Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Labelled Comp Radiopharm ; 66(9): 222-236, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37095603

RESUMO

The beta-site amyloid precursor protein cleaving enzyme (BACE1) is responsible for initiating the generation of beta-amyloid, the major constituent of amyloid plaques in Alzheimer's disease (AD). The purpose of this study was to develop a specific BACE1 radioligand for visualization of the distribution pattern and quantification of the BACE1 protein in the rodent and monkey brain both in vitro by autoradiography and in vivo by positron emission tomography (PET). The BACE1 inhibitor RO6807936 originating from an in-house chemical drug optimization program was selected based on its PET tracer-like physicochemical properties and a favorable pharmacokinetic profile. Saturation binding analysis of [3 H]RO6807936 revealed specific and high-affinity binding (KD = 2.9 nM) and a low Bmax value (4.3 nM) of the BACE1 protein in native rat brain membranes. [3 H]RO6807936 binding showed a ubiquitous distribution on rat brain slices in vitro with higher levels in the CA3 pyramidal cell layer and the granule cell layer of the hippocampus. In a next step, RO6807936 was successfully radiolabeled with carbon-11 and showed acceptable uptake in the baboon brain as well as a widespread and rather homogeneous distribution consistent with rodent data. In vivo blockade studies with a specific BACE1 inhibitor reduced uptake of the tracer to homogenous levels across brain regions and demonstrated specificity of the signal. Our data warrant further profiling of this PET tracer candidate in humans to investigate BACE1 expression in normal individuals and those with AD and as an imaging biomarker for target occupancy studies in clinical drug trials.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Ratos , Animais , Humanos , Precursor de Proteína beta-Amiloide/metabolismo , Roedores/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Papio/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo
2.
Mol Pharm ; 18(6): 2208-2217, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34014104

RESUMO

The current standard of care for antivascular endothelial growth factor (VEGF) treatment requires frequent intravitreal (IVT) injections of protein therapeutics, as a result of limited retention within the eye. A thorough understanding of the determinants of ocular pharmacokinetics (PK) and its translation across species is an essential prerequisite for developing more durable treatments. In this work, we studied the ocular PK in macaques of the protein formats that comprise today's anti-VEGF standard of care. Cynomolgus monkeys received a single IVT injection of a single-chain variable fragment (scFv, brolucizumab), antigen-binding fragment (Fab, ranibizumab), fragment crystallizable-fusion protein (Fc-fusion, aflibercept), or immunoglobulin G monoclonal antibody (IgG, VA2 CrossMAb). Drug concentrations were determined in aqueous humor samples collected up to 42 days postinjection using immunoassay methods. The ocular half-life (t1/2) was 2.28, 2.62, 3.13, and 3.26 days for scFv, Fab, Fc-fusion, and IgG, respectively. A correlation with human t1/2 values from the literature confirmed the translational significance of the cynomolgus monkey as an animal model for ocular research. The relation between ocular t1/2 and molecular size was also investigated. Size was inferred from the molecular weight (MW) or determined experimentally by dynamic light scattering. The MW and hydrodynamic radius were found to be good predictors for the ocular t1/2 of globular proteins. The analysis showed that molecular size is a determinant of ocular disposition and may be used in lieu of dedicated PK studies in animals.


Assuntos
Inibidores da Angiogênese/farmacocinética , Humor Aquoso/metabolismo , Corpo Vítreo/metabolismo , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/química , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacocinética , Meia-Vida , Injeções Intravítreas , Macaca fascicularis , Modelos Animais , Peso Molecular , Ranibizumab/administração & dosagem , Ranibizumab/química , Ranibizumab/farmacocinética , Receptores de Fatores de Crescimento do Endotélio Vascular/administração & dosagem , Receptores de Fatores de Crescimento do Endotélio Vascular/química , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacocinética
3.
PLoS Comput Biol ; 16(10): e1008139, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33006965

RESUMO

The complement system is a powerful mechanism of innate immunity poised to eliminate foreign cells and pathogens. It is an intricate network of >35 proteins, which, once activated, leads to the tagging of the surface to be eliminated, produces potent chemoattractants to recruit immune cells, and inserts cytotoxic pores into nearby lipid surfaces. Although it can be triggered via different pathways, its net output is largely based on the direct or indirect activation of the alternative pathway. Complement dysregulation or deficiencies may cause severe pathologies, such as paroxysmal nocturnal hemoglobinuria (PNH), where a lack of complement control proteins leads to hemolysis and life-threatening anemia. The complexity of the system poses a challenge for the interpretation of experimental data and the design of effective pharmacological therapies. To address this issue, we developed a mathematical model of the alternative complement pathway building on previous modelling efforts. The model links complement activation to the hemolytic activity of the terminal alternative pathway, providing an accurate description of pathway activity as observed in vitro and in vivo, in health and disease. Through adjustment of the parameters describing experimental conditions, the model was capable of reproducing the results of an array of standard assays used in complement research. To demonstrate its clinical applicability, we compared model predictions with clinical observations of the recovery of hematological biomarkers in PNH patients treated with the complement inhibiting anti-C5 antibody eculizumab. In conclusion, the model can enhance the understanding of complement biology and its role in disease pathogenesis, help identifying promising targets for pharmacological intervention, and predict the outcome of complement-targeting pharmacological interventions.


Assuntos
Via Alternativa do Complemento/fisiologia , Hemólise/fisiologia , Modelos Imunológicos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Ativação do Complemento/efeitos dos fármacos , Ativação do Complemento/fisiologia , Inativadores do Complemento/farmacologia , Inativadores do Complemento/uso terapêutico , Via Alternativa do Complemento/efeitos dos fármacos , Biologia Computacional , Hemoglobinúria Paroxística/tratamento farmacológico , Hemoglobinúria Paroxística/fisiopatologia , Hemólise/efeitos dos fármacos , Humanos
4.
Mol Pharm ; 17(2): 695-709, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31876425

RESUMO

Therapeutic antibodies administered intravitreally are the current standard of care to treat retinal diseases. The ocular half-life (t1/2) is a key determinant of the duration of target suppression. To support the development of novel, longer-acting drugs, a reliable determination of t1/2 is needed together with an improved understanding of the factors that influence it. A model-based meta-analysis was conducted in humans and nonclinical species (rat, rabbit, monkey, and pig) to determine consensus values for the ocular t1/2 of IgG antibodies and Fab fragments. Results from multiple literature and in-house pharmacokinetic studies are presented within a mechanistic framework that assumes diffusion-controlled drug elimination from the vitreous. Our analysis shows, both theoretically and experimentally, that the ocular t1/2 increases in direct proportion to the product of the hydrodynamic radius of the macromolecule (3.0 nm for Fab and 5.0 nm for IgG) and the square of the radius of the vitreous globe, which varies approximately 24-fold from the rat to the human. Interspecies differences in the proportionality factors are observed and discussed in mechanistic terms. In addition, mathematical formulae are presented that allow prediction of the ocular t1/2 for molecules of interest. The utility of these formulae is successfully demonstrated in case studies of aflibercept, brolucizumab, and PEGylated Fabs, where the predicted ocular t1/2 values are found to be in reasonable agreement with the experimental data available for these molecules.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Produtos Biológicos/administração & dosagem , Fragmentos Fab das Imunoglobulinas/administração & dosagem , Imunoglobulina G/administração & dosagem , Injeções Intravítreas/métodos , Receptores de Fatores de Crescimento do Endotélio Vascular/administração & dosagem , Proteínas Recombinantes de Fusão/administração & dosagem , Animais , Anticorpos Monoclonais Humanizados/farmacocinética , Produtos Biológicos/farmacocinética , Difusão , Meia-Vida , Haplorrinos , Humanos , Hidrodinâmica , Coelhos , Ratos , Proteínas Recombinantes de Fusão/farmacocinética , Doenças Retinianas/tratamento farmacológico , Suínos , Distribuição Tecidual , Corpo Vítreo/efeitos dos fármacos , Corpo Vítreo/metabolismo
5.
Mol Pharm ; 15(7): 2770-2784, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29734810

RESUMO

Neovascular age-related macular degeneration (wet AMD) results from the pathological angiogenesis of choroidal capillaries, which leak fluid within or below the macular region of the retina. The current standard of care for treating wet AMD utilizes intravitreal injections of anti-VEGF antibodies or antibody fragments to suppress ocular vascular endothelial growth factor (VEGF) levels. While VEGF suppression has been demonstrated in wet AMD patients by serial measurements of free-VEGF concentrations in aqueous humor samples, it is presumed that anti-VEGF molecules also permeate across the inner limiting membrane (ILM) of the retina as well as the retinal pigmented epithelium (RPE) and suppress VEGF levels in the retina and/or choroidal regions. The latter effects are inferred from serial optical coherence tomography (OCT) measurements of fluid in the retinal and sub-retinal spaces. In order to gain theoretical insights to the dynamics of retinal levels of free-VEGF following intravitreal injection of anti-VEGF molecules, we have extended our previous two-compartment pharmacokinetic/pharmacodynamic (PK/PD) model of ranibizumab-VEGF suppression in vitreous and aqueous humors to a three-compartment model that includes the retinal compartment. In the new model, reference values for the macromolecular permeability coefficients between retina and vitreous ( pILM) and between retina and choroid ( pRPE) were estimated from PK data obtained in rabbit. With these values, the three-compartment model was used to re-analyze the aqueous humor levels of free-VEGF obtained in wet AMD patients treated with ranibizumab and to compare them to the simulated retinal levels of free-VEGF, including the observed variability in PK and PD. We have also used the model to explore the impact of varying pILM and pRPE to assess the case in which an anti-VEGF molecule is impermeable to the ILM and to assess the potential effects of AMD pathology on the RPE barrier. Our simulations show that, for the reference values of pILM and pRPE, the simulated duration of VEGF suppression in the retina is approximately 50% shorter than the observed duration of VEGF suppression in the aqueous humor, a finding that may explain the short duration of suppressed disease activity in the "high anti-VEGF demand" patients reported by Fauser and Muether ( Br. J. Ophthalmol. 2016, 100, 1494-1498 ). At 10-fold lower values of pRPE, the durations of VEGF suppression in the retina and aqueous humor are comparable. Lastly we have used the model to explore the impact of dose and binding parameters on the duration and depth of VEGF suppression in the aqueous and retinal compartments. Our simulations with the three-compartment PK/PD model provide new insights into inter-patient variability in response to anti-VEGF therapy and offer a mechanistic framework for developing treatment regimens and molecules that may prolong the duration of retinal VEGF suppression.


Assuntos
Inibidores da Angiogênese/farmacologia , Ranibizumab/farmacologia , Retina/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Degeneração Macular Exsudativa/tratamento farmacológico , Inibidores da Angiogênese/uso terapêutico , Humor Aquoso/efeitos dos fármacos , Humor Aquoso/metabolismo , Humanos , Injeções Intravítreas , Modelos Biológicos , Ranibizumab/uso terapêutico , Retina/efeitos dos fármacos , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/patologia , Corpo Vítreo/efeitos dos fármacos , Corpo Vítreo/metabolismo , Degeneração Macular Exsudativa/patologia
6.
Drug Discov Today Technol ; 21-22: 27-34, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27978984

RESUMO

In this review we present ways in which translational PK/PD modeling can address opportunities to enhance probability of success in drug discovery and early development. This is achieved by impacting efficacy and safety-driven attrition rates, through increased focus on the quantitative understanding and modeling of translational PK/PD. Application of the proposed principles early in the discovery and development phases is anticipated to bolster confidence of successfully evaluating proof of mechanism in humans and ultimately improve Phase II success. The present review is centered on the application of predictive modeling and simulation approaches during drug discovery and early development, and more specifically of mechanism-based PK/PD modeling. Case studies are presented, focused on the relevance of M&S contributions to real-world questions and the impact on decision making.


Assuntos
Modelos Biológicos , Farmacocinética , Fenômenos Farmacológicos , Animais , Ensaios Clínicos Fase II como Assunto , Descoberta de Drogas , Humanos , Pesquisa Translacional Biomédica
7.
J Neurosci ; 34(35): 11621-30, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25164658

RESUMO

Therapeutic approaches for prevention or reduction of amyloidosis are currently a main objective in basic and clinical research on Alzheimer's disease. Among the agents explored in clinical trials are anti-Aß peptide antibodies and secretase inhibitors. Most anti-Aß antibodies are considered to act via inhibition of amyloidosis and enhanced clearance of existing amyloid, although secretase inhibitors reduce the de novo production of Aß. Limited information is currently available on the efficacy and potential advantages of combinatorial antiamyloid treatment. We performed a chronic study in APPLondon transgenic mice that received treatment with anti-Aß antibody gantenerumab and BACE inhibitor RO5508887, either as mono- or combination treatment. Treatment aimed to evaluate efficacy on amyloid progression, similar to preexisting amyloidosis as present in Alzheimer's disease patients. Mono-treatments with either compound caused a dose-dependent reduction of total brain Aß and amyloid burden. Combination treatment with both compounds significantly enhanced the antiamyloid effect. The observed combination effect was most pronounced for lowering of amyloid plaque load and plaque number, which suggests effective inhibition of de novo plaque formation. Moreover, significantly enhanced clearance of pre-existing amyloid plaques was observed when gantenerumab was coadministered with RO5508887. BACE inhibition led to a significant time- and dose-dependent decrease in CSF Aß, which was not observed for gantenerumab treatment. Our results demonstrate that combining these two antiamyloid agents enhances overall efficacy and suggests that combination treatments may be of clinical relevance.


Assuntos
Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Anticorpos Monoclonais/administração & dosagem , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Encéfalo/efeitos dos fármacos , Inibidores Enzimáticos/administração & dosagem , Peptídeos beta-Amiloides/antagonistas & inibidores , Animais , Anticorpos Monoclonais Humanizados , Encéfalo/patologia , Modelos Animais de Doenças , Quimioterapia Combinada , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/patologia
9.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38903103

RESUMO

The cannabinoid CB2 receptor (CB2R) is a potential therapeutic target for distinct forms of tissue injury and inflammatory diseases. To thoroughly investigate the role of CB2R in pathophysiological conditions and for target validation in vivo, optimal pharmacological tool compounds are essential. Despite the sizable progress in the generation of potent and selective CB2R ligands, pharmacokinetic parameters are often neglected for in vivo studies. Here, we report the generation and characterization of a tetra-substituted pyrazole CB2R full agonist named RNB-61 with high potency (K i 0.13-1.81 nM, depending on species) and a peripherally restricted action due to P-glycoprotein mediated efflux from the brain. 3H and 14C labelled RNB-61 showed apparent K d values < 4 nM towards human CB2R in both cell and tissue experiments. The >6000-fold selectivity over CB1 receptors and negligible off-targets in vitro, combined with high oral bioavailability and suitable systemic pharmacokinetic (PK) properties, prompted the assessment of RNB-61 in a mouse ischemia-reperfusion model of acute kidney injury (AKI) and in a rat model of chronic kidney injury/inflammation and fibrosis (CKI) induced by unilateral ureteral obstruction. RNB-61 exerted dose-dependent nephroprotective and/or antifibrotic effects in the AKI/CKI models. Thus, RNB-61 is an optimal CB2R tool compound for preclinical in vivo studies with superior biophysical and PK properties over generally used CB2R ligands.

10.
ACS Pharmacol Transl Sci ; 7(8): 2424-2438, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39144568

RESUMO

The cannabinoid CB2 receptor (CB2R) is a potential therapeutic target for distinct forms of tissue injury and inflammatory diseases. To thoroughly investigate the role of CB2R in pathophysiological conditions and for target validation in vivo, optimal pharmacological tool compounds are essential. Despite the sizable progress in the generation of potent and selective CB2R ligands, pharmacokinetic parameters are often neglected for in vivo studies. Here, we report the generation and characterization of a tetra-substituted pyrazole CB2R full agonist named RNB-61 with high potency (K i 0.13-1.81 nM, depending on species) and a peripherally restricted action due to P-glycoprotein-mediated efflux from the brain. 3H and 14C labeled RNB-61 showed apparent K d values of <4 nM toward human CB2R in both cell and tissue experiments. The 6,800-fold selectivity over CB1 receptors and negligible off-targets in vitro, combined with high oral bioavailability and suitable systemic pharmacokinetic (PK) properties, prompted the assessment of RNB-61 in a mouse ischemia-reperfusion model of acute kidney injury (AKI) and in a rat model of chronic kidney injury/inflammation and fibrosis (CKI) induced by unilateral ureteral obstruction. RNB-61 exerted dose-dependent nephroprotective and/or antifibrotic effects in the AKI/CKI models. Thus, RNB-61 is an optimal CB2R tool compound for preclinical in vivo studies with superior biophysical and PK properties over generally used CB2R ligands.

11.
Front Pharmacol ; 15: 1426446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070793

RESUMO

Introduction: Preclinical studies suggest that cannabinoid receptor type 2 (CB2R) activation has a therapeutic effect in animal models on chronic inflammation and vascular permeability, which are key pathological features of diabetic retinopathy (DR). A novel CB2R agonist, triazolopyrimidine RG7774, was generated through lead optimization of a high-throughput screening hit. The aim of this study was to characterize the pharmacology, absorption, distribution, metabolism, elimination, and toxicity (ADMET) profile of RG7774, and to explore its potential for managing the key pathological features associated with retinal disease in rodents. Methods: The in vitro pharmacology of RG7774 was investigated for CB2R binding and receptor activation using recombinant human and mouse CB2R expression in Chinese hamster ovary cells, and endogenous CB2R expression in human Jurkat cells, and rat and mouse spleen cells. The ADMET profile was evaluated and the effects of RG7774 on retinal permeability, leukocyte adhesion, and choroidal neovascularization (CNV) were investigated in rodent models of retinal disease. Pharmacokinetic (PK) parameters and the exposure-response relationship were characterized in healthy animals and in animals with laser-induced CNV. Results: RG7774 was found to be a potent (EC50: 2.8 nM and Ki: 51.3 nM), selective, and full CB2R agonist with no signs of cannabinoid receptor type 1 (CB1R) binding or activation. The ligand showed a favorable ADMET profile and exhibited systemic and ocular exposure after oral delivery. Functional potency in vitro translated from recombinant to endogenous expression systems. In vivo, orally administered RG7774 reduced retinal permeability and leukocyte adhesion in rodents with lipopolysaccharide (LPS)-induced uveitis and streptozotocin (STZ)-induced DR, and reduced lesion areas in rats with laser-induced CNV with an ED50 of 0.32 mg/kg. Anatomically, RG7774 reduced the migration of retinal microglia to retinal lesions. Discussion: RG7774 is a novel, highly selective, and orally bioavailable CB2R agonist, with an acceptable systemic and ocular PK profile, and beneficial effects on retinal vascular permeability, leukocyte adhesion, and ocular inflammation in rodent animal models. Results support the development of RG7774 as a potential treatment for retinal diseases with similar pathophysiologies as addressed by the animal models.

12.
Clin Transl Sci ; 16(5): 723-741, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36651217

RESUMO

The eye, which is under constant exposure to environmental pathogens, has evolved various anatomic and immunological barriers critical to the protection of tissues lacking regenerative capacity, and the maintenance of a clear optic pathway essential to vision. By bypassing the ocular barriers, intravitreal (IVT) injection has become the mainstay for the delivery of drugs to treat conditions that affect the back of the eye. Both small molecules and biotherapeutics have been successfully administered intravitreally, and several drugs have been approved for the treatment of (wet) age-related macular degeneration and diabetic macular edema. However, IVT injection is an invasive procedure, which requires sufficient technical expertise from the healthcare professional administering the drug. Potential side effects include bleeding, retinal tear, cataracts, infection, uveitis, loss of vision, and increased ocular pressure. Pharmaceutical companies often differ in their drug development plan, including drug administration techniques, collection of ocular tissues and fluids, ophthalmology monitoring, and overall conduct of nonclinical and clinical studies. The present effort, under the aegis of the Innovation & Quality Ophthalmic Working Group, aims at understanding these differences, identifying pros and cons of the various approaches, determining the gaps in knowledge, and suggesting feasible good practices for nonclinical and early clinical IVT drug development.


Assuntos
Retinopatia Diabética , Edema Macular , Humanos , Edema Macular/tratamento farmacológico , Retinopatia Diabética/tratamento farmacológico , Preparações Farmacêuticas , Injeções Intravítreas
13.
Healthcare (Basel) ; 11(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36766862

RESUMO

The COVID-19 pandemic has hampered the optimum management of retinal diseases. This study examined the impact of the pandemic on the intravitreal-injection practice in two academic centers in Italy along with the related medico-legal implications. A retrospective analysis of electronic medical records from 16 March 2020 to 14 March 2021 at the ophthalmological departments of University of Cagliari (SGD) and University Magna Græcia of Catanzaro (UMG) was conducted. The data collected between 16 March 2020 and 14 June 2020 (lockdown), 15 June 2020 and 13 September 2020 (unlock), and 14 September 2020 and 14 March 2021 (second wave) were compared with those of the same period of the previous year. Weekly data on the administered drug and the number and type of treated disease were collected and analyzed. During the lockdown, a drop of 59% at SGD (p < 0.00001) and 77% at UMG (p < 0.00001) in intravitreal injections was found. In the first year of the pandemic, the reduction in injections was approximately of 27% (p < 0.0008) and 38% (p < 0.0001) at SGD and UMG, respectively. The COVID-19-related containment measures and the health resources redistribution have led to a delay in the treatment of chronic diseases of the retina, prioritizing the undeferrable ones. The lack of management guidelines has conceived relevant ethical and medico-legal issues that need to be considered in future measures planning.

14.
J Pharmacokinet Pharmacodyn ; 39(3): 227-37, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22481485

RESUMO

Inhibition of the enzyme(s) that produce the Amyloid beta (Aß) peptide, namely BACE and γ-secretase, is considered an attractive target for Alzheimer's disease therapy. However, the optimal pharmacokinetic-pharmacodynamic modelling method to describe the changes in Aß levels after drug treatment is unclear. In this study, turnover models were employed to describe Aß levels following treatment with the γ-secretase inhibitor RO5036450, in the wild type rat. Initially, Aß level changes in the brain, cerebral spinal fluid (CSF) and plasma were modeled as separate biological compartments, which allowed the estimation of a compound IC50 and Aß turnover. While the data were well described, the model did not take into consideration that the CSF pool of Aß most likely originates from the brain via the CSF drainage pathway. Therefore, a separate model was carried out, with the assumption that CSF Aß levels originated from the brain. The optimal model that described the data involved two brain Aß 40 sub-compartments, one with a rapid turnover, from which CSF Aß 40 is derived, and a second quasi-static pool of ~20%. Importantly, the estimated in vivo brain IC50 was in a good range of the in vitro IC50 (ratio, 1.4). In conclusion, the PK/PD models presented here are well suited for describing the temporal changes in Aß levels that occur after treatment with an Aß lowering drug, and identifying physiological parameters.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Biológicos , Inibidores de Proteases/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/metabolismo , Masculino , Ratos , Ratos Wistar , Resultado do Tratamento
15.
Drug Discov Today ; 27(6): 1604-1621, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35304340

RESUMO

Many in vitro and in vivo models are used in pharmacological research to evaluate the role of targeted proteins in a disease. Understanding the translational relevance and limitation of these models for analyzing a drug's disposition, pharmacokinetic/pharmacodynamic (PK/PD) profile, mechanism, and efficacy, is essential when selecting the most appropriate model of the disease of interest and predicting clinically efficacious doses of the investigational drug. Selected animal models used in ophthalmology, infectious diseases, oncology, autoimmune diseases, and neuroscience are reviewed here. Each area has specific challenges around translatability and determination of an efficacious dose: new patient-specific dosing methods may help overcome these limitations.


Assuntos
Drogas em Investigação , Oncologia , Animais , Modelos Biológicos
16.
Pharmaceutics ; 12(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858986

RESUMO

The burden associated with frequent injections of current intravitreal (IVT) therapeutics may be reduced by long-acting delivery strategies. Binding to serum albumin has been shown to extend the ocular half-life in rabbits, however, the underlying molecular mechanisms and translational relevance remain unclear. The aim of this work was to characterize the in vitro and in vivo formation of complexes between human serum albumin (HSA) and an antigen-binding fragment of a rabbit antibody linked to an anti-HSA nanobody (FabA). The ocular and systemic pharmacokinetics of 3H-labeled FabA (0.05 mg/eye IVT) co-formulated with HSA (1 and 15 nmol/eye) were assessed in Dutch belted rabbits. Next, FabA was incubated in vitreous samples from cynomolgus monkeys and human donors (healthy and diseased) supplemented with species-specific serum albumin. Finally, the FabA-albumin complexes formed in vitro and in vivo were analyzed by radio-size exclusion chromatography. A 3-fold increase in FabA vitreal exposure and half-life was observed in rabbits co-administered with 15 nmol HSA compared to 1 nmol and a control arm. The different pharmacokinetic behavior was explained with the formation of higher molecular weight FabA-albumin complexes. The analysis of vitreous samples revealed the existence of predominantly 1:1 complexes at endogenous or low concentrations of supplemented albumin. A shift towards 1:2 complexes was observed with increasing albumin concentrations. Overall, these results suggest that endogenous vitreal albumin concentrations are insufficient for half-life extension and warrant supplementation in the dosing formulation.

18.
Drug Discov Today ; 21(6): 924-38, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26891981

RESUMO

On the tenth anniversary of two key International Conference on Harmonisation (ICH) guidelines relating to cardiac proarrhythmic safety, an initiative aims to consider the implementation of a new paradigm that combines in vitro and in silico technologies to improve risk assessment. The Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative (co-sponsored by the Cardiac Safety Research Consortium, Health and Environmental Sciences Institute, Safety Pharmacology Society and FDA) is a bold and welcome step in using computational tools for regulatory decision making. This review compares and contrasts the state-of-the-art tools from empirical to mechanistic models of cardiac electrophysiology, and how they can and should be used in combination with experimental tests for compound decision making.


Assuntos
Descoberta de Drogas , Coração/fisiologia , Modelos Biológicos , Animais , Simulação por Computador , Tomada de Decisões , Humanos , Farmacocinética , Medição de Risco
20.
J Pharmacol Toxicol Methods ; 70(1): 73-85, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24879942

RESUMO

INTRODUCTION: Cardiovascular toxicity is a significant cause of candidate failure in drug development. Pharmacokinetic/pharmacodynamic (PK/PD) modeling may reduce attrition by improving the understanding of the relationship between drug exposure and changes in cardiovascular endpoints. Diverse examples are discussed that elucidate how modeling can facilitate the interpretation of cardiovascular safety data in animals and enable quantitative translation of preclinical findings to man. METHODS: Twelve compounds under development in diverse therapeutic areas were tested in cardiovascular safety studies in the telemetered beagle dog and cynomolgus monkey. Drug-induced changes observed in different cardiovascular endpoints (QRS complex and QTc interval of the ECG, heart rate, blood pressure, and myocardial contractility) were described by means of PK/PD modeling. A range of direct and indirect effect models were employed to characterize the plasma concentration-cardiovascular effect relationship for each compound. RESULTS: For every drug candidate the proposed PK/PD models appropriately described the cardiovascular effects observed in dog and monkey. Two of the compounds subsequently reached clinical development and cardiovascular data were generated in first-in-human clinical trials. For one drug candidate, a threshold model was used to describe QTc prolongation in the monkey and man. Blood pressure changes induced by the second compound were linked to plasma exposure in dog and human via an indirect response model. In both cases it was found that translational modeling accurately predicted the human response observed during clinical development. DISCUSSION: In this article, a range of PK/PD models are discussed that successfully described cardiovascular safety findings in the preclinical setting. Where clinical data were available, it was found that translational modeling enabled the accurate prediction of outcomes in man and facilitated the description of the therapeutic index. PK/PD modeling is thus demonstrated as a powerful tool to aid in the quantitative cardiovascular safety assessment of drug candidates and the optimization of early clinical study protocols.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Cães , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Síndrome do QT Longo/tratamento farmacológico , Macaca fascicularis , Masculino , Modelos Teóricos , Gestão da Segurança/métodos , Telemetria/métodos , Pesquisa Translacional Biomédica/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa