Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(1): e2305289, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649146

RESUMO

Green fuel from water splitting is hardcore for future generations, and the limited source of fresh water (<1%) is a bottleneck. Seawater cannot be used directly as a feedstock in current electrolyzer techniques. Until now single atom catalysts were reported by many synthetic strategies using notorious chemicals and harsh conditions. A cobalt single-atom (CoSA) intruding cobalt oxide ultrasmall nanoparticle (Co3 O4 USNP)-intercalated porous carbon (PC) (CoSA-Co3 O4 @PC) electrocatalyst was synthesized from the waste orange peel as a single feedstock (solvent/template). The extended X-ray absorption fine structure spectroscopy (EXAFS) and theoretical fitting reveal a clear picture of the coordination environment of the CoSA sites (CoSA-Co3 O4 and CoSA-N4 in PC). To impede the direct seawater corrosion and chlorine evolution the seawater has been desalinated (Dseawater) with minimal cost and the obtained PC is used as an adsorbent in this process. CoSA-Co3 O4 @PC shows high oxygen evolution reaction (OER) activity in transitional metal impurity-free (TMIF) 1 M KOH and alkaline Dseawater. CoSA-Co3 O4 @PC exhibits mass activity that is 15 times higher than the commercial RuO2 . Theoretical interpretations suggest that the optimized CoSA sites in Co3 O4 USNPs reduce the energy barrier for alkaline water dissociation and simultaneously trigger an excellent OER followed by an adsorbate evolution mechanism (AEM).

2.
Environ Res ; 208: 112724, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026186

RESUMO

Pollution by microplastics (MPs) formed by the physicochemical breakdown of plastics are a worldwide issue with long-lasting and hazardous natural effects. The natural expulsion of MPs takes several years and can be dangerous. Several effective technological innovations have been developed over the years to remediate harmful MPs. Among them, a blend of nanotechnological techniques using bionanomaterials has been investigated to a large extent. The objective of this review is to compile the MPs found in the environment and bionanomaterial-based approaches for their removal. This information is important for researchers who are exploring the adverse consequences of MPs and their remediation and developing advanced eco-friendly strategies to control and eradicate MPs in the future. The control and eradication of MPs depend on all of us; hence, the proper awareness of MPs pollution must be provided to every individual, as all of us are a part of the environment.


Assuntos
Saúde da População , Poluentes Químicos da Água , Monitoramento Ambiental , Poluição Ambiental/prevenção & controle , Humanos , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
3.
Trends Analyt Chem ; 133: 116072, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33100439

RESUMO

Coronavirus disease-19 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (2019-nCoV or SARS-CoV-2). Genomic analysis has revealed that bat and pangolin coronaviruses are phylogenetically related to SARS-CoV-2. The actual origin and passage history of the virus are unknown, but human-human transmission of the virus has been confirmed. Several diagnostic techniques have been developed to detect COVID-19 in this prevailing pandemic period. In this review, we provide an overview of SARS-CoV-2 and other coronaviruses. The origin, structure, current diagnostic techniques, such as molecular assays based on oligonucleotides, immunoassay-based detection, nanomaterial-based biosensing, and distinctive sample based detection are also discussed. Furthermore, our review highlights the admissible treatment strategies for COVID-19 and future perspectives on the development of biosensing techniques and vaccines for the diagnosis and prevention of the disease, respectively.

4.
J Colloid Interface Sci ; 660: 412-422, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38244507

RESUMO

Monkeypox is a zoonotic viral infection caused by the monkeypox virus (MPXV), which belongs to the Poxviridae family of the Orthopoxvirus (OPXV) genus. Monkeypox is transmitted from animals to humans and humans to humans; therefore, the accurate and early detection of MPXV is crucial for reducing mortality. A novel graphene-based material, graphene quantum rods (GQRs) was synthesized and confirmed using high-resolution transmission electron microscopy (HR-TEM) and atomic force microscopy (AFM). In this study, molybdenum oxide was electrodeposited and one-pot electrodeposition of MoO3-GQRs composite on carbon fiber paper (CFP) enabled by an antibody (Ab A29)/MoO3-GQRs immunoprobe was developed for the early diagnosis of MPXV protein (A29P). Several studies were conducted to analyze the MoO3-GQRs composite, and the prepared Ab A29/MoO3-GQRs immunoprobe selectively bound to the A29P antigen that was measured using differential pulse voltammetry (DPV) analysis and impedance spectroscopy. The antigen-antibody interaction was analyzed using X-ray photoelectron spectroscopy. DPV analysis showed a wide linear range of detection from 0.5 nM to 1000 nM, a detection limit of 0.52 nM, and a sensitivity of 4.51 µA in PBS. The prepared immunoprobe was used to analyze A29P in serum samples without reducing electrode sensitivity. This system is promising for the clinical analysis of A29P antigen and offers several advantages, including cost-effectiveness, ease of use, accuracy, and high sensitivity.


Assuntos
Grafite , Mpox , Animais , Humanos , Grafite/química , Monkeypox virus , Molibdênio/química
5.
Adv Colloid Interface Sci ; 331: 103245, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38945073

RESUMO

Quantum dots (QDs), a novel category of semiconductor materials, exhibit extraordinary capabilities in tuning optical characteristics. Their emergence in biophotonics has been noteworthy, particularly in bio-imaging, biosensing, and theranostics applications. Although conventional QDs such as PbS, CdSe, CdS, and HgTe have garnered attention for their promising features, the presence of heavy metals in these QDs poses significant challenges for biological use. To address these concerns, the development of Ag chalcogenide QDs has gained prominence owing to their near-infrared emission and exceptionally low toxicity, rendering them suitable for biological applications. This review explores recent advancements in Ag chalcogenide QDs, focusing on their synthesis methodologies, surface chemistry modifications, and wide-ranging applications in biomedicine. Additionally, it identifies future directions in material science, highlighting the potential of these innovative QDs in revolutionizing the field.

6.
Cell Signal ; 110: 110827, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37506859

RESUMO

Mesenchymal stem cells (MSCs) repair tissue injury by upregulating the paracrine secretion of cytokines and growth factors. Human MSC has been recognized as a promising therapeutic material for treatment of various human diseases. Even though the effect of epidermal growth factor (EGF) has been well investigated, the synergetic effect of EGF and MSC has not been studied. Therefore, we expect our basic study to contribute to developing new therapeutic reagents for skin diseases or innovative cosmetics. In this study, we examined the effect of human epidermal growth factor-transfected MSCs (hEGF MSCs) on human keratinocyte HaCaT cell proliferation and the mechanisms that regulate matrix metalloproteinase (MMP)-1 expression in HaCaT cells. To identify the hEGF plasmid and its transfection into MSCs, we performed gel electrophoresis and quantitative PCR. Proliferation and migration of HaCaT cells were examined using water Soluble Tetrazolium (WST-1) and wound-healing assays, respectively. Zymography was performed to investigate the correlation between hEGF MSC-conditioned medium (CM)-treated HaCaT cells and MMP-1 expression. We found that cell proliferation and wound-healing rates were increased in hEGF MSC-CM-treated HaCaT cells compared to those in MSC-CM-treated cells, and conversely collagenase activity was decreased. The mRNA and protein levels of MMP-1 were also decreased in hEGF MSC-CM-treated HaCaT cells. 2-DE analysis showed that the expression of carboxypeptidase, which promotes growth factors and wound healing, was increased in hEGF MSC-CM-treated HaCaT cells. Finally, western blot was used to determine whether MMP-1 expression was reduced via the mitogen-activated protein kinase (MAPK) pathway; the results showed that the levels of MAPK pathway-related proteins (pErk, pJNK, and p-p38) and the levels of transcription factors (pCREB, NFκB, and p-c-Fos) were decreased. In addition, pAkt expression was found to be elevated. The results of our study suggest that hEGF MSCs promote cell proliferation and reduce MMP-1 expression via the MAPK pathway in human keratinocyte HaCaT cells.


Assuntos
Fator de Crescimento Epidérmico , Células-Tronco Mesenquimais , Humanos , Fator de Crescimento Epidérmico/metabolismo , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Queratinócitos/metabolismo , Proliferação de Células , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células-Tronco Mesenquimais/metabolismo , Meios de Cultivo Condicionados/farmacologia
7.
Chemosphere ; 310: 136881, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36257391

RESUMO

Pollution of the environment by heavy metals (HMs) has recently become a global issue, affecting the health of all living organisms. Continuous human activities (industrialization and urbanization) are the major causes of HM release into the environment. Over the years, two methods (physical and chemical) have been widely used to reduce HMs in polluted environment. However, these two methods are inefficient and very expensive to reduce the HMs released into the atmosphere. Alternatively, researchers are trying to remove the HMs by employing hyper-accumulator plants. This method, referred to phytoremediation, is highly efficient, cost-effective, and eco-friendly. Phytoremediation can be divided into five types: phytostabilization, phytodegradation, rhizofiltration, phytoextraction, and phytovolatilization, all of which contribute to HMs removal from the polluted environment. Brassicaceae family members (particularly Arabidopsis thaliana) can accumulate more HMs from the contaminated environment than those of other plants. This comprehensive review focuses on how HMs pollute the environment and discusses the phytoremediation measures required to reduce the impact of HMs on the environment. We discuss the role of metal transporters in phytoremediation with a focus on Arabidopsis. Then draw insights into the role of genome editing tools in enhancing phytoremediation efficiency. This review is expected to initiate further research to improve phytoremediation by biotechnological approaches to conserve the environment from pollution.


Assuntos
Arabidopsis , Metais Pesados , Poluentes do Solo , Arabidopsis/metabolismo , Biodegradação Ambiental , Proteínas de Membrana Transportadoras/metabolismo , Metais Pesados/análise , Plantas/metabolismo , Solo/química , Poluentes do Solo/análise
8.
J Funct Biomater ; 14(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37623670

RESUMO

Nanomaterials (NMs) synthesized from natural sources have been attracting greater attention, due to their intrinsic advantages including biocompatibility, stimuli-responsive property, nontoxicity, cost-effectiveness, and non-immunogenic characteristics in the biological environment. Among various biomedical applications, a breakthrough has been achieved in the development of drug delivery systems (DDS). Biocompatibility is necessary for treating a disease safely without any adverse effects. Some components in DDS respond to the physiological environment, such as pH, temperature, and functional group at the target, which facilitates targeted drug release. NM-based DDS is being applied for treating cancer, arthritis, cardiovascular diseases, and dermal and ophthalmic diseases. Metal nanomaterials and carbon quantum dots are synthesized and stabilized using functional molecules extracted from natural sources. Polymers, mucilage and gums, exosomes, and molecules with biological activities are directly derived from natural sources. In DDS, these functional components have been used as drug carriers, imaging agents, targeting moieties, and super disintegrants. Plant extracts, biowaste, biomass, and microorganisms have been used as the natural source for obtaining these NMs. This review highlights the natural sources, synthesis, and application of metallic materials, polymeric materials, carbon dots, mucilage and gums, and exosomes in DDS. Aside from that, challenges and future perspectives on using natural resources for DDS are also discussed.

9.
J Hazard Mater ; 421: 126720, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34343883

RESUMO

An emerging global necessity for alternative resources combined with maximum catalytic efficiency, low cost, and eco-friendly composite remains a hotspot in the scientific society. Hereby, a novel protocol is approached to design a heterostructure of Zinc MOF decorated on the surface of 2D activated carbon (AC) through a simplistic approach. To begin with, analytical, morphological and spectroscopical studies were performed to identify the functional moieties, cruciate-flower like morphology and oxidative state of atoms present in the composite Zn-MOF @AC. The photocatalytic material aids in degrading both cationic and anionic dye in a UV (254 nm) irradiated environment at a rate of 86.4% and 77.5% within 90 mins. Subsequently, the hybrid materials are coated on the carbon substrate to evaluate the catalytic activity using oxygen evolution and reduction reaction process. The mechanical insight for the catalytic activity relies on the electronic transitions of atoms on the edges of the sheets ascribing to d-d energy levels between the interfacial electron movement. Our composite exhibits an overpotential of 0.7 V and a Tafel slope of 70 mV/dec for the oxygen reduction reaction. This study proposes an alternate approach for developing MOF decorated carbon-based composites for photocatalytic degradability and energy necessity.


Assuntos
Carvão Vegetal , Oxigênio , Catálise , Oxirredução , Zinco
10.
Chemosphere ; 287(Pt 1): 131915, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34455121

RESUMO

Carbon quantum dots (CQDs) synthesized from biological sources play a significant role in biomedical and environmental applications, including bioimaging, biosensing, metal ions detection and electrocatalytic oxidations. Herein, we synthesized blue-emitting carbon quantum dots using maple tree leaves via a one-step hydrothermal process to detect Cesium ions selectively. The synthesized CQDs' functional group composition, morphology, and pH stability was analytical and morphologically investigated. The maple leaves derived carbon quantum dots (M-CQDs) exhibited blue fluorescence, and their sizes ranged from 1 to 10 nm. They exhibited emission at 445 nm upon excitation at 360 nm. M-CQDs PL intensity was highly stable for about 100 d without any changes and confirmed that the as-prepared CQDs could be used as a probe for Cesium ion sensing. M-CQDs were effectively used as Cesium sensing probes based on the electron transfer process and simultaneously used as a catalyst for glycerol electrooxidation. The PL intensity of M-CQDs was quenched while adding the varies concentration of Cesium ions in the linear range from 100 µM to 100 nM with the detection limit of (LOD) 160 nM, simultaneously electrocatalytic oxidation of glycerol showed an onset potential of 1.32 V at a current density of 10 mA/cm2.


Assuntos
Acer , Pontos Quânticos , Carbono , Césio , Glicerol , Folhas de Planta , Árvores
11.
Chemosphere ; 286(Pt 3): 131893, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34403903

RESUMO

Facile and modest synthesis of significantly effective and less-cost catalysts for environmental pollutant degradation and oxygen evolution holds substantial potential in environmental and energy fields. Hereby, Trimetallic organic frameworks (TriMOF) consisting of Fe, Co, and Zn synergized on the surface of activated carbon (AC) from pineapple leaves tend to show exponential catalytic activity due to the more excellent ionic conductivity, catalytic stability and multiple active sites provided by different metal precursors. Furthermore, the developed nanocomposite was coated on the stainless-steel electrode substrate at room temperature, delivering greater electrocatalytic surface area and numerous active sites. The oxidation reaction kinetics drives the catalytic reduction of 4-nitrophenol to 4-aminophenol with a minimal time of 12 min @ >97 % efficiency. Furthermore, on electrocatalytic oxidation of water splitting process due to the presence of multiple metallic, active sites, the overpotential is at 370 mV having Tafel slope of 40 mV/dec and electrochemically active surface area of is 9.9 mF/cm2. This superior catalytic reduction of 4-nitrophenol and electrocatalytic water oxidation process is attributed to the developed composite's active centre and conductivity.


Assuntos
Ananas , Poluentes Ambientais , Carvão Vegetal , Oxigênio , Folhas de Planta
12.
Mater Today Bio ; 12: 100168, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34877521

RESUMO

A simple, cost-effective system was developed for dopamine (DA) detection using green synthesized 1-6 â€‹nm honey-based carbon quantum dots (H-CQDs) exhibiting bluish green fluorescence. The H-CQDs exhibited emission at 445 â€‹nm, with a quantum yield of ∼44%. The H-CQDs were used as a probe for electron transfer based DA detection and changes in H-CQD color in the presence of DA. The H-CQDs were formed with polar functional groups and were highly soluble in aqueous media. In the fluorometric mode, the proposed system demonstrated high specificity toward DA and effective limit of detection (LOD) values of 6, 8.5, and 8 â€‹nM in deionized (DI) water, male geriatric plasma, and female geriatric plasma, respectively, in the linear range 100 â€‹nM-1000 µM. In the colorimetric mode, the color changed within 5 â€‹min, and the LOD was 163 â€‹µM. A colorimetric sensor array system was used to precisely detect DA with a smartphone-integrated platform using an in house built imaging application and an analyzer app. Additionally, no additives were required, and the H-CQDs were not functionalized. More importantly, the H-CQDs were morphologically and analytically characterized before and after DA detection. Because the sensor array-based system allows high specificity DA detection in both DI water and geriatric plasma, it will play an important role in biomedical applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa