Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 623(7989): 977-981, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37880363

RESUMO

Synthetic carbon allotropes such as graphene1, carbon nanotubes2 and fullerenes3 have revolutionized materials science and led to new technologies. Many hypothetical carbon allotropes have been discussed4, but few have been studied experimentally. Recently, unconventional synthetic strategies such as dynamic covalent chemistry5 and on-surface synthesis6 have been used to create new forms of carbon, including γ-graphyne7, fullerene polymers8, biphenylene networks9 and cyclocarbons10,11. Cyclo[N]carbons are molecular rings consisting of N carbon atoms12,13; the three that have been reported to date (N = 10, 14 and 18)10,11 are doubly aromatic, which prompts the question: is it possible to prepare doubly anti-aromatic versions? Here we report the synthesis and characterization of an anti-aromatic carbon allotrope, cyclo[16]carbon, by using tip-induced on-surface chemistry6. In addition to structural information from atomic force microscopy, we probed its electronic structure by recording orbital density maps14 with scanning tunnelling microscopy. The observation of bond-length alternation in cyclo[16]carbon confirms its double anti-aromaticity, in concordance with theory. The simple structure of C16 renders it an interesting model system for studying the limits of aromaticity, and its high reactivity makes it a promising precursor to novel carbon allotropes15.

2.
J Am Chem Soc ; 146(1): 1196-1203, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38157245

RESUMO

Bicyclo[1.1.0]butanes (BCBs), strained carbocycles comprising two fused cyclopropane rings, have become well-established building blocks in organic synthesis, medicinal chemistry, and chemical biology due to their diverse reactivity profile with radicals, nucleophiles, cations, and carbenes. The constraints of the bicyclic ring system confer high p-character on the interbridgehead C-C bond, leading to this broad reaction profile; however, the use of BCBs in pericyclic processes has to date been largely overlooked in favor of such stepwise, non-concerted additions. Here, we describe the use of BCBs as substrates for ene-like reactions with strained alkenes and alkynes, which give rise to cyclobutenes decorated with highly substituted cyclopropanes and arenes. The former products are obtained from highly stereoselective reactions with cyclopropenes, generated in situ from vinyl diazoacetates under blue light irradiation (440 nm). Cyclobutenes featuring a quaternary aryl-bearing carbon atom are prepared from equivalent reactions with arynes, which proceed in high yields under mild conditions. Mechanistic studies highlight the importance of electronic effects in this chemistry, while computational investigations support a concerted pathway and rationalize the excellent stereoselectivity of reactions with cyclopropenes.

3.
J Am Chem Soc ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885121

RESUMO

The sealutomicins are a family of anthraquinone antibiotics featuring an enediyne (sealutomicin A) or Bergman-cyclized aromatic ring (sealutomicins B-D). Herein we report the development of an enantioselective organocatalytic method for the synthesis of dihydroquinolines and the use of the developed method in the total synthesis of sealutomicin C which features a transannular cyclization of an aryllithium onto a γ-lactone as a second key step.

4.
Angew Chem Int Ed Engl ; 63(5): e202315401, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38055190

RESUMO

The organocatalytic enolization of 2-arylacetamides, followed by an enantioselective intramolecular conjugate addition to tethered 2,5-cyclohexadienones, yielding 3D fused N-heterocycles, is described. The transformation represents the first strong activating group-free activation of carboxamides via α-C-H deprotonation in a metal-free, catalytic, and enantioselective reaction, and is achieved by employing a bifunctional iminophosphorane (BIMP) superbase.

5.
J Am Chem Soc ; 145(21): 11859-11865, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37201942

RESUMO

Cyclic porphyrin oligomers have been studied as models for photosynthetic light-harvesting antenna complexes and as potential receptors for supramolecular chemistry. Here, we report the synthesis of unprecedented ß,ß-directly linked cyclic zinc porphyrin oligomers, the trimer (CP3) and tetramer (CP4), by Yamamoto coupling of a 2,3-dibromoporphyrin precursor. Their three-dimensional structures were confirmed by nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and single-crystal X-ray diffraction analyses. The minimum-energy geometries of CP3 and CP4 have propeller and saddle shapes, respectively, as calculated using density functional theory. Their different geometries result in distinct photophysical and electrochemical properties. The smaller dihedral angles between the porphyrin units in CP3, compared with CP4, result in stronger π-conjugation, splitting the ultraviolet-vis absorption bands and shifting them to longer wavelengths. Analysis of the crystallographic bond lengths indicates that the central benzene ring of the CP3 is partially aromatic [harmonic oscillator model of aromaticity (HOMA) 0.52], whereas the central cyclooctatetraene ring of the CP4 is non-aromatic (HOMA -0.02). The saddle-shaped structure of CP4 makes it a ditopic receptor for fullerenes, with affinity constants of (1.1 ± 0.4) × 105 M-1 for C70 and (2.2 ± 0.1) × 104 M-1 for C60, respectively, in toluene solution at 298 K. The formation of a 1:2 complex with C60 is confirmed by NMR titration and single-crystal X-ray diffraction.

6.
J Am Chem Soc ; 145(50): 27367-27379, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38060428

RESUMO

Despite their hydrophobic surfaces with localized π-holes and rigid well-defined architectures providing a scaffold for preorganizing binding motifs, fullerenes remain unexplored as potential supramolecular host platforms for the recognition of anions. Herein, we present the first example of the rational design, synthesis, and unique recognition properties of novel fullerene-functionalized halogen-bonding (XB) heteroditopic ion-pair receptors containing cation and anion binding domains spatially separated by C60. Fullerene spatial separation of the XB donors and the crown ether complexed potassium cation resulted in a rare example of an artificial receptor containing two anion binding sites with opposing preferences for hard and soft halides. Importantly, the incorporation of the C60 motif into the heteroditopic receptor structure has a significant effect on the halide binding selectivity, which is further amplified upon K+ cation binding. The potassium cation complexed fullerene-based receptors exhibit enhanced selectivity for the soft polarizable iodide ion which is assisted by the C60 scaffold preorganizing the potent XB-based binding domains, anion-π interactions, and the exceptional polarizability of the fullerene moiety, as evidenced from DFT calculations. These observations serve to highlight the unique properties of fullerene surfaces for proximal charged guest binding with potential applications in construction of selective molecular sensors and modulating the properties of solar cell devices.

7.
J Am Chem Soc ; 145(50): 27767-27773, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38051939

RESUMO

Achieving single-step syntheses of a set of related compounds divergently and selectively from a common starting material affords substantial efficiency gains when compared with preparing those same compounds by multiple individual syntheses. In order for this approach to be realized, complementary reagent systems must be available; here, a panel of engineered P450BM3 enzymes is shown to fulfill this remit in the selective C-H hydroxylation of cyclobutylamine derivatives at chemically unactivated sites. The oxidations can proceed with high regioselectivity and stereoselectivity, producing valuable bifunctional intermediates for synthesis and applications in fragment-based drug discovery. The process also applies to bicyclo[1.1.1]pentyl (BCP) amine derivatives to achieve the first direct enantioselective functionalization of the bridging methylenes and open a short and efficient route to chiral BCP bioisosteres for medicinal chemistry. The combination of substrate, enzyme, and reaction engineering provides a powerful general platform for small-molecule elaboration and diversification.


Assuntos
Aminas , Sistema Enzimático do Citocromo P-450 , Hidroxilação , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução
8.
J Am Chem Soc ; 145(39): 21623-21629, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37738304

RESUMO

sulfinamides, sulfonamides, and sulfonimidamides are in-demand motifs in medicinal chemistry, yet methods for the synthesis of alkyl variants that start from simple, readily available feedstocks are scarce. In addition, bespoke syntheses of each class of molecules are usually needed. In this report, we detail the synthesis of these three distinct sulfur functional groups, using readily available and structurally diverse alkyl carboxylic acids as the starting materials. The method harnesses alkyl radical generation from carboxylic acids using acridine photocatalysts and 400 nm light with subsequent radical addition to sulfinylamine reagents, delivering sulfinamide products. Using the N-alkoxy sulfinylamine reagent t-BuO-NSO as the radical trap provides common N-alkoxy sulfinamide intermediates, which can be converted in a divergent manner to either sulfonamides or sulfonimidamides, by treatment with sodium hydroxide, or an amine, respectively. The reactions are scalable, tolerate a broad range of functional groups, and can be used for the diversification of complex biologically active compounds.

9.
J Am Chem Soc ; 145(17): 9708-9717, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37079853

RESUMO

The controlled programming of regiochemical outcomes in nucleophilic fluorination reactions with alkali metal fluoride is a problem yet to be solved. Herein, two synergistic approaches exploiting hydrogen bonding catalysis are presented. First, we demonstrate that modulating the charge density of fluoride with a hydrogen-bond donor urea catalyst directly influences the kinetic regioselectivity in the fluorination of dissymmetric aziridinium salts with aryl and ester substituents. Moreover, we report a urea-catalyzed formal dyotropic rearrangement, a thermodynamically controlled regiochemical editing process consisting of C-F bond scission followed by fluoride rebound. These findings offer a route to access enantioenriched fluoroamine regioisomers from a single chloroamine precursor, and more generally, new opportunities in regiodivergent asymmetric (bis)urea-based organocatalysis.

10.
J Am Chem Soc ; 145(9): 5422-5430, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36820616

RESUMO

Herein, we describe the convergent enantioselective total synthesis of himalensine A in 18 steps, enabled by a highly enantio- and diastereoselective construction of the morphan core via a palladium/hydroxy proline co-catalyzed desymmetrization of vinyl-bromide-tethered cyclohexanones. The reaction pathway was illuminated by density functional theory calculations, which support an intramolecular Heck reaction of an in situ-generated enamine intermediate, where exquisite enantioselectivity arises from intramolecular carboxylate coordination to the vinyl palladium species in the rate- and enantio-determining carbopalladation steps. The reaction tolerates diverse N-derivatives, all-carbon quaternary centers, and trisubstituted olefins, providing access to molecular scaffolds found in a range of complex natural products. Following large-scale preparation of a key substrate and installation of a ß-substituted enone moiety, the rapid construction of himalensine A was achieved using a highly convergent strategy based on an amide coupling/Michael addition/allylation/ring-closing metathesis sequence which allowed the introduction of three of the five rings in only three synthetic steps (after telescoping). Moreover, our strategy provides a new enantioselective access to a known tetracyclic late-stage intermediate that has been used previously in the synthesis of many Daphniphyllum alkaloids.

11.
Chemistry ; 29(26): e202300063, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36638051

RESUMO

Molecular cages are sought after as receptors and catalysts. However, typical dynamic covalent chemistry approaches restrict the shape-persistence, solubility and stability of self-assembled organic cages. As a result, organic cages occupy a narrow chemical and functional space, and solution-phase applications and studies remain rare. We report an in situ trapping protocol, using Pinnick oxidation conditions, to convert soluble metastable imine assemblies to robust amide cages, and exemplify the method to access previously inaccessible organic cages. The new cages are internally functionalised with two constrained and diametrically opposed carboxylic acid groups that can distinguish between functionalised piperazines in THF. We anticipate our approach will broaden access to robust, soluble, self-assembled organic cages of an unsymmetrical or semi-flexible nature, which in turn will drive advances in solution-phase applications of molecular cages.

12.
Chemistry ; 29(13): e202203732, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36478469

RESUMO

The use of benzylic and allylic alcohols in HFIP solvent together with Ti(Oi Pr)4 has been shown to trigger a highly stereoselective polyene cyclisation cascade. Three new carbon-carbon bonds are made during the process and complete stereocontrol of up to five new stereogenic centers is observed. The reaction is efficient, has high functional group tolerance and is atom-economic generating water as a stoichiometric by-product. A new polyene substrate-class is employed, and subsequent mechanistic studies indicate a stereoconvergent mechanism. The products of this reaction can be used to synthesize steroid-analogues in a single step.

13.
Chemistry ; 29(70): e202302821, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37767940

RESUMO

Gold catalysis is an important method for alkyne functionalization. Here we report the gold-catalyzed formal [3+2] aminative cyclization of yndiamides and isoxazoles in a direct synthesis of polysubstituted diaminopyrroles, which are important motifs in drug discovery. Key to this process is the formation, and subsequent cyclization, of an α-imino gold Fischer carbene, which represents a new type of gold carbene intermediate. The reaction proceeds rapidly under mild conditions, with high regioselectivity being achieved by introducing a subtle steric bias between the nitrogen substituents on the yndiamide. DFT calculations revealed that the key to this regioselectivity was the interconversion of isomeric gold keteniminiun ions via a low-barrier π-complex transition state, which establishes a Curtin-Hammett scenario for isoxazole addition. By using benzisoxazoles as substrates, the reaction outcome could be switched to a formal [5+2] cyclization, leading to 1,4-oxazepines.

14.
Org Biomol Chem ; 21(19): 4061-4071, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37099402

RESUMO

A general route which provides direct access to substituted bicyclic tetramates, making use of Dieckmann cyclisation of oxazolidine derivatives derived from allo-phenylserines, is reported. Of interest is the high level of diastereoselectivity observed for the N-acylation reaction of oxazolidines and the complete chemoselectivity of their ring closure in the Dieckmann cyclisation. Significantly, the sense of the chemoselectivity is different to earlier reported threo-phenylserine systems, showing the importance of steric bulk around the bicyclic ring system. The derived C7-carboxamidotetramates, but not C7-acyl systems, exhibited potent antibacterial activity against MRSA, with the most active compounds exhibiting well-defined physicochemical and structure-activity properties. This work clearly demonstrates that densely functionalised tetramates are both readily available and may exhibit high levels of antibacterial activity.


Assuntos
Antibacterianos , Serina , Antibacterianos/farmacologia , Antibacterianos/química , Ciclização
15.
Org Biomol Chem ; 21(23): 4801-4809, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37232452

RESUMO

A chemoselective route which provides direct access to bicyclic tetramates, making use of Dieckmann cyclisation of functionalised oxazolidines and imidazolidines derived from an aminomalonate, is reported; calculations suggest that the observed chemoselectivity is kinetically controlled and leads to the thermodynamically most stable product. Some compounds in the library showed modest antibacterial activity against Gram-positive bacteria, and this activity is maximal in a well-defined region of chemical space (554 < Mw < 722 g mol-1; 5.78 < cLogP < 7.16; 788 < MSA < 972 Å2; 10.3 < rel. PSA < 19.08).


Assuntos
Imidazolidinas , Oxazóis , Bactérias Gram-Positivas , Antibacterianos/química
16.
Angew Chem Int Ed Engl ; 62(31): e202307035, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37293835

RESUMO

π-Conjugated nanoribbons attract interest because of their unusual electronic structures and charge-transport behavior. Here, we report the synthesis of a series of fully edge-fused porphyrin-anthracene oligomeric ribbons (dimer and trimer), together with a computational study of the corresponding infinite polymer. The porphyrin dimer and trimer were synthesized in high yield, via oxidative cyclodehydrogenation of singly linked precursors, using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and trifluoromethanesulfonic acid (TfOH). The crystal structure of the dimer shows that the central π-system is flat, with a slight S-shaped wave distortion at each porphyrin terminal. The extended π-conjugation causes a dramatic red-shift in the absorption spectra: the absorption maxima of the fused dimer and trimer appear at 1188 nm and 1642 nm, respectively (for the nickel complexes dissolved in toluene). The coordinated metal in the dimer was changed from Ni to Mg, using p-tolylmagnesium bromide, providing access to free-base and Zn complexes. These results open a versatile avenue to longer π-conjugated nanoribbons with integrated metalloporphyrin units.

17.
J Am Chem Soc ; 144(10): 4572-4584, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35230845

RESUMO

Asymmetric catalytic azidation has increased in importance to access enantioenriched nitrogen containing molecules, but methods that employ inexpensive sodium azide remain scarce. This encouraged us to undertake a detailed study on the application of hydrogen bonding phase-transfer catalysis (HB-PTC) to enantioselective azidation with sodium azide. So far, this phase-transfer manifold has been applied exclusively to insoluble metal alkali fluorides for carbon-fluorine bond formation. Herein, we disclose the asymmetric ring opening of meso aziridinium electrophiles derived from ß-chloroamines with sodium azide in the presence of a chiral bisurea catalyst. The structure of novel hydrogen bonded azide complexes was analyzed computationally, in the solid state by X-ray diffraction, and in solution phase by 1H and 14N/15N NMR spectroscopy. With N-isopropylated BINAM-derived bisurea, end-on binding of azide in a tripodal fashion to all three NH bonds is energetically favorable, an arrangement reminiscent of the corresponding dynamically more rigid trifurcated hydrogen-bonded fluoride complex. Computational analysis informs that the most stable transition state leading to the major enantiomer displays attack from the hydrogen-bonded end of the azide anion. All three H-bonds are retained in the transition state; however, as seen in asymmetric HB-PTC fluorination, the H-bond between the nucleophile and the monodentate urea lengthens most noticeably along the reaction coordinate. Kinetic studies corroborate with the turnover rate limiting event resulting in a chiral ion pair containing an aziridinium cation and a catalyst-bound azide anion, along with catalyst inhibition incurred by accumulation of NaCl. This study demonstrates that HB-PTC can serve as an activation mode for inorganic salts other than metal alkali fluorides for applications in asymmetric synthesis.


Assuntos
Azidas , Fluoretos , Álcalis , Ânions/química , Catálise , Hidrogênio , Ligação de Hidrogênio , Cinética , Azida Sódica
18.
Chemistry ; 28(63): e202202464, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-35946550

RESUMO

In this work an approach for the synthesis of furanocembranoid natural products containing the C-7,8-diol moiety is disclosed. This culminated in the first total synthesis of the natural product molestin E, together with ent-sinulacembranolide A and ent-sinumaximol A as well as a thorough exploration of their chemistry. Late-stage ring-closure of the C-7,8-diols to the corresponding epoxides was also demonstrated. Key features of this synthetic strategy include a stereoselective Baylis-Hillman reaction, ring-closing metathesis and Shiina macrolactonisation. Chiral-pool materials were deployed to ensure the desired absolute stereochemistry which was confirmed by late-stage single crystal X-ray diffraction.


Assuntos
Produtos Biológicos , Compostos de Epóxi , Estereoisomerismo , Cristalografia por Raios X , Produtos Biológicos/química
19.
J Org Chem ; 87(18): 12240-12249, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36052923

RESUMO

A general route, which provides direct access to substituted bicyclic tetramates, making use of Dieckmann cyclization of oxazolidines derived from threo-arylserines, is reported; the latter were found to be available by an efficient aldol-like reaction of glycine with some substituted benzaldehydes under alkaline conditions. The tetramates were found to release chelated metal cations acquired during chromatographic purification by mild acid wash. Some compounds in the library showed good antibacterial activity against Gram-positive bacteria. Cheminformatic analysis demonstrates that the most active compounds were Ro5-compliant and occupy a narrow region of chemical space, distinct from that occupied by other known antibiotics, with the most potent compounds having 399 < Mw < 530 Da; 3.5 < cLogP < 6.6; 594 < MSA <818 Å2; 9.6 < rel. PSA <13.3%. MIC values were shifted to higher concentrations when tested in the presence of HSA or blood, but was not completely abolished, consistent with a plasma protein binding (PPB) effect.


Assuntos
Benzaldeídos , Antibacterianos/química , Antibacterianos/farmacologia , Glicina , Testes de Sensibilidade Microbiana , Serina/análogos & derivados
20.
Angew Chem Int Ed Engl ; 61(34): e202206800, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35770710

RESUMO

A Ti(Oi-Pr)4 promoted 5- or 6-endo-trig cyclisation to make nitrogen heterocycles is presented. The utilisation of HFIP as a key solvent enables the stereoselective preparation of di- & tri-substituted pyrrolidines and piperidines while forming a new C-C bond at the same time. The process is triggered by a cationic intermediate generated from an allylic or benzylic alcohol and leads to the simultaneous generation of both a C-C and a C-N bond in a single step. Notably, either 2,3-trans- or 2,3-cis-substituted heterocycles can be obtained by using a nucleophilic amine bearing different substituents. Lastly, the stereoselective synthesis of enantiopure products was achieved by using readily available enantiopure acyclic starting materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa