidence interval [CI], 13%-18%; I2 = 99%), most of which were under 10 mm. Age-specific prevalence of PCLs increased from 9% (95% CI, 7%-12%) at 50 to 59 years, to 18% (95% CI, 14%-22%) at 60 to 69 years, 26% (95% CI, 20%-33%) at 70 to 79 years, and 38% at 80 years and above (95% CI, 25%-52%). There was no difference in prevalence between sexes. Subgroup analysis showed higher PCL prevalence when imaging findings were confirmed by independent radiologist(s) (25%; 95% CI, 16%-33%) than when chart review alone was used (5%; 95% CI, 4%-7%; P < .01). There was no independent association of PCL prevalence with geographic location (Europe, North America, or Asia), MRI indication (screening vs evaluation of non-pancreatic pathology), enrollment period, sample size, magnet strength (1.5 vs 3 tesla), and MRI sequence (magnetic resonance cholangiopancreatography vs no magnetic resonance cholangiopancreatography). CONCLUSION: In this systematic review, the global prevalence of PCLs using a highly sensitive noninvasive imaging modality ranged between 13% and 18%.
Assuntos
Imageamento por Ressonância Magnética , Cisto Pancreático , Feminino , Humanos , Masculino , Saúde Global , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Pâncreas/diagnóstico por imagem , Pâncreas/patologia , Cisto Pancreático/epidemiologia , Cisto Pancreático/diagnóstico por imagem , PrevalênciaRESUMO
BACKGROUND AND AIMS: The optimal number of passes to maximize the diagnostic ability of EUS fine-needle biopsy (FNB) of solid pancreatic masses (SPMs) is not well known. We conducted a systematic review to evaluate the impact of the incremental number of passes on diagnostic accuracy, tissue adequacy, and diagnostic yield for EUS-FNB of SPMs. METHODS: We searched MEDLINE, Embase, Scopus, and Cochrane Central for randomized controlled trials comparing per-pass diagnostic outcomes of FNB needles in patients with SPMs. Meta-analysis was conducted using random-effects models. A separate analysis was performed on studies that used contemporary Franseen and fork-tip needles. RESULTS: Overall, 19 randomized controlled trials (N = 3552) were identified. For EUS-FNB of SPMs, 3 passes with any FNB needle outperformed 2 passes for accuracy (odds ratio [OR], 1.58; 95% confidence interval [CI], 1.20-2.09; I2 = 0%), adequacy (OR, 1.97; 95% CI, 1.30-2.83; I2 = 61%), and yield (OR, 2.12; 95% CI, 1.37-3.27; I2 = 14%). Adding a fourth or fifth pass resulted in no significant improvement in diagnostic parameters. When using contemporary FNB needles, adding a second to a single pass significantly improved accuracy (OR, 1.80; 95% CI, 1.23-2.63; I2 = 0%), adequacy (OR, 2.19; 95% CI, 1.65-2.90; I2 = 0%), and yield (OR, 2.72; 95% CI, 1.50-4.95; I2 = 0%). Adding a third pass to a second pass with contemporary needles improved adequacy (OR, 2.96; 95% CI, 1.97-4.46; I2 = 0%) but did not provide better diagnostic accuracy or yield. CONCLUSIONS: Two passes with Franseen or fork-tip needles and 3 passes with any FNB needle suffice to provide optimal diagnostic performance for EUS-FNB of SPMs, without additional diagnostic benefits with more passes. Our results can inform future guidelines and quality benchmarks.
Assuntos
Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico , Neoplasias Pancreáticas , Humanos , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico/métodos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/diagnóstico , Agulhas , Pâncreas/patologia , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
Pancreatic ductal adenocarcinoma (PDAC) remains a lethal cancer with an urgent need for better medical therapies. Efforts have been made to investigate the efficacy of immunotherapy, particularly given the hallmarks of immune suppression and exhaustion in PDAC tumors. Here, we review the molecular components responsible for the immune-privileged state in PDAC and provide an overview of the immunotherapeutic strategies for PDAC including vaccine therapy, checkpoint blockade, myeloid-targeted therapy, and immune agonist therapy.
Assuntos
Carcinoma Ductal Pancreático/terapia , Imunoterapia/métodos , Neoplasias Pancreáticas/terapia , Animais , Vacinas Anticâncer/uso terapêutico , Carcinoma Ductal Pancreático/imunologia , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pancreáticas/imunologia , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
BACKGROUND & AIMS: New drug targets are urgently needed for the treatment of patients with pancreatic ductal adenocarcinoma (PDA). Nearly all PDAs contain oncogenic mutations in the KRAS gene. Pharmacological inhibition of KRAS has been unsuccessful, leading to a focus on downstream effectors that are more easily targeted with small molecule inhibitors. We investigated the contributions of phosphoinositide 3-kinase (PI3K) to KRAS-initiated tumorigenesis. METHODS: Tumorigenesis was measured in the Kras(G12D/+);Ptf1a(Cre/+) mouse model of PDA; these mice were crossed with mice with pancreas-specific disruption of genes encoding PI3K p110α (Pik3ca), p110ß (Pik3cb), or RAC1 (Rac1). Pancreatitis was induced with 5 daily intraperitoneal injections of cerulein. Pancreata and primary acinar cells were isolated; acinar cells were incubated with an inhibitor of p110α (PIK75) followed by a broad-spectrum PI3K inhibitor (GDC0941). PDA cell lines (NB490 and MiaPaCa2) were incubated with PIK75 followed by GDC0941. Tissues and cells were analyzed by histology, immunohistochemistry, quantitative reverse-transcription polymerase chain reaction, and immunofluorescence analyses for factors involved in the PI3K signaling pathway. We also examined human pancreas tissue microarrays for levels of p110α and other PI3K pathway components. RESULTS: Pancreas-specific disruption of Pik3ca or Rac1, but not Pik3cb, prevented the development of pancreatic tumors in Kras(G12D/+);Ptf1a(Cre/+) mice. Loss of transformation was independent of AKT regulation. Preneoplastic ductal metaplasia developed in mice lacking pancreatic p110α but regressed. Levels of activated and total RAC1 were higher in pancreatic tissues from Kras(G12D/+);Ptf1a(Cre/+) mice compared with controls. Loss of p110α reduced RAC1 activity and expression in these tissues. p110α was required for the up-regulation and activity of RAC guanine exchange factors during tumorigenesis. Levels of p110α and RAC1 were increased in human pancreatic intraepithelial neoplasias and PDAs compared with healthy pancreata. CONCLUSIONS: KRAS signaling, via p110α to activate RAC1, is required for transformation in Kras(G12D/+);Ptf1a(Cre/+) mice.
Assuntos
Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neuropeptídeos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Células Acinares/citologia , Células Acinares/metabolismo , Adenocarcinoma/genética , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Ductal Pancreático/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Classe I de Fosfatidilinositol 3-Quinases , Citoesqueleto/metabolismo , Feminino , Humanos , Masculino , Camundongos Mutantes , Neuropeptídeos/genética , Fosfatidilinositol 3-Quinases/genética , Cultura Primária de Células , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/fisiologia , Transcriptoma , Proteínas rac1 de Ligação ao GTP/genéticaRESUMO
Pancreatic cancer is on the rise and expected to become the second leading cause of cancer-related death by 2030. Up to a one-fifth of pancreatic cancers may arise from mucinous pancreatic cysts, which are frequently present in the general population. Currently, surgical resection is the only curative approach for pancreatic cancer and its cystic precursors. However, only a dismal proportion of patients are eligible for surgery. Therefore, novel treatment approaches to treat pancreatic cancer and precancerous pancreatic cysts are needed. Endoscopic ultrasound (EUS)-guided ablation is an emerging minimally invasive method to treat pancreatic cancer and premalignant pancreatic cysts. Different ablative modalities have been used including alcohol, chemotherapy agents, and radiofrequency ablation. Cumulative data over the past two decades have shown that endoscopic ablation of mucinous pancreatic cysts can lead to cyst resolution in a significant proportion of the treated cysts. Furthermore, novel data are emerging about the ability to endoscopically ablate early and locally advanced pancreatic cancer. In this review, we aim to summarize the available data on the efficacy and safety of the different EUS-ablation modalities for the management of premalignant pancreatic cysts and pancreatic cancer.
RESUMO
Pancreatic ductal adenocarcinoma is a deadly disease and is projected to become the second leading cause of cancer-related death by 2030. A major hallmark is the exuberant host response comprising the tumor microenvironment, of which cancer-associated fibroblasts (CAFs) are a prevalent component. Despite the gains in understanding of their heterogeneity and functionality from CAF studies in recent years, there are many unanswered questions surrounding this diverse population of cells. Here we summarize the views of several experts in the field, focusing on the current understanding of CAFs and challenges to address.
RESUMO
Pancreatic ductal adenocarcinoma (PDA) continues to have a dismal prognosis. The poor survival of patients with PDA has been attributed to a high rate of early metastasis and low efficacy of current therapies, which partly result from its complex immunosuppressive tumor microenvironment. Previous studies from our group and others have shown that tumor-associated macrophages (TAM) are instrumental in maintaining immunosuppression in PDA. Here, we explored the role of Notch signaling, a key regulator of immune response, within the PDA microenvironment. We identified Notch pathway components in multiple immune cell types within human and mouse pancreatic cancer. TAMs, the most abundant immune cell population in the tumor microenvironment, expressed high levels of Notch receptors, with cognate ligands such as JAG1 expressed on tumor epithelial cells, endothelial cells, and fibroblasts. TAMs with activated Notch signaling expressed higher levels of immunosuppressive mediators, suggesting that Notch signaling plays a role in macrophage polarization within the PDA microenvironment. Genetic inhibition of Notch in myeloid cells led to reduced tumor size and decreased macrophage infiltration in an orthotopic PDA model. Combination of pharmacologic Notch inhibition with PD-1 blockade resulted in increased cytotoxic T-cell infiltration, tumor cell apoptosis, and smaller tumor size. Our work implicates macrophage Notch signaling in the establishment of immunosuppression and indicates that targeting the Notch pathway may improve the efficacy of immune-based therapies in patients with PDA.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Macrófagos Associados a Tumor/metabolismo , Células Endoteliais/metabolismo , Transdução de Sinais , Microambiente TumoralRESUMO
Pancreatic cancer, one of the deadliest human malignancies, is characterized by a fibro-inflammatory tumor microenvironment and wide array of metabolic alterations. To comprehensively map metabolism in a cell type-specific manner, we harnessed a unique single-cell RNA-sequencing dataset of normal human pancreata. This was compared with human pancreatic cancer samples using a computational pipeline optimized for this study. In the cancer cells we observed enhanced biosynthetic programs. We identified downregulation of mitochondrial programs in several immune populations, relative to their normal counterparts in healthy pancreas. Although granulocytes, B cells, and CD8+ T cells all downregulated oxidative phosphorylation, the mechanisms by which this occurred were cell type specific. In fact, the expression pattern of the electron transport chain complexes was sufficient to identify immune cell types without the use of lineage markers. We also observed changes in tumor-associated macrophage (TAM) lipid metabolism, with increased expression of enzymes mediating unsaturated fatty acid synthesis and upregulation in cholesterol export. Concurrently, cancer cells exhibited upregulation of lipid/cholesterol receptor import. We thus identified a potential crosstalk whereby TAMs provide cholesterol to cancer cells. We suggest that this may be a new mechanism boosting cancer cell growth and a therapeutic target in the future.
Assuntos
Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Metabolismo dos Lipídeos , Pâncreas/metabolismo , Pâncreas/patologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia , Colesterol/metabolismo , Fosforilação Oxidativa , Mitocôndrias/metabolismo , Análise de Célula ÚnicaRESUMO
Pancreatic cancer is characterized by an extensive fibroinflammatory microenvironment. During carcinogenesis, normal stromal cells are converted to cytokine-high cancer-associated fibroblasts (CAF). The mechanisms underlying this conversion, including the regulation and function of fibroblast-derived cytokines, are poorly understood. Thus, efforts to therapeutically target CAFs have so far failed. Herein, we show that signals from epithelial cells expressing oncogenic KRAS-a hallmark pancreatic cancer mutation-activate fibroblast autocrine signaling, which drives the expression of the cytokine IL33. Stromal IL33 expression remains high and dependent on epithelial KRAS throughout carcinogenesis; in turn, environmental stress induces interleukin-33 (IL33) secretion. Using compartment-specific IL33 knockout mice, we observed that lack of stromal IL33 leads to profound reprogramming of multiple components of the pancreatic tumor microenvironment, including CAFs, myeloid cells, and lymphocytes. Notably, loss of stromal IL33 leads to an increase in CD8+ T-cell infiltration and activation and, ultimately, reduced tumor growth. Significance: This study provides new insights into the mechanisms underlying the programming of CAFs and shows that during this process, expression of the cytokine IL33 is induced. CAF-derived IL33 has pleiotropic effects on the tumor microenvironment, supporting its potential as a therapeutic target.
Assuntos
Interleucina-33 , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Microambiente Tumoral , Interleucina-33/metabolismo , Interleucina-33/genética , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Humanos , Células Estromais/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Camundongos Knockout , Linhagem Celular TumoralRESUMO
Pancreatic ductal adenocarcinoma (PDA) is associated with activation of WNT signaling. Whether this signaling pathway regulates the tumor microenvironment has remained unexplored. Through single-cell RNA sequencing of human pancreatic cancer, we discovered that tumor-infiltrating CD4+ T cells express TCF7, encoding for the transcription factor TCF1. We conditionally inactivated Tcf7 in CD4 expressing T cells in a mouse model of pancreatic cancer and observed changes in the tumor immune microenvironment, including more CD8+ T cells and fewer regulatory T cells, but also compensatory upregulation of PD-L1. We then used a clinically available inhibitor of Porcupine, a key component of WNT signaling, and observed similar reprogramming of the immune response. WNT signaling inhibition has limited therapeutic window due to toxicity, and PD-L1 blockade has been ineffective in PDA. Here, we show that combination targeting reduces pancreatic cancer growth in an experimental model and might benefit the treatment of pancreatic cancer.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos , Carcinoma Ductal Pancreático/metabolismo , Humanos , Terapia de Imunossupressão , Linfócitos do Interstício Tumoral , Camundongos , Neoplasias Pancreáticas/patologia , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Via de Sinalização Wnt , Neoplasias PancreáticasRESUMO
Pancreatic ductal adenocarcinoma (PDA) continues to have a dismal prognosis. The poor survival of patients with PDA has been attributed to a high rate of early metastasis and low efficacy of current therapies, which partly result from its complex immunosuppressive tumor microenvironment. Previous studies from our group and others have shown that tumor-associated macrophages (TAMs) are instrumental in maintaining immunosuppression in PDA. Here, we explored the role of Notch signaling, a key regulator of immune response, within the PDA microenvironment. We identified Notch pathway components in multiple immune cell types within human and mouse pancreatic cancer. TAMs, the most abundant immune cell population in the tumor microenvironment, express high levels of Notch receptors with cognate ligands such as JAG1 expressed on tumor epithelial cells, endothelial cells and fibroblasts. TAMs with activated Notch signaling expressed higher levels of immunosuppressive mediators including arginase 1 (Arg1) suggesting that Notch signaling plays a role in macrophage polarization within the PDA microenvironment. Combination of Notch inhibition with PD-1 blockade resulted in increased cytotoxic T cell infiltration, tumor cell apoptosis, and smaller tumor size. Our work implicates macrophage Notch signaling in the establishment of immunosuppression and indicates that targeting the Notch pathway may improve the efficacy of immune-based therapies in PDA patients.
RESUMO
An extensive fibroinflammatory stroma rich in macrophages is a hallmark of pancreatic cancer. In this disease, it is well appreciated that macrophages are immunosuppressive and contribute to the poor response to immunotherapy; however, the mechanisms of immune suppression are complex and not fully understood. Immunosuppressive macrophages are classically defined by the expression of the enzyme Arginase 1 (ARG1), which we demonstrated is potently expressed in pancreatic tumor-associated macrophages from both human patients and mouse models. While routinely used as a polarization marker, ARG1 also catabolizes arginine, an amino acid required for T cell activation and proliferation. To investigate this metabolic function, we used a genetic and a pharmacologic approach to target Arg1 in pancreatic cancer. Genetic inactivation of Arg1 in macrophages, using a dual recombinase genetically engineered mouse model of pancreatic cancer, delayed formation of invasive disease, while increasing CD8+ T cell infiltration. Additionally, Arg1 deletion induced compensatory mechanisms, including Arg1 overexpression in epithelial cells, namely Tuft cells, and Arg2 overexpression in a subset of macrophages. To overcome these compensatory mechanisms, we used a pharmacological approach to inhibit arginase. Treatment of established tumors with the arginase inhibitor CB-1158 exhibited further increased CD8+ T cell infiltration, beyond that seen with the macrophage-specific knockout, and sensitized the tumors to anti-PD1 immune checkpoint blockade. Our data demonstrate that Arg1 drives immune suppression in pancreatic cancer by depleting arginine and inhibiting T cell activation.
Assuntos
Arginase , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Arginase/genética , Arginase/metabolismo , Arginina/metabolismo , Linfócitos T CD8-Positivos , Macrófagos , Neoplasias Pancreáticas/patologiaRESUMO
The adult healthy human pancreas has been poorly studied given lack of indication to obtain tissue from the pancreas in the absence of disease and rapid postmortem degradation. We obtained pancreata from brain dead donors thus avoiding any warm ischemia time. The 30 donors were diverse in age and race and had no known pancreas disease. Histopathological analysis of the samples revealed PanIN lesions in most individuals irrespective of age. Using a combination of multiplex immunohistochemistry, single cell RNA sequencing, and spatial transcriptomics, we provide the first ever characterization of the unique microenvironment of the adult human pancreas and of sporadic PanIN lesions. We compared healthy pancreata to pancreatic cancer and peritumoral tissue and observed distinct transcriptomic signatures in fibroblasts, and, to a lesser extent, macrophages. PanIN epithelial cells from healthy pancreata were remarkably transcriptionally similar to cancer cells, suggesting that neoplastic pathways are initiated early in tumorigenesis. Statement of significance: The causes underlying the onset of pancreatic cancer remain largely unknown, hampering early detection and prevention strategies. Here, we show that PanIN are abundant in healthy individuals and present at a much higher rate than the incidence of pancreatic cancer, setting the stage for efforts to elucidate the microenvironmental and cell intrinsic factors that restrain, or, conversely, promote, malignant progression.
RESUMO
The adult healthy human pancreas has been poorly studied given the lack of indication to obtain tissue from the pancreas in the absence of disease and rapid postmortem degradation. We obtained pancreata from brain dead donors, thus avoiding any warm ischemia time. The 30 donors were diverse in age and race and had no known pancreas disease. Histopathologic analysis of the samples revealed pancreatic intraepithelial neoplasia (PanIN) lesions in most individuals irrespective of age. Using a combination of multiplex IHC, single-cell RNA sequencing, and spatial transcriptomics, we provide the first-ever characterization of the unique microenvironment of the adult human pancreas and of sporadic PanIN lesions. We compared healthy pancreata to pancreatic cancer and peritumoral tissue and observed distinct transcriptomic signatures in fibroblasts and, to a lesser extent, macrophages. PanIN epithelial cells from healthy pancreata were remarkably transcriptionally similar to cancer cells, suggesting that neoplastic pathways are initiated early in tumorigenesis. SIGNIFICANCE: Precursor lesions to pancreatic cancer are poorly characterized. We analyzed donor pancreata and discovered that precursor lesions are detected at a much higher rate than the incidence of pancreatic cancer, setting the stage for efforts to elucidate the microenvironmental and cell-intrinsic factors that restrain or, conversely, promote malignant progression. See related commentary by Hoffman and Dougan, p. 1288. This article is highlighted in the In This Issue feature, p. 1275.
Assuntos
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adulto , Humanos , Transcriptoma , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/patologia , Microambiente Tumoral/genéticaRESUMO
PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is generally divided in two subtypes, classical and basal. Recently, single cell RNA sequencing has uncovered the co-existence of basal and classical cancer cells, as well as intermediary cancer cells, in individual tumors. The latter remains poorly understood; here, we sought to characterize them using a multimodal approach. EXPERIMENTAL DESIGN: We performed subtyping on a single cell RNA sequencing dataset containing 18 human PDAC samples to identify multiple intermediary subtypes. We generated patient-derived PDAC organoids for functional studies. We compared single cell profiling of matched blood and tumor samples to measure changes in the local and systemic immune microenvironment. We then leveraged longitudinally patient-matched blood to follow individual patients over the course of chemotherapy. RESULTS: We identified a cluster of KRT17-high intermediary cancer cells that uniquely express high levels of CXCL8 and other cytokines. The proportion of KRT17High/CXCL8+ cells in patient tumors correlated with intra-tumoral myeloid abundance, and, interestingly, high pro-tumor peripheral blood granulocytes, implicating local and systemic roles. Patient-derived organoids maintained KRT17High/CXCL8+cells and induced myeloid cell migration in an CXCL8-dependent manner. In our longitudinal studies, plasma CXCL8 decreased following chemotherapy in responsive patients, while CXCL8 persistence portended worse prognosis. CONCLUSIONS: Through single cell analysis of PDAC samples we identified KRT17High/CXCL8+ cancer cells as an intermediary subtype, marked by a unique cytokine profile and capable of influencing myeloid cells in the tumor microenvironment and systemically. The abundance of this cell population should be considered for patient stratification in precision immunotherapy.
RESUMO
Pancreatic ductal adenocarcinoma (PDAC) is a dismal disease with a 5-year survival rate of 10%. A hallmark feature of this disease is its abundant microenvironment which creates a highly immunosuppressive milieu. This is, in large part, mediated by an abundant infiltration of myeloid cells in the PDAC tumor microenvironment. Consequently, therapies that modulate myeloid function may augment the efficacy of standard of care for PDAC. Unfortunately, there is limited understanding about the various subsets of myeloid cells in PDAC, particularly in human studies. This review highlights the application of single-cell RNA sequencing to define the myeloid compartment in human PDAC and elucidate the crosstalk between myeloid cells and the other components of the tumor immune microenvironment.
RESUMO
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an extensive fibroinflammatory stroma and often experiences conditions of insufficient oxygen availability or hypoxia. Cancer-associated fibroblasts (CAF) are a predominant and heterogeneous population of stromal cells within the pancreatic tumor microenvironment. Here, we uncover a previously unrecognized role for hypoxia in driving an inflammatory phenotype in PDAC CAFs. We identify hypoxia as a strong inducer of tumor IL1É expression, which is required for inflammatory CAF (iCAF) formation. Notably, iCAFs preferentially reside in hypoxic regions of PDAC. Our data implicate hypoxia as a critical regulator of CAF heterogeneity in PDAC.
RESUMO
BACKGROUND & AIMS: Integrin contact with basement membrane is a major determinant of epithelial cell polarity. beta1 integrin heterodimers are the primary receptors for basement membrane in pancreatic acinar cells, which function to synthesize and directionally secrete digestive enzymes into a central lumen. Aberrant acinar secretion and exposure of the parenchyma to digestive enzyme activity lead to organ damage and pancreatitis. METHODS: beta1 integrin conditional knockout mice were crossed to Ptf1a-Cre mice to ablate beta1 integrin in the pancreas. Histopathology of aged and cerulein-treated mice were assessed by histology and immunocytochemistry. Directional secretion was determined in vitro by FM1-43 loading with cerulein stimulation. RESULTS: Pancreas-specific ablation of beta1 integrin led to progressive organ degeneration, associated with focal acinar cell necrosis and ductal metaplasia along with widespread inflammation and collagen deposition. beta1 Integrin-null pancreata were highly susceptible to cerulein-induced acute pancreatitis, displaying an enhanced level of damage with no loss in regeneration. Degenerating beta1 integrin-null pancreata were marked by disruption of acinar cell polarity. Protein kinase C epsilon, normally localized apically, was found in the cytoplasm where it can lead to intracellular digestive enzyme activation. beta1 Integrin-null acinar cells displayed indiscriminate secretion to all membrane surfaces, consistent with an observed loss of basolateral membrane localization of Munc18c, which normally prevents basal secretion of digestive enzymes. CONCLUSIONS: Ablation of beta1 integrin induces organ atrophy by disrupting acinar cell polarity and exposing the pancreatic parenchyma to digestive enzymes.
Assuntos
Integrina beta1/fisiologia , Pâncreas Exócrino/patologia , Fatores Etários , Amilases/sangue , Animais , Polaridade Celular , Ceruletídeo/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Proteína Quinase C-alfa/análise , Proteína Quinase C-épsilon/análiseRESUMO
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with few effective therapeutic options. PDAC is characterized by an extensive fibroinflammatory stroma that includes abundant infiltrating immune cells. Tumor-associated macrophages (TAM) are prevalent within the stroma and are key drivers of immunosuppression. TAMs in human and murine PDAC are characterized by elevated expression of apolipoprotein E (ApoE), an apolipoprotein that mediates cholesterol metabolism and has known roles in cardiovascular and Alzheimer's disease but no known role in PDAC. We report here that ApoE is also elevated in peripheral blood monocytes in PDAC patients, and plasma ApoE protein levels stratify patient survival. Orthotopic implantation of mouse PDAC cells into syngeneic wild-type or in ApoE-/- mice showed reduced tumor growth in ApoE-/- mice. Histologic and mass cytometric (CyTOF) analysis of these tumors showed an increase in CD8+ T cells in tumors in ApoE-/- mice. Mechanistically, ApoE induced pancreatic tumor cell expression of Cxcl1 and Cxcl5, known immunosuppressive factors, through LDL receptor and NF-κB signaling. Taken together, this study reveals a novel immunosuppressive role of ApoE in the PDAC microenvironment. SIGNIFICANCE: This study shows that elevated apolipoprotein E in PDAC mediates immune suppression and high serum apolipoprotein E levels correlate with poor patient survival.See related commentary by Sherman, p. 4186.