Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Risk Anal ; 40(7): 1418-1437, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32347573

RESUMO

It is widely accepted that the relationship between lightning wildfire occurrence and its influencing factors vary depending on the spatial scale of analysis, making the development of models at the regional scale advisable. In this study, we analyze the effects of different biophysical variables and lightning characteristics on lightning-caused forest wildfires in Castilla y León region (Central Spain). The presence/absence of at least one lightning-caused fire in any 4 × 4-km grid cell was used as a dependent variable and vegetation type and structure, terrain, climate, and lightning characteristics were used as possible covariates. Five prediction methods were compared: a generalized linear model (GLM), a random forest model (RFM), a generalized additive model (GAM), a GAM that includes a spatial trend function (GAMs) and a spatial autoregressive model (AUREG). A GAMs with just one covariate, apart from longitude and latitude for each observation included as a combined effect, was considered the most appropriate model in terms of both predictive ability and simplicity. According to our results, the probability of a forest being affected by a lightning-caused fire is positively and nonlinearly associated with the percentage of coniferous woodlands in the landscape, suggesting that occurrence is more closely associated with vegetation type than with topography, climate, or lightning characteristics. The selected GAMs is intended to inform the Regional Government of Castilla y León (the fire and fuel agency in the region) regarding identification of areas at greatest risk so it can design long-term forest fuel and fire management strategies.


Assuntos
Raio , Incêndios Florestais , Fenômenos Biofísicos , Clima , Ecossistema , Florestas , Geografia , Humanos , Modelos Lineares , Modelos Teóricos , Probabilidade , Análise de Regressão , Medição de Risco , Espanha , Análise Espaço-Temporal , Estatísticas não Paramétricas , Incêndios Florestais/estatística & dados numéricos
2.
Front Plant Sci ; 9: 1582, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429865

RESUMO

Drought stress causes a reduction in tree growth and forest productivity, which could be aggravated by climate warming and defoliation due to moth outbreaks. We investigate how European gypsy moth (Lymantria dispar dispar L., Lepidoptera: Erebidae) outbreak and related climate conditions affected growth and wood features in host and non-host tree species in north-western Spain. There, radiata pine (Pinus radiata D. Don) plantations and chestnut (Castanea sativa Mill.) stands were defoliated by the moth larvae, whereas Maritime pine (Pinus pinaster Ait.) was not defoliated. The gypsy moth outbreak peaked in 2012 and 2013, and it was preceded by very warm spring conditions in 2011 and a dry-warm 2011-2012 winter. Using dendrochronology we compared growth responses to climate and defoliation of host species (radiata pine, chestnut) with the non-host species (Maritime pine). We also analyzed wood density derived from X-ray densitometry in defoliated and non-defoliated trees of radiata pine. We aimed to: (i) disentangle the relative effects of defoliation and climate stress on radial growth, and (ii) characterize defoliated trees of radiata pine according to their wood features (ring-width, maximum and minimum density). Radial growth during the outbreak (2012-2013) decreased on average 74% in defoliated (>50% of leaf area removed) trees of radiata pine, 43% in defoliated trees of chestnut, and 4% in non-defoliated trees of Maritime pine. After applying a BACI (Before-After-Control-Impact) type analysis, we concluded that the difference in the pattern of radial growth before and during the defoliation event was more likely due to the differences in climate between these two periods. Radiata pines produced abundant latewood intra-annual density fluctuations in 2006 and 2009 in response to wet summer conditions, suggesting a high climatic responsiveness. Minimum wood density was lower in defoliated than in non-defoliated trees of radiata pine prior to the outbreak, but increased during the outbreak. The pre-outbreak difference in minimum wood density suggests that the trees most affected by the outbreak produced tracheids with wider lumen and were more susceptible to drought stress. Results of this study illustrate (i) that the pattern of radial growth alone may be not a good indicator for reconstructing past defoliation events and (ii) that wood variables are reliable indicators for assessing the susceptibility of radiata pine to defoliation by the gypsy moth.

3.
PLoS One ; 12(4): e0176114, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28448524

RESUMO

The fuel complex variables canopy bulk density and canopy base height are often used to predict crown fire initiation and spread. Direct measurement of these variables is impractical, and they are usually estimated indirectly by modelling. Recent advances in predicting crown fire behaviour require accurate estimates of the complete vertical distribution of canopy fuels. The objectives of the present study were to model the vertical profile of available canopy fuel in pine stands by using data from the Spanish national forest inventory plus low-density airborne laser scanning (ALS) metrics. In a first step, the vertical distribution of the canopy fuel load was modelled using the Weibull probability density function. In a second step, two different systems of models were fitted to estimate the canopy variables defining the vertical distributions; the first system related these variables to stand variables obtained in a field inventory, and the second system related the canopy variables to airborne laser scanning metrics. The models of each system were fitted simultaneously to compensate the effects of the inherent cross-model correlation between the canopy variables. Heteroscedasticity was also analyzed, but no correction in the fitting process was necessary. The estimated canopy fuel load profiles from field variables explained 84% and 86% of the variation in canopy fuel load for maritime pine and radiata pine respectively; whereas the estimated canopy fuel load profiles from ALS metrics explained 52% and 49% of the variation for the same species. The proposed models can be used to assess the effectiveness of different forest management alternatives for reducing crown fire hazard.


Assuntos
Agricultura Florestal/métodos , Florestas , Modelos Teóricos , Biomassa , Conservação dos Recursos Naturais , Incêndios , Lasers , Pinus/crescimento & desenvolvimento
4.
PLoS One ; 10(12): e0143521, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26630156

RESUMO

Stem taper data are usually hierarchical (several measurements per tree, and several trees per plot), making application of a multilevel mixed-effects modelling approach essential. However, correlation between trees in the same plot/stand has often been ignored in previous studies. Fitting and calibration of a variable-exponent stem taper function were conducted using data from 420 trees felled in even-aged maritime pine (Pinus pinaster Ait.) stands in NW Spain. In the fitting step, the tree level explained much more variability than the plot level, and therefore calibration at plot level was omitted. Several stem heights were evaluated for measurement of the additional diameter needed for calibration at tree level. Calibration with an additional diameter measured at between 40 and 60% of total tree height showed the greatest improvement in volume and diameter predictions. If additional diameter measurement is not available, the fixed-effects model fitted by the ordinary least squares technique should be used. Finally, we also evaluated how the expansion of parameters with random effects affects the stem taper prediction, as we consider this a key question when applying the mixed-effects modelling approach to taper equations. The results showed that correlation between random effects should be taken into account when assessing the influence of random effects in stem taper prediction.


Assuntos
Modelos Teóricos , Pinus/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Água/química , Espanha
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa