Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nucleic Acids Res ; 51(20): e105, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37843111

RESUMO

Cytosine base editors (CBEs), which enable precise C-to-T substitutions, have been restricted by potential safety risks, including DNA off-target edits, RNA off-target edits and additional genotoxicity such as DNA damages induced by double-strand breaks (DSBs). Though DNA and RNA off-target edits have been ameliorated via various strategies, evaluation and minimization of DSB-associated DNA damage risks for most CBEs remain to be resolved. Here we demonstrate that YE1, an engineered CBE variant with minimized DNA and RNA off-target edits, could induce prominent DSB-associated DNA damage risks, manifested as γH2AX accumulation in human cells. We then perform deaminase engineering for two deaminases lamprey LjCDA1 and human APOBEC3A, and generate divergent CBE variants with eliminated DSB-associated DNA damage risks, in addition to minimized DNA/RNA off-target edits. Furthermore, the editing scopes and sequence preferences of APOBEC3A-derived CBEs could be further diversified by internal fusion strategy. Taken together, this study provides updated evaluation platform for DSB-associated DNA damage risks of CBEs and further generates a series of safer toolkits with diversified editing signatures to expand their applications.


Assuntos
Citosina , Edição de Genes , Humanos , RNA/genética , Dano ao DNA , DNA/genética , Sistemas CRISPR-Cas
2.
Nature ; 530(7588): 98-102, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26808898

RESUMO

Methyl-CpG binding protein 2 (MeCP2) has crucial roles in transcriptional regulation and microRNA processing. Mutations in the MECP2 gene are found in 90% of patients with Rett syndrome, a severe developmental disorder with autistic phenotypes. Duplications of MECP2-containing genomic segments cause the MECP2 duplication syndrome, which shares core symptoms with autism spectrum disorders. Although Mecp2-null mice recapitulate most developmental and behavioural defects seen in patients with Rett syndrome, it has been difficult to identify autism-like behaviours in the mouse model of MeCP2 overexpression. Here we report that lentivirus-based transgenic cynomolgus monkeys (Macaca fascicularis) expressing human MeCP2 in the brain exhibit autism-like behaviours and show germline transmission of the transgene. Expression of the MECP2 transgene was confirmed by western blotting and immunostaining of brain tissues of transgenic monkeys. Genomic integration sites of the transgenes were characterized by a deep-sequencing-based method. As compared to wild-type monkeys, MECP2 transgenic monkeys exhibited a higher frequency of repetitive circular locomotion and increased stress responses, as measured by the threat-related anxiety and defensive test. The transgenic monkeys showed less interaction with wild-type monkeys within the same group, and also a reduced interaction time when paired with other transgenic monkeys in social interaction tests. The cognitive functions of the transgenic monkeys were largely normal in the Wisconsin general test apparatus, although some showed signs of stereotypic cognitive behaviours. Notably, we succeeded in generating five F1 offspring of MECP2 transgenic monkeys by intracytoplasmic sperm injection with sperm from one F0 transgenic monkey, showing germline transmission and Mendelian segregation of several MECP2 transgenes in the F1 progeny. Moreover, F1 transgenic monkeys also showed reduced social interactions when tested in pairs, as compared to wild-type monkeys of similar age. Together, these results indicate the feasibility and reliability of using genetically engineered non-human primates to study brain disorders.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/psicologia , Modelos Animais de Doenças , Mutação em Linhagem Germinativa/genética , Hereditariedade/genética , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Animais , Animais Geneticamente Modificados , Ansiedade/genética , Ansiedade/psicologia , Transtorno Autístico/metabolismo , Transtorno Autístico/fisiopatologia , Encéfalo/metabolismo , Cognição/fisiologia , Feminino , Humanos , Locomoção/genética , Locomoção/fisiologia , Macaca fascicularis , Masculino , Fenótipo , Comportamento Social , Injeções de Esperma Intracitoplásmicas , Transgenes/genética
3.
Nucleic Acids Res ; 48(10): e57, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32232370

RESUMO

Site-specific DNA double-strand breaks have been used to generate knock-in through the homology-dependent or -independent pathway. However, low efficiency and accompanying negative impacts such as undesirable indels or tumorigenic potential remain problematic. In this study, we present an enhanced reduced-risk genome editing strategy we named as NEO, which used either site-specific trans or cis double-nicking facilitated by four bacterial recombination factors (RecOFAR). In comparison to currently available approaches, NEO achieved higher knock-in (KI) germline transmission frequency (improving from zero to up to 10% efficiency with an average of 5-fold improvement for 8 loci) and 'cleaner' knock-in of long DNA fragments (up to 5.5 kb) into a variety of genome regions in zebrafish, mice and rats. Furthermore, NEO yielded up to 50% knock-in in monkey embryos and 20% relative integration efficiency in non-dividing primary human peripheral blood lymphocytes (hPBLCs). Remarkably, both on-target and off-target indels were effectively suppressed by NEO. NEO may also be used to introduce low-risk unrestricted point mutations effectively and precisely. Therefore, by balancing efficiency with safety and quality, the NEO method reported here shows substantial potential and improves the in vivo gene-editing strategies that have recently been developed.


Assuntos
Proteínas de Bactérias/metabolismo , Edição de Genes/métodos , Animais , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Feminino , Técnicas de Introdução de Genes , Genômica , Recombinação Homóloga , Humanos , Mutação INDEL , Macaca fascicularis , Camundongos , Ratos Sprague-Dawley , Recombinases Rec A/metabolismo , Peixe-Zebra/genética
4.
PLoS One ; 19(6): e0299586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38889193

RESUMO

The composite laminated rotationally stiffened shell is widely applied in aviation, aerospace, ship, machinery and other fields. To investigate the vibration characteristics of composite laminated rotationally stiffened shells with varying elastic boundary conditions, a modeling method of composite laminated rotationally stiffened shells is established. Firstly, the first-order shear deformation theory (FSDT) and the modified Fourier series method are effectively applied to establish the allowable displacement function of the composite laminated rotationally stiffened shell. Secondly, the energy function of composite laminated rotationally stiffened shell is established, and the simulation of complex elastic boundary and coupling boundary is realized by using artificial virtual spring technology. Thirdly, the Rayleigh-Ritz method is used to solve the energy function. Finally, the vibration characteristics of composite laminated rotationally stiffened shells are obtained and analyzed. In the analysis of numerical results, the fast and uniform convergence of analysis modeling and the accuracy of the calculated results are verified. On this basis, the effect of some important parameters such as thickness-to-radius ratio and length-to-radius ratio of shell, boundary spring stiffness values, cone apex angle, thickness and width of laminated beams, number of stiffeners on the vibration characteristics of composite laminated rotationally stiffened shell is studied. In theory, it makes up for the vibration characteristics analysis of composite laminated rotationally stiffened shells. In practical application, it guides the noise reduction design of related structures.


Assuntos
Vibração , Modelos Teóricos , Elasticidade , Exoesqueleto
5.
Cell Rep ; 43(3): 113892, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38431841

RESUMO

Hexanucleotide repeat expansions in the C9orf72 gene are the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Due to the lack of trunk neuromuscular organoids (NMOs) from ALS patients' induced pluripotent stem cells (iPSCs), an organoid system was missing to model the trunk spinal neuromuscular neurodegeneration. With the C9orf72 ALS patient-derived iPSCs and isogenic controls, we used an NMO system containing trunk spinal cord neural and peripheral muscular tissues to show that the ALS NMOs could model peripheral defects in ALS, including contraction weakness, neural denervation, and loss of Schwann cells. The neurons and astrocytes in ALS NMOs manifested the RNA foci and dipeptide repeat proteins. Acute treatment with the unfolded protein response inhibitor GSK2606414 increased the glutamatergic muscular contraction 2-fold and reduced the dipeptide repeat protein aggregation and autophagy. This study provides an organoid system for spinal neuromuscular pathologies in ALS and its application for drug testing.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Esclerose Lateral Amiotrófica/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Proteínas/genética , Dipeptídeos/farmacologia , Dipeptídeos/metabolismo , Expansão das Repetições de DNA
6.
Stem Cell Res ; 77: 103419, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631182

RESUMO

Mutations in CHCHD2 have been reported to be associated with familial Parkinson's disease (PD). We generated a human induced pluripotent stem cell (hiPSC) line by reprogramming dermal fibroblasts from a PD patient harboring a novel CHCHD2 mutation (c.434G > A, p.R145Q). This line exhibited human embryonic stem cell (hESC)-like clonal morphology, expression of undifferentiated stem cell markers, a normal karyotype and trilineage differentiation capacity and thus the potential to serve as a model for further investigating the underlying molecular mechanisms of CHCHD2 function in PD.


Assuntos
Proteínas de Ligação a DNA , Células-Tronco Pluripotentes Induzidas , Proteínas Mitocondriais , Mutação , Doença de Parkinson , Fatores de Transcrição , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Linhagem Celular , Diferenciação Celular , Masculino
7.
Nat Neurosci ; 27(1): 116-128, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38012399

RESUMO

Whole-brain genome editing to correct single-base mutations and reduce or reverse behavioral changes in animal models of autism spectrum disorder (ASD) has not yet been achieved. We developed an apolipoprotein B messenger RNA-editing enzyme, catalytic polypeptide-embedded cytosine base editor (AeCBE) system for converting C·G to T·A base pairs. We demonstrate its effectiveness by targeting AeCBE to an ASD-associated mutation of the MEF2C gene (c.104T>C, p.L35P) in vivo in mice. We first constructed Mef2cL35P heterozygous mice. Male heterozygous mice exhibited hyperactivity, repetitive behavior and social abnormalities. We then programmed AeCBE to edit the mutated C·G base pairs of Mef2c in the mouse brain through the intravenous injection of blood-brain barrier-crossing adeno-associated virus. This treatment successfully restored Mef2c protein levels in several brain regions and reversed the behavioral abnormalities in Mef2c-mutant mice. Our work presents an in vivo base-editing paradigm that could potentially correct single-base genetic mutations in the brain.


Assuntos
Transtorno do Espectro Autista , Edição de Genes , Animais , Camundongos , Masculino , Transtorno do Espectro Autista/genética , Encéfalo , Mutação/genética , Fatores de Transcrição MEF2/genética
8.
Nat Commun ; 14(1): 414, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702837

RESUMO

Cytidine and adenosine deaminases are required for cytosine and adenine editing of base editors respectively, and no single deaminase could enable concurrent and comparable cytosine and adenine editing. Additionally, distinct properties of cytidine and adenosine deaminases lead to various types of off-target effects, including Cas9-indendepent DNA off-target effects for cytosine base editors (CBEs) and RNA off-target effects particularly severe for adenine base editors (ABEs). Here we demonstrate that 25 TadA orthologs could be engineered to generate functional ABEs, CBEs or ACBEs via single or double mutations, which display minimized Cas9-independent DNA off-target effects and genotoxicity, with orthologs B5ZCW4, Q57LE3, E8WVH3, Q13XZ4 and B3PCY2 as promising candidates for further engineering. Furthermore, RNA off-target effects of TadA ortholog-derived base editors could be further reduced or even eliminated by additional single mutation. Taken together, our work expands the base editing toolkits, and also provides important clues for the potential evolutionary process of deaminases.


Assuntos
Citosina , Edição de Genes , Adenina , DNA , RNA , Adenosina/genética , Sistemas CRISPR-Cas/genética
9.
Nat Commun ; 14(1): 413, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702845

RESUMO

Although miniature CRISPR-Cas12f systems were recently developed, the editing efficacy and targeting range of derived miniature cytosine and adenine base editors (miniCBEs and miniABEs) have not been comprehensively addressed. Moreover, functional miniCBEs have not yet be established. Here we generate various Cas12f-derived miniCBEs and miniABEs with improved editing activities and diversified targeting scopes. We reveal that miniCBEs generated with traditional cytidine deaminases exhibit wide editing windows and high off-targeting effects. To improve the editing signatures of classical CBEs and derived miniCBEs, we engineer TadA deaminase with mutagenesis screening to generate potent miniCBEs with high precision and minimized off-target effects. We show that newly designed miniCBEs and miniABEs are able to correct pathogenic mutations in cell lines and introduce genetic mutations efficiently via adeno-associated virus delivery in the brain in vivo. Together, this study provides alternative strategies for CBE development, expands the toolkits of miniCBEs and miniABEs and offers promising therapeutic tools for clinical applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Mutação , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Citosina/metabolismo
10.
BMC Med Genet ; 13: 75, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22909152

RESUMO

BACKGROUND: Autistic spectrum disorders (ASDs) are a family of neurodevelopmental disorders with strong genetic components. Recent studies have shown that copy number variations in dosage sensitive genes can contribute significantly to these disorders. One such gene is the transcription factor MECP2, whose loss of function in females results in Rett syndrome, while its duplication in males results in developmental delay and autism. CASE PRESENTATION: Here, we identified a Chinese family with two brothers both inheriting a 2.2 Mb MECP2-containing duplication (151,369,305 - 153,589,577) from their mother. In addition, both brothers also had a 213.7 kb duplication on Chromosome 2, inherited from their father. The older brother also carried a 48.4 kb duplication on Chromosome 2 inherited from the mother, and a 8.2 kb deletion at 11q13.5 inherited from the father. Based on the published literature, MECP2 is the most autism-associated gene among the identified CNVs. Consistently, the boys displayed clinical features in common with other patients carrying MECP2 duplications, including intellectual disability, autism, lack of speech, slight hypotonia and unsteadiness of movement. They also had slight dysmorphic features including a depressed nose bridge, large ears and midface hypoplasia. Interestingly, they did not exhibit other clinical features commonly observed in American-European patients with MECP2 duplication, including recurrent respiratory infections and epilepsy. CONCLUSIONS: To our knowledge, this is the first identification and characterization of Chinese Han patients with MECP2-containing duplications. Further cases are required to determine if the above described clinical differences are due to individual variations or related to the genetic background of the patients.


Assuntos
Transtorno Autístico/genética , Duplicação Gênica , Deficiência Intelectual/genética , Proteína 2 de Ligação a Metil-CpG/genética , Adolescente , Adulto , Criança , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 2/genética , Variações do Número de Cópias de DNA , Feminino , Transtornos Neurológicos da Marcha/genética , Humanos , Masculino , Linhagem , Infecções Respiratórias/genética , Convulsões/genética , Deleção de Sequência
11.
Neurosci Bull ; 37(9): 1271-1288, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34165772

RESUMO

Whether direct manipulation of Parkinson's disease (PD) risk genes in the adult monkey brain can elicit a Parkinsonian phenotype remains an unsolved issue. Here, we used an adeno-associated virus serotype 9 (AAV9)-delivered CRISPR/Cas9 system to directly co-edit PINK1 and DJ-1 genes in the substantia nigras (SNs) of two monkey groups: an old group and a middle-aged group. After the operation, the old group exhibited all the classic PD symptoms, including bradykinesia, tremor, and postural instability, accompanied by key pathological hallmarks of PD, such as severe nigral dopaminergic neuron loss (>64%) and evident α-synuclein pathology in the gene-edited SN. In contrast, the phenotype of their middle-aged counterparts, which also showed clear PD symptoms and pathological hallmarks, were less severe. In addition to the higher final total PD scores and more severe pathological changes, the old group were also more susceptible to gene editing by showing a faster process of PD progression. These results suggested that both genetic and aging factors played important roles in the development of PD in the monkeys. Taken together, this system can effectively develop a large number of genetically-edited PD monkeys in a short time (6-10 months), and thus provides a practical transgenic monkey model for future PD studies.


Assuntos
Sistemas CRISPR-Cas , Dependovirus , Animais , Encéfalo , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Haplorrinos , Fenótipo , Proteínas Quinases/genética
12.
Sci Bull (Beijing) ; 66(9): 937-946, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654241

RESUMO

Although CRISPR/Cas9-mediated gene editing is widely applied to mimic human disorders, whether acute manipulation of disease-causing genes in the brain leads to behavioral abnormalities in non-human primates remains to be determined. Here we induced genetic mutations in MECP2, a critical gene linked to Rett syndrome (RTT) and autism spectrum disorders (ASD), in the hippocampus (DG and CA1-4) of adolescent rhesus monkeys (Macaca mulatta) in vivo via adeno-associated virus (AAV)-delivered Staphylococcus aureus Cas9 with small guide RNAs (sgRNAs) targeting MECP2. In comparison to monkeys injected with AAV-SaCas9 alone (n = 4), numerous autistic-like behavioral abnormalities were identified in the AAV-SaCas9-sgMECP2-injected monkeys (n = 7), including social interaction deficits, abnormal sleep patterns, insensitivity to aversive stimuli, abnormal hand motions, and defective social reward behaviors. Furthermore, some aspects of ASD and RTT, such as stereotypic behaviors, did not appear in the MECP2 gene-edited monkeys, suggesting that different brain areas likely contribute to distinct ASD symptoms. This study showed that acute manipulation of disease-causing genes via in vivo gene editing directly led to behavioral changes in adolescent primates, paving the way for the rapid generation of genetically engineered non-human primate models for neurobiological studies and therapeutic development.

13.
Sci Bull (Beijing) ; 65(14): 1192-1202, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659149

RESUMO

Duplications of MECP2-containing genomic segments led to severe autistic symptoms in male. Transgenic mice overexpressing the human MECP2 gene exhibit autistic-like behaviors. Neural circuits underlying social defects in MECP2 transgenic (MECP2-TG) mice remain unknown. To observe neural activity of MECP2-TG mice in vivo, we performed calcium imaging by implantation of microendoscope in the hippocampal CA1 regions of MECP2-TG and wild type (WT) mice. We identified neurons whose activities were tightly associated with social interaction, which activity patterns were compromised in MECP2-TG mice. Strikingly, we rescued the social-related neural activity in CA1 and social defects in MECP2-TG mice by deleting the human MECP2 transgene using the CRISPR/Cas9 method during adulthood. Our data points to the neural circuitry responsible for social interactions and provides potential therapeutic targets for autism in adulthood.

14.
Nat Commun ; 11(1): 5827, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203850

RESUMO

Base editing tools with diversified editing scopes and minimized RNA off-target activities are required for broad applications. Nevertheless, current Streptococcus pyogenes Cas9 (SpCas9)-based adenine base editors (ABEs) with minimized RNA off-target activities display constrained editing scopes with efficient editing activities at positions 4-8. Here, functional ABE variants with diversified editing scopes and reduced RNA off-target activities are identified using domain insertion profiling inside SpCas9 and with different combinations of TadA variants. Engineered ABE variants in this study display narrowed, expanded or shifted editing scopes with efficient editing activities across protospacer positions 2-16. And when combined with deaminase engineering, the RNA off-target activities of engineered ABE variants are further minimized. Thus, domain insertion profiling provides a framework to improve and expand ABE toolkits, and its combination with other strategies for ABE engineering deserves comprehensive explorations in the future.


Assuntos
Adenina , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes/metabolismo , Sítios de Ligação , Citosina/metabolismo , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Edição de Genes , Células HEK293 , Humanos , Mutação com Perda de Função , Domínios Proteicos , RNA/metabolismo , Proteínas Recombinantes/genética
15.
Neurosci Bull ; 36(6): 570-584, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32144612

RESUMO

Methyl-CpG binding protein 2 (MeCP2) is a basic nuclear protein involved in the regulation of gene expression and microRNA processing. Duplication of MECP2-containing genomic segments causes MECP2 duplication syndrome, a severe neurodevelopmental disorder characterized by intellectual disability, motor dysfunction, heightened anxiety, epilepsy, autistic phenotypes, and early death. Reversal of the abnormal phenotypes in adult mice with MECP2 duplication (MECP2-TG) by normalizing the MeCP2 levels across the whole brain has been demonstrated. However, whether different brain areas or neural circuits contribute to different aspects of the behavioral deficits is still unknown. Here, we found that MECP2-TG mice showed a significant social recognition deficit, and were prone to display aversive-like behaviors, including heightened anxiety-like behaviors and a fear generalization phenotype. In addition, reduced locomotor activity was observed in MECP2-TG mice. However, appetitive behaviors and learning and memory were comparable in MECP2-TG and wild-type mice. Functional magnetic resonance imaging illustrated that the differences between MECP2-TG and wild-type mice were mainly concentrated in brain areas regulating emotion and social behaviors. We used the CRISPR-Cas9 method to restore normal MeCP2 levels in the medial prefrontal cortex (mPFC) and bed nuclei of the stria terminalis (BST) of adult MECP2-TG mice, and found that normalization of MeCP2 levels in the mPFC but not in the BST reversed the social recognition deficit. These data indicate that the mPFC is responsible for the social recognition deficit in the transgenic mice, and provide new insight into potential therapies for MECP2 duplication syndrome.


Assuntos
Proteína 2 de Ligação a Metil-CpG , Córtex Pré-Frontal , Reconhecimento Psicológico , Comportamento Social , Animais , Ansiedade , China , Modelos Animais de Doenças , Medo , Duplicação Gênica , Masculino , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Camundongos Transgênicos , Córtex Pré-Frontal/metabolismo
16.
Nat Commun ; 10(1): 3612, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399578

RESUMO

Base editing tools for cytosine to thymine (C-T) conversion enable genome manipulation at single base-pair resolution with high efficiency. Available base editors (BEs) for C-T conversion (CBEs) have restricted editing scopes and nonnegligible off-target effects, which limit their applications. Here, by screening diversified lamprey cytidine deaminases, we establish various CBEs with expanded and diversified editing scopes, which could be further refined by various fusing strategies, fusing at either N-terminus or C-terminus of nCas9. Furthermore, off-target analysis reveals that several CBEs display improved fidelity. Our study expands the toolkits for C-T conversion, serves as guidance for appropriate choice and offers a framework for benchmarking future improvement of base editing tools.


Assuntos
Citidina Desaminase/genética , Citosina , Edição de Genes/métodos , Timina , Pareamento de Bases , Sequência de Bases , Sistemas CRISPR-Cas , Citidina Desaminase/classificação , Citidina Desaminase/metabolismo , Células HCT116 , Células HEK293 , Humanos
17.
Sci Adv ; 5(4): eaav3335, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31001583

RESUMO

Although Cas9-mediated genome editing has been widely used to engineer alleles in animal models of human inherited diseases, very few homology-directed repair (HDR)-based genetic editing systems have been established in postnatal mouse models for effective and lasting phenotypic rescue. Here, we developed an HDR-based Cas9/RecA system to precisely correct Pde6b mutation with increased HDR efficiency in postnatal rodless (rd1) mice, a retinitis pigmentosa (RP) mutant model characterized by photoreceptor degeneration and loss of vision. The Cas9/RecA system incorporated Cas9 endonuclease enzyme to generate double-strand breaks (DSBs) and bacterial recombinase A (RecA) to increase homologous recombination. Our data revealed that Cas9/RecA treatment significantly promoted the survival of both rod and cone photoreceptors, restored the expression of PDE6B in rod photoreceptors, and enhanced the visual functions of rd1 mice. Thus, this study provides a precise therapeutic strategy for RP and other genetic diseases.


Assuntos
Sistemas CRISPR-Cas/genética , Reparo do DNA , Edição de Genes/métodos , Recombinases Rec A/metabolismo , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Eletroporação , Humanos , Camundongos , Camundongos Endogâmicos C57BL , RNA Guia de Cinetoplastídeos/metabolismo , Degeneração Retiniana/terapia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo
19.
Autophagy ; 13(10): 1679-1696, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28820282

RESUMO

In addition to the canonical role in protein homeostasis, autophagy has recently been found to be involved in axonal dystrophy and neurodegeneration. Whether autophagy may also be involved in neural development remains largely unclear. Here we report that Mir505-3p is a crucial regulator for axonal elongation and branching in vitro and in vivo, through modulating autophagy in neurons. We identify that the key target gene of Mir505-3p in neurons is Atg12, encoding ATG12 (autophagy-related 12) which is an essential component of the autophagy machinery during the initiation and expansion steps of autophagosome formation. Importantly, axonal development is compromised in brains of mir505 knockout mice, in which autophagy signaling and formation of autophagosomes are consistently enhanced. These results define Mir505-3p-ATG12 as a vital signaling cascade for axonal development via the autophagy pathway, further suggesting the critical role of autophagy in neural development.


Assuntos
Proteína 12 Relacionada à Autofagia/genética , Axônios/fisiologia , MicroRNAs/fisiologia , Neurogênese/genética , Animais , Autofagia/genética , Células Cultivadas , Regulação para Baixo/genética , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/genética
20.
Sci Rep ; 7: 42790, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28211484

RESUMO

Mutations of X-linked gene Methyl CpG binding protein 2 (MECP2) are the major causes of Rett syndrome (RTT), a severe neurodevelopmental disorder. Duplications of MECP2-containing genomic segments lead to severe autistic symptoms in human. MECP2-coding protein methyl-CpG-binding protein 2 (MeCP2) is involved in transcription regulation, microRNA processing and mRNA splicing. However, molecular mechanisms underlying the involvement of MeCP2 in mRNA splicing in neurons remain largely elusive. In this work we found that the majority of MeCP2-associated proteins are involved in mRNA splicing using mass spectrometry analysis with multiple samples from Mecp2-null rat brain, mouse primary neuron and human cell lines. We further showed that Mecp2 knockdown in cultured cortical neurons led to widespread alternations of mRNA alternative splicing. Analysis of ChIP-seq datasets indicated that MeCP2-regulated exons display specific epigenetic signatures, with DNA modification 5-hydroxymethylcytosine (5hmC) and histone modification H3K4me3 are enriched in down-regulated exons, while the H3K36me3 signature is enriched in exons up-regulated in Mecp2-knockdown neurons comparing to un-affected neurons. Functional analysis reveals that genes containing MeCP2-regulated exons are mainly involved in synaptic functions and mRNA splicing. These results suggested that MeCP2 regulated mRNA splicing through interacting with 5hmC and epigenetic changes in histone markers, and provide functional insights of MeCP2-mediated mRNA splicing in the nervous system.


Assuntos
Processamento Alternativo , Encéfalo/metabolismo , Epigênese Genética , Proteína 2 de Ligação a Metil-CpG/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Encéfalo/citologia , Células Cultivadas , Células HEK293 , Código das Histonas , Humanos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Neurônios/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa