Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Environ Res ; 244: 117832, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056610

RESUMO

BACKGROUND: Persistent organic pollutants (POPs) are chemicals characterized by their environmental persistence. Evidence suggests that exposure to POPs, which is ubiquitous, is associated with microRNA (miRNA) dysregulation. miRNA are key regulators in many physiological processes. It is thus of public health concern to understand the relationships between POPs and miRNA as related to health outcomes. OBJECTIVES: This systematic review evaluated the relationship between widely recognized, intentionally manufactured, POPs, including per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (dichlorodiphenyltrichloroethane [DDT], dichlorodiphenyldichloroethylene [DDE], hexachlorobenzene [HCB]), with miRNA expression in both human and animal studies. METHODS: We used PubMed and Embase to systematically search the literature up to September 29th, 2023. Search results for human and animal studies were included if they incorporated at least one POP of interest in relation to at least one miRNA. Data were synthesized to determine the direction and significance of associations between POPs and miRNA. We utilized ingenuity pathway analysis to review disease pathways for miRNA that were associated with POPs. RESULTS: Our search identified 38 eligible studies: 9 in humans and 29 in model organisms. PFAS were associated with decreased expression of miR-19, miR-193b, and miR-92b, as well as increased expression of miR-128, miR-199a-3p, and miR-26b across species. PCBs were associated with increased expression of miR-15a, miR-1537, miR-21, miR-22-3p, miR-223, miR-30b, and miR-34a, as well as decreased expression of miR-130a and let-7b in both humans and animals. Pathway analysis for POP-associated miRNA identified pathways related to carcinogenesis. DISCUSSION: This is the first systematic review of the association of POPs with miRNA in humans and model organisms. Large-scale prospective human studies are warranted to examine the role of miRNA as mediators between POPs and health outcomes.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Hidrocarbonetos Clorados , MicroRNAs , Praguicidas , Bifenilos Policlorados , Animais , Humanos , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/análise , Éteres Difenil Halogenados/toxicidade , Éteres Difenil Halogenados/análise , Estudos Prospectivos , Hidrocarbonetos Clorados/toxicidade , Hidrocarbonetos Clorados/análise , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Praguicidas/toxicidade , Praguicidas/análise , Fluorocarbonos/toxicidade
2.
Environ Res ; 244: 117611, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061983

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) may impair bone development in adolescence, which impacts life-long bone health. No previous studies have examined prospective associations of individual PFAS and their mixture with bone mineral density (BMD) changes in Hispanic young persons, a population at high risk of osteoporosis in adulthood. OBJECTIVES: To examine associations of individual PFAS and PFAS mixtures with longitudinal changes in BMD in an adolescent Hispanic cohort and examine generalizability of findings in a mixed-ethnicity young adult cohort (58.4% Hispanic). METHODS: Overweight/obese adolescents from the Study of Latino Adolescents at Risk of Type 2 Diabetes (SOLAR; n = 304; mean follow-up = 1.4 years) and young adults from the Southern California Children's Health Study (CHS; n = 137; mean follow-up = 4.1 years) were included in this study. Plasma PFAS were measured at baseline and dual x-ray absorptiometry scans were performed at baseline and follow-up to measure BMD. We estimated longitudinal associations between BMD and five PFAS via separate covariate-adjusted linear mixed effects models, and between BMD and the PFAS mixture via quantile g-computation. RESULTS: In SOLAR adolescents, baseline plasma perfluorooctanesulfonic acid (PFOS) was associated with longitudinal changes in BMD. Each doubling of PFOS was associated with an average -0.003 g/cm2 difference in change in trunk BMD per year over follow-up (95% CI: -0.005, -0.0002). Associations with PFOS persisted in CHS young adults, where each doubling of plasma PFOS was associated with an average -0.032 g/cm2 difference in total BMD at baseline (95% CI -0.062, -0.003), though longitudinal associations were non-significant. We did not find associations of other PFAS with BMD; associations of the PFAS mixture with BMD outcomes were primarily negative though non-significant. DISCUSSION: PFOS exposure was associated with lower BMD in adolescence and young adulthood, important periods for bone development, which may have implications on future bone health and risk of osteoporosis in adulthood.


Assuntos
Ácidos Alcanossulfônicos , Diabetes Mellitus Tipo 2 , Poluentes Ambientais , Fluorocarbonos , Osteoporose , Criança , Humanos , Adolescente , Adulto Jovem , Adulto , Densidade Óssea , Estudos de Coortes , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade
3.
Environ Res ; : 119496, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936497

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals that persist in the environment and can accumulate in humans, leading to adverse health effects. MicroRNAs (miRNAs) are emerging biomarkers that can advance the understanding of the mechanisms of PFAS effects on human health. However, little is known about the associations between PFAS exposures and miRNA alterations in humans. OBJECTIVE: To investigate associations between PFAS concentrations and miRNA levels in children. METHODS: Data from two distinct cohorts were utilized: 176 participants (average age 16.6 years; 75.6% female) from the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) cohort in the United States, and 64 participants (average age 6.5 years, 39.1% female) from the Rhea study, a mother-child cohort in Greece. PFAS concentrations and miRNA levels were assessed in plasma samples from both studies. Associations between individual PFAS and plasma miRNA levels were examined after adjusting for covariates. Additionally, the cumulative effects of PFAS mixtures were evaluated using an exposure burden score. Ingenuity Pathways Analysis was employed to identify potential disease functions of PFAS-associated miRNAs. RESULTS: Plasma PFAS concentrations were associated with alterations in 476 miRNAs in the Teen-LABs study and 13 miRNAs in the Rhea study (FDR p < 0.1). Specifically, plasma PFAS concentrations were consistently associated with decreased levels of miR-148b-3p and miR-29a-3p in both cohorts. Pathway analysis indicated that PFAS-related miRNAs were linked to numerous chronic disease pathways, including cardiovascular diseases, inflammatory conditions, and carcinogenesis. CONCLUSION: Through miRNA screenings in two independent cohorts, this study identified both known and novel miRNAs associated with PFAS exposure in children. Pathway analysis revealed the involvement of these miRNAs in several cancer and inflammation-related pathways. Further studies are warranted to enhance our understanding of the relationships between PFAS exposure and disease risks, with miRNA emerging as potential biomarkers and/or mediators in these complex pathways.

4.
Environ Sci Technol ; 57(40): 14817-14826, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37756184

RESUMO

Animal studies have pointed at the liver as a hotspot for per- and polyfluoroalkyl substances (PFAS) accumulation and toxicity; however, these findings have not been replicated in human populations. We measured concentrations of seven PFAS in matched liver and plasma samples collected at the time of bariatric surgery from 64 adolescents in the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) study. Liver:plasma concentration ratios were perfectly explained (r2 > 0.99) in a multilinear regression (MLR) model based on toxicokinetic (TK) descriptors consisting of binding to tissue constituents and membrane permeabilities. Of the seven matched plasma and liver PFAS concentrations compared in this study, the liver:plasma concentration ratio of perfluoroheptanoic acid (PFHpA) was considerably higher than the liver:plasma concentration ratio of other PFAS congeners. Comparing the MLR model with an equilibrium mass balance model (MBM) suggested that complex kinetic transport processes are driving the unexpectedly high liver:plasma concentration ratio of PFHpA. Intratissue MBM modeling pointed to membrane lipids as the tissue constituents that drive the liver accumulation of long-chain, hydrophobic PFAS, whereas albumin binding of hydrophobic PFAS dominated PFAS distribution in plasma. The liver:plasma concentration data set, empirical MLR model, and mechanistic MBM modeling allow the prediction of liver from plasma concentrations measured in human cohort studies. Our study demonstrates that combining biomonitoring data with mechanistic modeling can identify underlying mechanisms of internal distribution and specific target organ toxicity of PFAS in humans.


Assuntos
Ácidos Alcanossulfônicos , Cirurgia Bariátrica , Poluentes Ambientais , Fluorocarbonos , Animais , Humanos , Adolescente , Estudos de Coortes , Fígado , Fluorocarbonos/análise
5.
Environ Res ; 239(Pt 1): 117308, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37813138

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs) are intentionally produced persistent organic pollutants (POPs) that are resistant to environmental degradation. Previous in-vitro and in-vivo studies have shown that POPs can induce oxidative stress, which is linked to neurodegenerative diseases, cardiovascular diseases, and cancer. However, findings in epidemiological studies are inconsistent and an evidence synthesis study is lacking to summarize the existing literature and explore research gaps. OBJECTIVE: We evaluated the effects of PFAS, PCBs, OCPs, and PBDEs, on oxidative stress biomarkers in epidemiological studies. METHODS: A literature search was conducted in PubMed, Embase, and Cochrane CENTRAL to identify all published studies related to POPs and oxidative stress up to December 7th, 2022. We included human observational studies reporting at least one exposure to POPs and an oxidative stress biomarker of interest. Random-effects meta-analyses on standardized regression coefficients and effect direction plots with one-tailed sign tests were used for quantitative synthesis. RESULTS: We identified 33 studies on OCPs, 35 on PCBs, 49 on PFAS, and 12 on PBDEs. Meta-analyses revealed significant positive associations of α-HCH with protein carbonyls (0.035 [0.017, 0.054]) and of 4'4-DDE with malondialdehyde (0.121 [0.056, 0.187]), as well as a significant negative association between 2'4-DDE and total antioxidant capacity (TAC) (-0.042 [-0.079, -0.004]), all ß [95%CI]. Sign tests showed a significant positive association between PCBs and malondialdehyde (pone-tailed = 0.03). Additionally, we found significant negative associations of OCPs with acetylcholine esterase (pone-tailed = 0.02) and paraoxonase-1 (pone-tailed = 0.03). However, there were inconsistent associations of OCPs with superoxide dismutase, glutathione peroxidase, and catalase. CONCLUSIONS: Higher levels of OCPs were associated with increased levels of oxidative stress through increased pro-oxidant biomarkers involving protein oxidation, DNA damage, and lipid peroxidation, as well as decreased TAC. These findings have the potential to reveal the underlying mechanisms of POPs toxicity.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Humanos , Antioxidantes , Biomarcadores , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Éteres Difenil Halogenados/toxicidade , Hidrocarbonetos Clorados/toxicidade , Malondialdeído , Estresse Oxidativo , Praguicidas/toxicidade , Bifenilos Policlorados/toxicidade
6.
Ecotoxicol Environ Saf ; 264: 115486, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729806

RESUMO

BACKGROUND AND AIM: Ambient air pollution (AAP) exposure has been associated with altered blood lipids and liver fat in young adults. MicroRNAs regulate gene expression and may mediate these relationships. This work investigated associations between AAP exposure, serum microRNA networks, lipid profiles, and non-alcoholic fatty liver disease (NAFLD) risk in young adults. METHODS: Participants were 170 young adults (17-22 years) from the Meta-AIR cohort of the Children's Health Study (CHS). Residential AAP exposure (PM2.5, PM10, NO2, 8-hour maximum O3, redox-weighted oxidative capacity [Oxwt]) was spatially interpolated from monitoring stations via inverse-distance-squared weighting. Fasting serum lipids were assayed. Liver fat was imaged by MRI and NAFLD was defined by ≥ 5.5% hepatic fat fraction. Serum microRNAs were measured via NanoString and microRNA networks were constructed by weighted gene correlation network analysis. The first principal component of each network represented its expression profile. Multivariable mixed effects regression models adjusted for sociodemographic, behavioral, and clinical covariates; baseline CHS town code was a random effect. Effects estimates are scaled to one standard deviation of exposure. Mediation analysis explored microRNA profiles as potential mediators of exposure-outcome associations. DIANA-mirPATH identified overrepresented gene pathways targeted by miRNA networks. RESULTS: Prior-month Oxwt was associated with NAFLD (OR=3.45; p = 0.003) and inversely associated with microRNA Network A (ß = -0.016; p = 0.026). Prior-year NO2 was associated with non-HDL-cholesterol (ß = 7.13; p = 0.01) and inversely associated with miRNA Network A (ß = -0.019; p = 0.022). Network A expression was inversely associated with NAFLD (OR=0.35; p = 0.010) and non-HDL-C (ß = -6.94 mg/dL; p = 0.035). Network A members miR-199a/b-3p and miR-130a, which both target fatty acid synthase, mediated 21% of the association between prior-month Oxwt exposure with NAFLD (p = 0.048) and 23.3% of the association between prior-year NO2 exposure and non-HDL-cholesterol (p = 0.026), respectively. CONCLUSIONS: Exposure to AAP may contribute to adverse lipid profiles and NAFLD risk among young adults via altered expression of microRNA profiles.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Criança , Humanos , Adulto Jovem , MicroRNAs/genética , Poluentes Atmosféricos/toxicidade , Hepatopatia Gordurosa não Alcoólica/genética , Metabolismo dos Lipídeos/genética , Dióxido de Nitrogênio
7.
Int J Obes (Lond) ; 46(7): 1384-1393, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35508813

RESUMO

BACKGROUND: The mechanisms underlying childhood overweight and obesity are poorly known. Here, we investigated the direct and indirect effects of different prenatal exposures on offspring rapid postnatal growth and overweight in childhood, mediated through cord blood metabolites. Additionally, rapid postnatal growth was considered a potential mediator on childhood overweight, alone and sequentially to each metabolite. METHODS: Within four European birth-cohorts (N = 375 mother-child dyads), information on seven prenatal exposures (maternal education, pre-pregnancy BMI, weight gain and tobacco smoke during pregnancy, age at delivery, parity, and child gestational age), selected as obesogenic according to a-priori knowledge, was collected. Cord blood levels of 31 metabolites, associated with rapid postnatal growth and/or childhood overweight in a previous study, were measured via liquid-chromatography-quadrupole-time-of-flight-mass-spectrometry. Rapid growth at 12 months and childhood overweight (including obesity) between four and eight years were defined with reference to WHO growth charts. Single mediation analysis was performed using the imputation approach and multiple mediation analysis using the extended-imputation approach. RESULTS: Single mediation suggested that the effect of maternal education, pregnancy weight gain, parity, and gestational age on rapid postnatal growth but not on childhood overweight was partly mediated by seven metabolites, including cholestenone, decenoylcarnitine(C10:1), phosphatidylcholine(C34:3), progesterone and three unidentified metabolites; and the effect of gestational age on childhood overweight was mainly mediated by rapid postnatal growth. Multiple mediation suggested that the effect of gestational age on childhood overweight was mainly mediated by rapid postnatal growth and that the mediating role of the metabolites was marginal. CONCLUSION: Our findings provide evidence of the involvement of in utero metabolism in the propensity to rapid postnatal growth and of rapid postnatal growth in the propensity to childhood overweight. We did not find evidence supporting a mediating role of the studied metabolites alone between the studied prenatal exposures and the propensity to childhood overweight.


Assuntos
Obesidade Infantil , Peso ao Nascer , Índice de Massa Corporal , Feminino , Sangue Fetal , Humanos , Sobrepeso/epidemiologia , Obesidade Infantil/epidemiologia , Obesidade Infantil/etiologia , Gravidez , Fatores de Risco , Aumento de Peso
8.
Hepatology ; 74(3): 1546-1559, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33730435

RESUMO

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) is the most prevalent cause of liver disease in children. Mercury (Hg), a ubiquitous toxic metal, has been proposed as an environmental factor contributing to toxicant-associated fatty liver disease. APPROACH AND RESULTS: We investigated the effect of prenatal exposure to Hg on childhood liver injury by combining epidemiological results from a multicenter mother-child cohort with complementary in vitro experiments on monocyte cells that are known to play a key role in liver immune homeostasis and NAFLD. We used data from 872 mothers and their children (median age, 8.1 years; interquartile range [IQR], 6.5-8.7) from the European Human Early-Life Exposome cohort. We measured Hg concentration in maternal blood during pregnancy (median, 2.0 µg/L; IQR, 1.1-3.6). We also assessed serum levels of alanine aminotransferase (ALT), a common screening tool for pediatric NAFLD, and plasma concentrations of inflammation-related cytokines in children. We found that prenatal Hg exposure was associated with a phenotype in children that was characterized by elevated ALT (≥22.1 U/L for females and ≥25.8 U/L for males) and increased concentrations of circulating IL-1ß, IL-6, IL-8, and TNF-α. Consistently, inflammatory monocytes exposed in vitro to a physiologically relevant dose of Hg demonstrated significant up-regulation of genes encoding these four cytokines and increased concentrations of IL-8 and TNF-α in the supernatants. CONCLUSIONS: These findings suggest that developmental exposure to Hg can contribute to inflammation and increased NAFLD risk in early life.


Assuntos
Mercúrio/sangue , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Adulto , Alanina Transaminase , Criança , Estudos de Coortes , Citocinas , Suscetibilidade a Doenças , Expossoma , Feminino , Humanos , Inflamação , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Masculino , Exposição Materna , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
9.
Epidemiology ; 33(1): 131-140, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561347

RESUMO

RATIONALE: Asthma and obesity often co-occur. It has been hypothesized that asthma may contribute to childhood obesity onset. OBJECTIVES: To determine if childhood asthma is associated with incident obesity and examine the role of asthma medication in this association. METHODS: We studied 8,716 children between ages 6 and 18.5 years who were nonobese at study entry participating in 18 US cohorts of the Environmental influences on Child Health Outcomes program (among 7,299 children with complete covariate data mean [SD] study entry age = 7.2 [1.6] years and follow up = 5.3 [3.1] years). MEASUREMENTS AND MAIN RESULTS: We defined asthma based on caregiver report of provider diagnosis. Incident obesity was defined as the first documented body mass index ≥95th percentile for age and sex following asthma status ascertainment. Over the study period, 26% of children had an asthma diagnosis and 11% developed obesity. Cox proportional hazards models with sex-specific baseline hazards were fitted to assess the association of asthma diagnosis with obesity incidence. Children with asthma had a 23% (95% confidence intervals [CI] = 4, 44) higher risk for subsequently developing obesity compared with those without asthma. A novel mediation analysis was also conducted to decompose the total asthma effect on obesity into pathways mediated and not mediated by asthma medication use. Use of asthma medication attenuated the total estimated effect of asthma on obesity by 64% (excess hazard ratios = 0.64; 95% CI = -1.05, -0.23). CONCLUSIONS: This nationwide study supports the hypothesis that childhood asthma is associated with later risk of obesity. Asthma medication may reduce this association and merits further investigation as a potential strategy for obesity prevention among children with asthma.


Assuntos
Asma , Obesidade Infantil , Adolescente , Asma/epidemiologia , Índice de Massa Corporal , Criança , Feminino , Humanos , Incidência , Masculino , Obesidade Infantil/complicações , Obesidade Infantil/epidemiologia , Modelos de Riscos Proporcionais , Fatores de Risco
10.
Int J Obes (Lond) ; 45(10): 2252-2260, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34253844

RESUMO

INTRODUCTION: Metabolomics may identify biological pathways predisposing children to the risk of overweight and obesity. In this study, we have investigated the cord blood metabolic signatures of rapid growth in infancy and overweight in early childhood in four European birth cohorts. METHODS: Untargeted liquid chromatography-mass spectrometry metabolomic profiles were measured in cord blood from 399 newborns from four European cohorts (ENVIRONAGE, Rhea, INMA and Piccolipiu). Rapid growth in the first year of life and overweight in childhood was defined with reference to WHO growth charts. Metabolome-wide association scans for rapid growth and overweight on over 4500 metabolic features were performed using multiple adjusted logistic mixed-effect models and controlling the false discovery rate (FDR) at 5%. In addition, we performed a look-up analysis of 43 pre-annotated metabolites, previously associated with birthweight or rapid growth. RESULTS: In the Metabolome-Wide Association Study analysis, we identified three and eight metabolites associated with rapid growth and overweight, respectively, after FDR correction. Higher levels of cholestenone, a cholesterol derivative produced by microbial catabolism, were predictive of rapid growth (p = 1.6 × 10-3). Lower levels of the branched-chain amino acid (BCAA) valine (p = 8.6 × 10-6) were predictive of overweight in childhood. The area under the receiver operator curve for multivariate prediction models including these metabolites and traditional risk factors was 0.77 for rapid growth and 0.82 for overweight, compared with 0.69 and 0.69, respectively, for models using traditional risk factors alone. Among the 43 pre-annotated metabolites, seven and five metabolites were nominally associated (P < 0.05) with rapid growth and overweight, respectively. The BCAA leucine, remained associated (1.6 × 10-3) with overweight after FDR correction. CONCLUSION: The metabolites identified here may assist in the identification of children at risk of developing obesity and improve understanding of mechanisms involved in postnatal growth. Cholestenone and BCAAs are suggestive of a role of the gut microbiome and nutrient signalling respectively in child growth trajectories.


Assuntos
Sangue Fetal , Crescimento e Desenvolvimento/fisiologia , Metaboloma/fisiologia , Obesidade Infantil/sangue , Biomarcadores/análise , Biomarcadores/sangue , Coorte de Nascimento , Índice de Massa Corporal , Criança , Pré-Escolar , Feminino , Humanos , Recém-Nascido , Masculino , Obesidade Infantil/epidemiologia , Valor Preditivo dos Testes , Fatores de Risco
11.
Bioinformatics ; 36(3): 842-850, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504184

RESUMO

MOTIVATION: Epidemiologic, clinical and translational studies are increasingly generating multiplatform omics data. Methods that can integrate across multiple high-dimensional data types while accounting for differential patterns are critical for uncovering novel associations and underlying relevant subgroups. RESULTS: We propose an integrative model to estimate latent unknown clusters (LUCID) aiming to both distinguish unique genomic, exposure and informative biomarkers/omic effects while jointly estimating subgroups relevant to the outcome of interest. Simulation studies indicate that we can obtain consistent estimates reflective of the true simulated values, accurately estimate subgroups and recapitulate subgroup-specific effects. We also demonstrate the use of the integrated model for future prediction of risk subgroups and phenotypes. We apply this approach to two real data applications to highlight the integration of genomic, exposure and metabolomic data. AVAILABILITY AND IMPLEMENTATION: The LUCID method is implemented through the LUCIDus R package available on CRAN (https://CRAN.R-project.org/package=LUCIDus). SUPPLEMENTARY INFORMATION: Supplementary materials are available at Bioinformatics online.


Assuntos
Genômica , Software , Biomarcadores , Análise por Conglomerados , Fenótipo
12.
Hepatology ; 72(5): 1758-1770, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32738061

RESUMO

BACKGROUND AND AIMS: Per- and polyfluoroalkyl substances (PFAS) are widespread and persistent pollutants that have been shown to have hepatotoxic effects in animal models. However, human evidence is scarce. We evaluated how prenatal exposure to PFAS associates with established serum biomarkers of liver injury and alterations in serum metabolome in children. APPROACH AND RESULTS: We used data from 1,105 mothers and their children (median age, 8.2 years; interquartile range, 6.6-9.1) from the European Human Early-Life Exposome cohort (consisting of six existing population-based birth cohorts in France, Greece, Lithuania, Norway, Spain, and the United Kingdom). We measured concentrations of perfluorooctane sulfonate, perfluorooctanoate, perfluorononanoate, perfluorohexane sulfonate, and perfluoroundecanoate in maternal blood. We assessed concentrations of alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyltransferase in child serum. Using Bayesian kernel machine regression, we found that higher exposure to PFAS during pregnancy was associated with higher liver enzyme levels in children. We also measured child serum metabolomics through a targeted assay and found significant perturbations in amino acid and glycerophospholipid metabolism associated with prenatal PFAS. A latent variable analysis identified a profile of children at high risk of liver injury (odds ratio, 1.56; 95% confidence interval, 1.21-1.92) that was characterized by high prenatal exposure to PFAS and increased serum levels of branched-chain amino acids (valine, leucine, and isoleucine), aromatic amino acids (tryptophan and phenylalanine), and glycerophospholipids (phosphatidylcholine [PC] aa C36:1 and Lyso-PC a C18:1). CONCLUSIONS: Developmental exposure to PFAS can contribute to pediatric liver injury.


Assuntos
Disruptores Endócrinos/efeitos adversos , Poluentes Ambientais/efeitos adversos , Fluorocarbonos/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Adulto , Aminoácidos/sangue , Aminoácidos/metabolismo , Criança , Suscetibilidade a Doenças/etiologia , Europa (Continente)/epidemiologia , Feminino , Glicerofosfolipídeos/sangue , Glicerofosfolipídeos/metabolismo , Humanos , Testes de Função Hepática , Estudos Longitudinais , Idade Materna , Exposição Materna/efeitos adversos , Metabolômica , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Prevalência , Estudos Prospectivos
13.
Artigo em Inglês | MEDLINE | ID: mdl-38898328

RESUMO

PURPOSE OF REVIEW: Depression during the perinatal or antenatal period affects at least 1 in 10 women worldwide, with long term health implications for the mother and child. Concurrently, there is increasing evidence associating maternal exposure to per- and poly-fluoroalkyl substances (PFAS) to adverse pregnancy outcomes. We reviewed the body of evidence examining both the associations between PFAS exposure and perturbations in the maternal metabolome, and the associations between the maternal metabolome and perinatal/antenatal depression. Through this, we sought to explore existing evidence of the perinatal metabolome as a potential mediation pathway linking PFAS exposure and perinatal/antenatal depression. RECENT FINDINGS: There are few studies examining the metabolomics of PFAS exposure-specifically in pregnant women-and the metabolomics of perinatal/antenatal depression, let alone studies examining both simultaneously. Of the studies reviewed (N = 11), the majority were cross sectional, based outside of the US, and conducted on largely homogenous populations. Our review identified 23 metabolic pathways in the perinatal metabolome common to both PFAS exposure and perinatal/antenatal depression. Future studies may consider findings from our review to conduct literature-derived hypothesis testing focusing on fatty acid metabolism, alanine metabolism, glutamate metabolism, and tyrosine metabolism when exploring the biochemical mechanisms conferring the risk of perinatal/antenatal depression due to PFAS exposure. We recommend that researchers also utilize heterogenous populations, longitudinal study designs, and mediation approaches to elucidate key pathways linking PFAS exposures to perinatal/antenatal depression.

14.
J Trace Elem Med Biol ; 85: 127486, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897044

RESUMO

BACKGROUND: Evidence regarding child iodine intake and neurodevelopment is scarce. METHODS: We aimed to assess the impact of child iodine intake at 4 years of age on cognitive and motor development at 4 and 6 years among 304 children from the Rhea cohort on Crete, Greece. Child iodine intake was assessed via urinary iodine concentrations (UIC) measured using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and adjusted for specific gravity. Child cognitive and motor development was assessed using the McCarthy Scales of Children's Abilities (MSCA) at 4 years of age and Raven's Coloured Progressive Matrices (RCPM), Finger Tapping Test (FTT), and Trail Making Test (TMT) at 6 years. Associations were explored using multivariable-adjusted linear regression analyses with UIC categorized according to WHO criteria [insufficient intake <100 µg/L, adequate 100-299 µg/L (reference group), excessive ≥300 µg/L]. RESULTS: The children's median UIC was 249 µg/L (25-75th percentile: 181-344 µg/L). Children with UIC <100 µg/L had lower scores in the motor scale at 4 years (MSCA-motor scale: B=-10.3; 95 %CI -19.9, -0.6; n=10) and in intelligence at 6 years (RCPM-total score: B=-3.6, 95 %CI -6.8, -0.5; n=9) than children in the reference group. No associations were found with the general cognitive scale at 4 years or with TMT and FTT scales at 6 years. Children with UIC ≥300 µg/L had lower cognitive scores both at 4 (MSCA; B= -3.5; 95 %CI -6.9, -0.1; n =101) and 6 years of age (RCPM-total score; B= -1.2; 95 %CI -2.3, -0.0; n =98) than children in the reference group. No associations were observed with the motor scale at 4 years or with TMT and FTT scales at 6 years. CONCLUSION: Our findings indicate that both low and excessive iodine intake at preschool age may adversely affect child cognitive abilities. Additionally, low iodine intake may also impact motor abilities.

15.
Int J Hyg Environ Health ; 256: 114314, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38183793

RESUMO

BACKGROUND & AIMS: Prenatal exposure to air pollution is robustly associated with fetal growth restriction but the extent to which it is associated with postnatal growth and the risk of childhood obesity remains unknown. We examined the association of prenatal exposure to air pollution with offspring obesity related measures and evaluated the possible protective effect of maternal fruits and vegetables intake (FV). METHODS: We included 633 mother-child pairs from the Rhea pregnancy cohort in Crete, Greece. Fine particles (PM2.5 and PM10) exposure levels during pregnancy were estimated using land-use regression models. We measured weight, height and waist circumference at 4 and 6 years of age, and body composition analysis was performed at 6 years using bioimpedance. Maternal diet was evaluated by means of a semi-quantitative food frequency questionnaire in mid-pregnancy. Adjusted associations were obtained via multivariable regression analyses and multiplicative interaction was used to evaluate the potential modifying role of FV intake. RESULTS: Exposure to PMs in utero was not associated with measures of adiposity at 4 or 6 years of age. Associations at 4 years did not differ according to maternal consumption of FV. However, at 6 years, among children whose mothers reported consuming less than 5 servings of FV per day, one SD increase in PM10 during pregnancy was associated with increased BMI (beta 0.41 kg/m2, 95% CI: -0.06, 0.88, p-interaction = 0.037) and increased waist circumference (beta 0.83 cm, 95% CI: -0.38, 2.05, p-interaction = 0.043) and one SD increase in PM2.5 was associated with increased fat mass (beta 0.5 kg, 95% CI: 0.0, 0.99, p-interaction = 0.039) and increased percentage of body fat (beta 1.06%, 95% CI: -0.06, 2.17, p-interaction = 0.035). Similarly, higher prenatal PM2.5 and PM10 exposure was associated with increased risk for obesity and abdominal obesity at 6 years only in the low FV group. CONCLUSIONS: Exposure to fine particulate matter during pregnancy was not associated with obesity-related measures at 4 and 6 years. However, only among offspring of mothers who consumed inadequate FV, we observed higher obesity-related measures at 6 years. Our results indicate that mothers' diet during pregnancy may play a role in the relationship between air-pollution and childhood obesity.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Obesidade Infantil , Efeitos Tardios da Exposição Pré-Natal , Criança , Gravidez , Feminino , Humanos , Obesidade Infantil/epidemiologia , Poluentes Atmosféricos/análise , Verduras , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Frutas/química , Poluição do Ar/análise , Material Particulado/análise , Exposição Materna/efeitos adversos
16.
Sci Rep ; 14(1): 7384, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548792

RESUMO

To assess cardiometabolic profiles and proteomics to identify biomarkers associated with the metabolically healthy and unhealthy obesity. Young adults (N = 156) enrolled were classified as not having obesity, metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUHO) based on NCEP ATP-III criteria. Plasma proteomics at study entry were measured using Olink Cardiometabolic Explore panel. Linear regression was used to assess associations between proteomics and obesity groups as well as cardiometabolic traits of glucose, insulin, and lipid profiles at baseline and follow-up visits. Enriched biological pathways were further identified based on the significant proteomic features. Among the baseline 95 (61%) and 61 (39%) participants classified as not having obesity and having obesity (8 MHO and 53 MUHO), respectively. Eighty of the participants were followed-up with an average 4.6 years. Forty-one proteins were associated with obesity (FDR < 0.05), 29 of which had strong associations with insulin-related traits and lipid profiles (FDR < 0.05). Inflammation, immunomodulation, extracellular matrix remodeling and endoplasmic reticulum lumen functions were enriched by 40 proteins. In this study population, obesity and MHO were associated with insulin resistance and dysregulated lipid profiles. The underlying mechanism included elevated inflammation and deteriorated extracellular matrix remodeling function.


Assuntos
Doenças Cardiovasculares , Obesidade Metabolicamente Benigna , Humanos , Adulto Jovem , Proteômica , Obesidade/metabolismo , Fenótipo , Inflamação/complicações , Insulina , Lipídeos , Doenças Cardiovasculares/epidemiologia , Fatores de Risco , Índice de Massa Corporal
17.
Nutrients ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337712

RESUMO

The assessment of "omics" signatures may contribute to personalized medicine and precision nutrition. However, the existing literature is still limited in the homogeneity of participants' characteristics and in limited assessments of integrated omics layers. Our objective was to use post-prandial metabolomics and fasting proteomics to identify biological pathways and functions associated with diet quality in a population of primarily Hispanic young adults. We conducted protein and metabolite-wide association studies and functional pathway analyses to assess the relationships between a priori diet indices, Healthy Eating Index-2015 (HEI) and Dietary Approaches to Stop Hypertension (DASH) diets, and proteins (n = 346) and untargeted metabolites (n = 23,173), using data from the MetaAIR study (n = 154, 61% Hispanic). Analyses were performed for each diet quality index separately, adjusting for demographics and BMI. Five proteins (ACY1, ADH4, AGXT, GSTA1, F7) and six metabolites (undecylenic acid, betaine, hyodeoxycholic acid, stearidonic acid, iprovalicarb, pyracarbolid) were associated with both diets (p < 0.05), though none were significant after adjustment for multiple comparisons. Overlapping proteins are involved in lipid and amino acid metabolism and in hemostasis, while overlapping metabolites include amino acid derivatives, bile acids, fatty acids, and pesticides. Enriched biological pathways were involved in macronutrient metabolism, immune function, and oxidative stress. These findings in young Hispanic adults contribute to efforts to develop precision nutrition and medicine for diverse populations.


Assuntos
Abordagens Dietéticas para Conter a Hipertensão , Proteômica , Humanos , Adulto Jovem , Dieta , Metabolômica , Aminoácidos
18.
Environ Int ; 186: 108601, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537583

RESUMO

BACKGROUND: Strong epidemiological evidence shows positive associations between exposure to per- and polyfluoroalkyl substances (PFAS) and adverse cardiometabolic outcomes (e.g., diabetes, hypertension, and dyslipidemia). However, the underlying cardiometabolic-relevant biological activities of PFAS in humans remain largely unclear. AIM: We evaluated the associations of PFAS exposure with high-throughput proteomics in Hispanic youth. MATERIAL AND METHODS: We included 312 overweight/obese adolescents from the Study of Latino Adolescents at Risk (SOLAR) between 2001 and 2012, along with 137 young adults from the Metabolic and Asthma Incidence Research (Meta-AIR) between 2014 and 2018. Plasma PFAS (i.e., PFOS, PFOA, PFHxS, PFHpS, PFNA) were quantified using liquid-chromatography high-resolution mass spectrometry. Plasma proteins (n = 334) were measured utilizing the proximity extension assay using an Olink Explore Cardiometabolic Panel I. We conducted linear regression with covariate adjustment to identify PFAS-associated proteins. Ingenuity Pathway Analysis, protein-protein interaction network analysis, and protein annotation were used to investigate alterations in biological functions and protein clusters. RESULTS: Results after adjusting for multiple comparisons showed 13 significant PFAS-associated proteins in SOLAR and six in Meta-AIR, sharing similar functions in inflammation, immunity, and oxidative stress. In SOLAR, PFNA demonstrated significant positive associations with the largest number of proteins, including ACP5, CLEC1A, HMOX1, LRP11, MCAM, SPARCL1, and SSC5D. After considering the mixture effect of PFAS, only SSC5D remained significant. In Meta-AIR, PFAS mixtures showed positive associations with GDF15 and IL6. Exploratory analysis showed similar findings. Specifically, pathway analysis in SOLAR showed PFOA- and PFNA-associated activation of immune-related pathways, and PFNA-associated activation of inflammatory response. In Meta-AIR, PFHxS-associated activation of dendric cell maturation was found. Moreover, PFAS was associated with common protein clusters of immunoregulatory interactions and JAK-STAT signaling in both cohorts. CONCLUSION: PFAS was associated with broad alterations of the proteomic profiles linked to pro-inflammation and immunoregulation. The biological functions of these proteins provide insight into potential molecular mechanisms of PFAS toxicity.


Assuntos
Exposição Ambiental , Poluentes Ambientais , Fluorocarbonos , Hispânico ou Latino , Proteômica , Humanos , Adolescente , Fluorocarbonos/sangue , Feminino , Masculino , Poluentes Ambientais/sangue , Adulto Jovem
19.
Sci Total Environ ; 930: 172840, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38685432

RESUMO

Exposure to per- and poly-fluoroalkyl substances (PFAS) is ubiquitous due to their persistence in the environment and in humans. Extreme weight loss has been shown to influence concentrations of circulating persistent organic pollutants (POPs). Using data from the multi-center perspective Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) cohort, we investigated changes in plasma-PFAS in adolescents after bariatric surgery. Adolescents (Mean age = 17.1 years, SD = 1.5 years) undergoing bariatric surgery were enrolled in the Teen-LABS study. Plasma-PFAS were measured at the time of surgery and then 6-, 12-, and 36 months post-surgery. Linear mixed effect models were used to evaluate longitudinal changes in plasma-PFAS after the time of bariatric surgery. This study included 214 adolescents with severe obesity who had available longitudinal measures of plasma-PFAS and underwent bariatric surgery between 2007 and 2012. Underlying effects related to undergoing bariatric surgery were found to be associated with an initial increase or plateau in concentrations of circulating PFAS up to 6 months after surgery followed by a persistent decline in concentrations of 36 months (p < 0.001 for all plasma-PFAS). Bariatric surgery in adolescents was associated with a decline in circulating PFAS concentrations. Initially following bariatric surgery (0-6 months) concentrations were static followed by decline from 6 to 36 months following surgery. This may have large public health implications as PFAS are known to be associated with numerous metabolic related diseases and the significant reduction in circulating PFAS in individuals who have undergone bariatric surgery may be related to the improvement of such metabolic related diseases following bariatric surgery.


Assuntos
Cirurgia Bariátrica , Poluentes Ambientais , Humanos , Adolescente , Masculino , Feminino , Estudos Longitudinais , Poluentes Ambientais/sangue , Exposição Ambiental/estatística & dados numéricos , Fluorocarbonos/sangue , Obesidade Mórbida/cirurgia , Obesidade Mórbida/sangue
20.
World J Gastroenterol ; 30(4): 332-345, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38313232

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases in children and adolescents. NAFLD ranges in severity from isolated hepatic steatosis to nonalcoholic steatohepatitis (NASH), wherein hepatocellular inflammation and/or fibrosis coexist with steatosis. Circulating microRNA (miRNA) levels have been suggested to be altered in NAFLD, but the extent to which miRNA are related to NAFLD features remains unknown. This analysis tested the hypothesis that plasma miRNAs are significantly associated with histological features of NAFLD in adolescents. AIM: To investigate the relationship between plasma miRNA expression and NAFLD features among adolescents with NAFLD. METHODS: This study included 81 adolescents diagnosed with NAFLD and 54 adolescents without NAFLD from the Teen-Longitudinal Assessment of Bariatric Surgery study. Intra-operative core liver biopsies were collected from participants and used to characterize histological features of NAFLD. Plasma samples were collected during surgery for miRNA profiling. A total of 843 plasma miRNAs were profiled using the HTG EdgeSeq platform. We examined associations of plasma miRNAs and NAFLD features using logistic regression after adjusting for age, sex, race, and other key covariates. Ingenuity Pathways Analysis was used to identify biological functions of miRNAs that were associated with multiple histological features of NAFLD. RESULTS: We identified 16 upregulated plasma miRNAs, including miR-193a-5p and miR-193b-5p, and 22 downregulated plasma miRNAs, including miR-1282 and miR-6734-5p, in adolescents with NAFLD. Moreover, 52, 16, 15, and 9 plasma miRNAs were associated with NASH, fibrosis, ballooning degeneration, and lobular inflammation, respectively. Collectively, 16 miRNAs were associated with two or more histological features of NAFLD. Among those miRNAs, miR-411-5p was downregulated in NASH, ballooning, and fibrosis, while miR-122-5p, miR-1343-5p, miR-193a-5p, miR-193b-5p, and miR-7845-5p were consistently and positively associated with all histological features of NAFLD. Pathway analysis revealed that most common pathways of miRNAs associated with multiple NAFLD features have been associated with tumor progression, while we also identified linkages between miR-122-5p and hepatitis C virus and between miR-199b-5p and chronic hepatitis B. CONCLUSION: Plasma miRNAs were associated with NAFLD features in adolescent with severe obesity. Larger studies with more heterogeneous NAFLD phenotypes are needed to evaluate miRNAs as potential biomarkers of NAFLD.


Assuntos
MicroRNA Circulante , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Criança , Adolescente , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Fígado/patologia , MicroRNA Circulante/genética , MicroRNA Circulante/metabolismo , Obesidade Mórbida/complicações , Obesidade Mórbida/cirurgia , Obesidade Mórbida/metabolismo , MicroRNAs/metabolismo , Obesidade/complicações , Fibrose , Inflamação/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa