Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
EMBO Rep ; 24(10): e57090, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37592911

RESUMO

The complex life cycle of the human malaria parasite, Plasmodium falciparum, is driven by specific transcriptional programs, but it is unclear how most genes are activated or silenced at specific times. There is an association between transcription and spatial organization; however, the molecular mechanisms behind genome organization are unclear. While P. falciparum lacks key genome-organizing proteins found in metazoans, it has all core components of the cohesin complex. To investigate the role of cohesin in P. falciparum, we functionally characterize the cohesin subunit Structural Maintenance of Chromosomes protein 3 (SMC3). SMC3 knockdown during early stages of the intraerythrocytic developmental cycle (IDC) upregulates a subset of genes involved in erythrocyte egress and invasion, which are normally expressed at later stages. ChIP-seq analyses reveal that during the IDC, SMC3 enrichment at the promoter regions of these genes inversely correlates with gene expression and chromatin accessibility. These data suggest that SMC3 binding contributes to the repression of specific genes until their appropriate time of expression, revealing a new mode of stage-specific gene repression in P. falciparum.

2.
Br J Haematol ; 196(5): 1159-1169, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34962643

RESUMO

COVID-19 has compelled scientists to better describe its pathophysiology to find new therapeutic approaches. While risk factors, such as older age, obesity, and diabetes mellitus, suggest a central role of endothelial cells (ECs), autopsies have revealed clots in the pulmonary microvasculature that are rich in neutrophils and DNA traps produced by these cells, called neutrophil extracellular traps (NETs.) Submicron extracellular vesicles, called microparticles (MPs), are described in several diseases as being involved in pro-inflammatory pathways. Therefore, in this study, we analyzed three patient groups: one for which intubation was not necessary, an intubated group, and one group after extubation. In the most severe group, the intubated group, platelet-derived MPs and endothelial cell (EC)-derived MPs exhibited increased concentration and size, when compared to uninfected controls. MPs of intubated COVID-19 patients triggered EC death and overexpression of two adhesion molecules: P-selectin and vascular cell adhesion molecule-1 (VCAM-1). Strikingly, neutrophil adhesion and NET production were increased following incubation with these ECs. Importantly, we also found that preincubation of these COVID-19 MPs with the phosphatidylserine capping endogenous protein, annexin A5, abolished cytotoxicity, P-selectin and VCAM-1 induction, all like increases in neutrophil adhesion and NET release. Taken together, our results reveal that MPs play a key role in COVID-19 pathophysiology and point to a potential therapeutic: annexin A5.


Assuntos
COVID-19/imunologia , Micropartículas Derivadas de Células/imunologia , Células Endoteliais/imunologia , Neutrófilos/imunologia , SARS-CoV-2/imunologia , COVID-19/patologia , COVID-19/terapia , Adesão Celular , Morte Celular , Micropartículas Derivadas de Células/patologia , Células Cultivadas , Células Endoteliais/patologia , Armadilhas Extracelulares/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Intubação , Neutrófilos/patologia , Fosfatidilserinas/imunologia
3.
Blood ; 136(2): 247-256, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32285120

RESUMO

Microparticles (MPs) are submicron extracellular vesicles exposing phosphatidylserine (PS), detected at high concentration in the circulation of sickle cell anemia (SS) patients. Several groups studied the biological effects of MPs generated ex vivo. Here, we analyzed for the first time the impact of circulating MPs on endothelial cells (ECs) from 60 sickle cell disease (SCD) patients. MPs were collected from SCD patients and compared with MPs isolated from healthy individuals (AA). Other plasma MPs were purified from SS patients before and 2 years after the onset of hydroxyurea (HU) treatment or during a vaso-occlusive crisis and at steady-state. Compared with AA MPs, SS MPs increased EC ICAM-1 messenger RNA and protein levels, as well as neutrophil adhesion. We showed that ICAM-1 overexpression was primarily caused by MPs derived from erythrocytes, rather than from platelets, and that it was abolished by MP PS capping using annexin V. MPs from SS patients treated with HU were less efficient to induce a proinflammatory phenotype in ECs compared with MPs collected before therapy. In contrast, MPs released during crisis increased ICAM-1 and neutrophil adhesion levels, in a PS-dependent manner, compared with MPs collected at steady-state. Furthermore, neutrophil adhesion was abolished by a blocking anti-ICAM-1 antibody. Our study provides evidence that MPs play a key role in SCD pathophysiology by triggering a proinflammatory phenotype of ECs. We also uncover a new mode of action for HU and identify potential therapeutics: annexin V and anti-ICAM-1 antibodies.


Assuntos
Anemia Falciforme , Micropartículas Derivadas de Células/metabolismo , Endotélio Vascular/metabolismo , Hidroxiureia/administração & dosagem , Molécula 1 de Adesão Intercelular/sangue , RNA Mensageiro/sangue , Adolescente , Anemia Falciforme/sangue , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/patologia , Anemia Falciforme/fisiopatologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Inflamação/sangue , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/fisiopatologia , Masculino
4.
PLoS Biol ; 17(6): e3000308, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31181082

RESUMO

Plasmodium falciparum is the main cause of disease and death from malaria. P. falciparum virulence resides in the ability of infected erythrocytes (IEs) to sequester in various tissues through the interaction between members of the polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesin family to various host receptors. Here, we investigated the effect of phosphorylation of variant surface antigen 2-CSA (VAR2CSA), a member of the PfEMP1 family associated to placental sequestration, on its capacity to adhere to chondroitin sulfate A (CSA) present on the placental syncytium. We showed that phosphatase treatment of IEs impairs cytoadhesion to CSA. MS analysis of recombinant VAR2CSA phosphosites prior to and after phosphatase treatment, as well as of native VAR2CSA expressed on IEs, identified critical phosphoresidues associated with CSA binding. Site-directed mutagenesis on recombinant VAR2CSA of 3 phosphoresidues localised within the CSA-binding region confirmed in vitro their functional importance. Furthermore, using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9), we generated a parasite line in which the phosphoresidue T934 is changed to alanine and showed that this mutation strongly impairs IEs cytoadhesion to CSA. Taken together, these results demonstrate that phosphorylation of the extracellular region of VAR2CSA plays a major role in IEs cytoadhesion to CSA and provide new molecular insights for strategies aiming to reduce the morbidity and mortality of PM.


Assuntos
Antígenos de Protozoários/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Animais , Variação Antigênica , Antígenos de Protozoários/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Eritrócitos/parasitologia , Feminino , Humanos , Malária , Malária Falciparum/genética , Malária Falciparum/parasitologia , Parasitos , Fosforilação , Placenta , Plasmodium falciparum/genética , Gravidez , Ligação Proteica
5.
Mol Syst Biol ; 16(8): e9569, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32816370

RESUMO

Mutually exclusive expression of the var multigene family is key to immune evasion and pathogenesis in Plasmodium falciparum, but few factors have been shown to play a direct role. We adapted a CRISPR-based proteomics approach to identify novel factors associated with var genes in their natural chromatin context. Catalytically inactive Cas9 ("dCas9") was targeted to var gene regulatory elements, immunoprecipitated, and analyzed with mass spectrometry. Known and novel factors were enriched including structural proteins, DNA helicases, and chromatin remodelers. Functional characterization of PfISWI, an evolutionarily divergent putative chromatin remodeler enriched at the var gene promoter, revealed a role in transcriptional activation. Proteomics of PfISWI identified several proteins enriched at the var gene promoter such as acetyl-CoA synthetase, a putative MORC protein, and an ApiAP2 transcription factor. These findings validate the CRISPR/dCas9 proteomics method and define a new var gene-associated chromatin complex. This study establishes a tool for targeted chromatin purification of unaltered genomic loci and identifies novel chromatin-associated factors potentially involved in transcriptional control and/or chromatin organization of virulence genes in the human malaria parasite.


Assuntos
Adenosina Trifosfatases/metabolismo , Plasmodium falciparum/patogenicidade , Proteômica/métodos , Fatores de Transcrição/metabolismo , Fatores de Virulência/genética , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Sistemas CRISPR-Cas , Sequenciamento de Cromatina por Imunoprecipitação , Humanos , Íntrons , Espectrometria de Massas , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Regiões Promotoras Genéticas , Mapas de Interação de Proteínas , Fatores de Virulência/metabolismo
6.
Nature ; 513(7518): 431-5, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25043062

RESUMO

Antigenic variation of the Plasmodium falciparum multicopy var gene family enables parasite evasion of immune destruction by host antibodies. Expression of a particular var subgroup, termed upsA, is linked to the obstruction of blood vessels in the brain and to the pathogenesis of human cerebral malaria. The mechanism determining upsA activation remains unknown. Here we show that an entirely new type of gene silencing mechanism involving an exonuclease-mediated degradation of nascent RNA controls the silencing of genes linked to severe malaria. We identify a novel chromatin-associated exoribonuclease, termed PfRNase II, that controls the silencing of upsA var genes by marking their transcription start site and intron-promoter regions leading to short-lived cryptic RNA. Parasites carrying a deficient PfRNase II gene produce full-length upsA var transcripts and intron-derived antisense long non-coding RNA. The presence of stable upsA var transcripts overcomes monoallelic expression, resulting in the simultaneous expression of both upsA and upsC type PfEMP1 proteins on the surface of individual infected red blood cells. In addition, we observe an inverse relationship between transcript levels of PfRNase II and upsA-type var genes in parasites from severe malaria patients, implying a crucial role of PfRNase II in severe malaria. Our results uncover a previously unknown type of post-transcriptional gene silencing mechanism in malaria parasites with repercussions for other organisms. Additionally, the identification of RNase II as a parasite protein controlling the expression of virulence genes involved in pathogenesis in patients with severe malaria may provide new strategies for reducing malaria mortality.


Assuntos
Exorribonucleases/metabolismo , Inativação Gênica , Genes de Protozoários/genética , Malária Cerebral/parasitologia , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , RNA de Protozoário/metabolismo , Alelos , Variação Antigênica/genética , Cromatina/enzimologia , Regulação para Baixo/genética , Eritrócitos/parasitologia , Exorribonucleases/deficiência , Exorribonucleases/genética , Humanos , Íntrons/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/patogenicidade , Regiões Promotoras Genéticas/genética , Proteínas de Protozoários/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Sítio de Iniciação de Transcrição , Virulência/genética , Fatores de Virulência/genética
7.
Cell Microbiol ; 17(8): 1205-16, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25703704

RESUMO

Plasmodium falciparum virulence is linked to its ability to sequester in post-capillary venules in the human host. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is the main variant surface antigen implicated in this process. Complete loss of parasite adhesion is linked to a large subtelomeric deletion on chromosome 9 in a number of laboratory strains such as D10 and T9-96. Similar to the cytoadherent reference line FCR3, D10 strain expresses PfEMP1 on the surface of parasitized erythrocytes, however without any detectable cytoadhesion. To investigate which of the deleted subtelomeric genes may be implicated in parasite adhesion, we selected 12 genes for D10 complementation studies that are predicted to code for proteins exported to the red blood cell. We identified a novel single copy gene (PF3D7_0936500) restricted to P. falciparum that restores adhesion to CD36, termed here virulence-associated protein 1 (Pfvap1). Protein knockdown and gene knockout experiments confirmed a role of PfVAP1 in the adhesion process in FCR3 parasites. PfVAP1 is co-exported with PfEMP1 into the host cell via vesicle-like structures called Maurer's clefts. This study identifies a novel highly conserved parasite molecule that contributes to parasite virulence possibly by assisting PfEMP1 to establish functional adhesion at the host cell surface.


Assuntos
Adesão Celular , Eritrócitos/metabolismo , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Eritrócitos/parasitologia , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Teste de Complementação Genética , Humanos , Ligação Proteica , Deleção de Sequência
8.
Eukaryot Cell ; 12(5): 697-702, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23475702

RESUMO

The human malaria parasite Plasmodium falciparum modifies the erythrocyte it infects by exporting variant proteins to the host cell surface. The var gene family that codes for a large, variant adhesive surface protein called P. falciparum erythrocyte membrane protein 1 (PfEMP1) plays a particular role in this process, which is linked to pathogenesis and immune evasion. A single member of this gene family is highly transcribed while the other 59 members remain silenced. Importantly, var gene transcription occurs at a spatially restricted, but yet undefined, perinuclear site that is distinct from repressed var gene clusters. To advance our understanding of monoallelic expression, we investigated whether nuclear pores associate with the var gene expression site. To this end, we studied the nuclear pore organization during the asexual blood stage using a specific antibody directed against a subunit of the nuclear pore, P. falciparum Nup116 (PfNup116). Ring and schizont stage parasites showed highly polarized nuclear pore foci, whereas in trophozoite stage nuclear pores redistributed over the entire nuclear surface. Colocalization studies of var transcripts and anti-PfNup116 antibodies showed clear dissociation between nuclear pores and the var gene expression site in ring stage. Similar results were obtained for another differentially transcribed perinuclear gene family, the ribosomal DNA units. Furthermore, we show that in the poised state, the var gene locus is not physically linked to nuclear pores. Our results indicate that P. falciparum does form compartments of high transcriptional activity at the nuclear periphery which are, unlike the case in yeast, devoid of nuclear pores.


Assuntos
DNA Ribossômico/genética , Poro Nuclear/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Células Cultivadas , DNA Ribossômico/metabolismo , Eritrócitos/parasitologia , Expressão Gênica , Regulação da Expressão Gênica , Genes de Protozoários , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/ultraestrutura , Transporte Proteico , Proteínas de Protozoários/metabolismo , Trofozoítos/diagnóstico por imagem , Trofozoítos/metabolismo , Ultrassonografia
9.
Nucleic Acids Res ; 40(17): 8381-91, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22740656

RESUMO

Terminal deoxynucleotidyl transferase (TdT) is a DNA polymerase that increases the repertoire of antigen receptors by adding non-templated nucleotides (N-addition) to V(D)J recombination junctions. Despite extensive in vitro studies on TdT catalytic activity, the partners of TdT that enable N-addition remain to be defined. Using an intrachromosomal substrate, we show here that, in Chinese hamter ovary (CHO) cells, ectopic expression of TdT efficiently promotes N-additions at the junction of chromosomal double-strand breaks (DSBs) generated by the meganuclease I-SceI and that the size of the N-additions is comparable with that at V(D)J junctions. Importantly, no N-addition was observed in KU80- or XRCC4-deficient cells. These data show that, in a chromosomal context of non-lymphoid cells, TdT is actually able to promote N-addition at non-V(D)J DSBs, through a process that strictly requires the components of the canonical non-homologous end-joining pathway, KU80 and XRCC4.


Assuntos
Antígenos Nucleares/fisiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Nucleotidilexotransferase/metabolismo , Proteínas de Ligação a DNA/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Autoantígeno Ku , Nucleotídeos/metabolismo , Recombinação V(D)J
10.
Nucleic Acids Res ; 40(7): 3066-77, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22167473

RESUMO

In Plasmodium falciparum, perinuclear subtelomeric chromatin conveys monoallelic expression of virulence genes. However, proteins that directly bind to chromosome ends are poorly described. Here we identify a novel DNA/RNA-binding protein family that bears homology to the archaeal protein Alba (Acetylation lowers binding affinity). We isolated three of the four PfAlba paralogs as part of a molecular complex that is associated with the P. falciparum-specific TARE6 (Telomere-Associated Repetitive Elements 6) subtelomeric region and showed in electromobility shift assays (EMSAs) that the PfAlbas bind to TARE6 repeats. In early blood stages, the PfAlba proteins were enriched at the nuclear periphery and partially co-localized with PfSir2, a TARE6-associated histone deacetylase linked to the process of antigenic variation. The nuclear location changed at the onset of parasite proliferation (trophozoite-schizont), where the PfAlba proteins were also detectable in the cytoplasm in a punctate pattern. Using single-stranded RNA (ssRNA) probes in EMSAs, we found that PfAlbas bind to ssRNA, albeit with different binding preferences. We demonstrate for the first time in eukaryotes that Alba-like proteins bind to both DNA and RNA and that their intracellular location is developmentally regulated. Discovery of the PfAlbas may provide a link between the previously described subtelomeric non-coding RNA and the regulation of antigenic variation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Plasmodium falciparum/genética , Proteínas de Protozoários/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Arqueais/química , Citoplasma/química , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/química , Dimerização , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/ultraestrutura , Estrutura Terciária de Proteína , Proteínas de Protozoários/análise , Proteínas de Protozoários/química , RNA/metabolismo , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/química , Sequências Repetitivas de Ácido Nucleico , Telômero/química
11.
Elife ; 132024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38921824

RESUMO

While often undetected and untreated, persistent seasonal asymptomatic malaria infections remain a global public health problem. Despite the presence of parasites in the peripheral blood, no symptoms develop. Disease severity is correlated with the levels of infected red blood cells (iRBCs) adhering within blood vessels. Changes in iRBC adhesion capacity have been linked to seasonal asymptomatic malaria infections, however how this is occurring is still unknown. Here, we present evidence that RNA polymerase III (RNA Pol III) transcription in Plasmodium falciparum is downregulated in field isolates obtained from asymptomatic individuals during the dry season. Through experiments with in vitro cultured parasites, we have uncovered an RNA Pol III-dependent mechanism that controls pathogen proliferation and expression of a major virulence factor in response to external stimuli. Our findings establish a connection between P. falciparum cytoadhesion and a non-coding RNA family transcribed by Pol III. Additionally, we have identified P. falciparum Maf1 as a pivotal regulator of Pol III transcription, both for maintaining cellular homeostasis and for responding adaptively to external signals. These results introduce a novel perspective that contributes to our understanding of P. falciparum virulence. Furthermore, they establish a connection between this regulatory process and the occurrence of seasonal asymptomatic malaria infections.


Assuntos
Malária Falciparum , Plasmodium falciparum , RNA Polimerase III , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Plasmodium falciparum/enzimologia , Virulência , RNA Polimerase III/metabolismo , RNA Polimerase III/genética , Humanos , Malária Falciparum/parasitologia , Eritrócitos/parasitologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Adesão Celular , Regulação da Expressão Gênica
12.
BMC Biol ; 10: 5, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22293287

RESUMO

BACKGROUND: Protein kinase CK2 is a pleiotropic serine/threonine protein kinase with hundreds of reported substrates, and plays an important role in a number of cellular processes. The cellular functions of Plasmodium falciparum CK2 (PfCK2) are unknown. The parasite's genome encodes one catalytic subunit, PfCK2α, which we have previously shown to be essential for completion of the asexual erythrocytic cycle, and two putative regulatory subunits, PfCK2ß1 and PfCK2ß2. RESULTS: We now show that the genes encoding both regulatory PfCK2 subunits (PfCK2ß1 and PfCK2ß2) cannot be disrupted. Using immunofluorescence and electron microscopy, we examined the intra-erythrocytic stages of transgenic parasite lines expressing hemagglutinin (HA)-tagged catalytic and regulatory subunits (HA-CK2α, HA-PfCK2ß1 or HA-PfCK2ß2), and localized all three subunits to both cytoplasmic and nuclear compartments of the parasite. The same transgenic parasite lines were used to purify PfCK2ß1- and PfCK2ß2-containing complexes, which were analyzed by mass spectrometry. The recovered proteins were unevenly distributed between various pathways, with a large proportion of components of the chromatin assembly pathway being present in both PfCK2ß1 and PfCK2ß2 precipitates, implicating PfCK2 in chromatin dynamics. We also found that chromatin-related substrates such as nucleosome assembly proteins (Naps), histones, and two members of the Alba family are phosphorylated by PfCK2α in vitro. CONCLUSIONS: Our reverse-genetics data show that each of the two regulatory PfCK2 subunits is required for completion of the asexual erythrocytic cycle. Our interactome study points to an implication of PfCK2 in many cellular pathways, with chromatin dynamics being identified as a major process regulated by PfCK2. This study paves the way for a kinome-wide interactomics-based approach to elucidate protein kinase function in malaria parasites.


Assuntos
Caseína Quinase II/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Regulação da Expressão Gênica , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Caseína Quinase II/genética , Hemaglutininas/química , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Espectrometria de Massas , Microscopia Eletrônica , Microscopia de Fluorescência , Fosforilação , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento
13.
ACS Infect Dis ; 9(6): 1257-1266, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37216290

RESUMO

Malaria drug resistance is hampering the fight against the deadliest parasitic disease affecting over 200 million people worldwide. We recently developed quinoline-quinazoline-based inhibitors (as compound 70) as promising new antimalarials. Here, we aimed to investigate their mode of action by using thermal proteome profiling (TPP). The eukaryotic translation initiation factor 3 (EIF3i) subunit I was identified as the main target protein stabilized by compound 70 in Plasmodium falciparum. This protein has never been characterized in malaria parasites. P. falciparum parasite lines were generated expressing either a HA tag or an inducible knockdown of the PfEIF3i gene to further characterize the target protein. PfEIF3i was stabilized in the presence of compound 70 in a cellular thermal shift Western blot assay, pointing that PfEIF3i indeed interacts with quinoline-quinazoline-based inhibitors. In addition, PfEIF3i-inducible knockdown blocks intra-erythrocytic development in the trophozoite stage, indicating that it has a vital function. We show that PfEIF3i is mostly expressed in late intra-erythrocytic stages and localizes in the cytoplasm. Previous mass spectrometry reports show that PfEIF3i is expressed in all parasite life cycle stages. Further studies will explore the potential of PfEIF3i as a target for the design of new antimalarial drugs active all along the life cycle of the parasite.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Quinolinas , Humanos , Animais , Plasmodium falciparum/metabolismo , Fator de Iniciação 3 em Procariotos/metabolismo , Quinazolinas/farmacologia , Malária Falciparum/parasitologia , Antimaláricos/farmacologia , Antimaláricos/química , Quinolinas/farmacologia , Estágios do Ciclo de Vida
14.
J Immunol ; 185(8): 4777-82, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20861355

RESUMO

Somatic hypermutation (SHM) of Ig genes is the result of a two-phase process initiated by activation-induced cytidine deaminase, relying on two different strategies for the introduction of mutations at CG pairs (phase I) and at AT pairs (phase II). To explain the selectivity of phase II, two mechanisms were proposed: AT-selective error-prone DNA-polymerases, deoxyuridine triphosphate (dUTP) incorporation, or both. However, there has been no experimental evidence so far of the possible involvement of the latter. We have developed a ligation-anchored PCR method based on the formation of single-strand breaks at uracils. In this study, we show the presence of uracil in hypermutating VkOx genes in wild type (AID(+/+)) mice, demonstrating that dUTP incorporation via DNA polymerases could be a major mechanism in SHM. Thus, error-prone DNA polymerases would participate in SHM via low-fidelity replication and incorporation of dUTP.


Assuntos
Nucleotídeos de Desoxiuracil/genética , Genes de Imunoglobulinas , Oxazolona/análogos & derivados , Hipermutação Somática de Imunoglobulina/genética , Animais , Cadeias kappa de Imunoglobulina/genética , Camundongos , Camundongos Endogâmicos BALB C , Oxazolona/imunologia , Reação em Cadeia da Polimerase
15.
Nat Commun ; 13(1): 4123, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840625

RESUMO

Plasmodium vivax is the most widespread human malaria parasite. Due to the presence of extravascular reservoirs and relapsing infections from dormant liver stages, P. vivax is particularly difficult to control and eliminate. Experimental research is hampered by the inability to maintain P. vivax cultures in vitro, due to its tropism for immature red blood cells (RBCs). Here, we describe a new humanized mice model that can support efficient human erythropoiesis and maintain long-lasting multiplication of inoculated cryopreserved P. vivax parasites and their sexual differentiation, including in bone marrow. Mature gametocytes were transmitted to Anopheles mosquitoes, which led to the formation of salivary gland sporozoites. Importantly, blood-stage P. vivax parasites were maintained after the secondary transfer of fresh or frozen infected bone marrow cells to naïve chimeras. This model provides a unique tool for investigating, in vivo, the biology of intraerythrocytic P. vivax.


Assuntos
Anopheles , Malária Vivax , Animais , Anopheles/parasitologia , Humanos , Malária Vivax/parasitologia , Camundongos , Recidiva Local de Neoplasia , Plasmodium vivax , Esporozoítos
16.
J Med Chem ; 64(14): 10403-10417, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34185525

RESUMO

Epigenetic post-translational modifications are essential for human malaria parasite survival and progression through its life cycle. Here, we present new functionalized suberoylanilide hydroxamic acid (SAHA) derivatives that chemically combine the pan-histone deacetylase inhibitor SAHA with the DNA methyltransferase inhibitor procainamide. A three- or four-step chemical synthesis was designed starting from cheap raw materials. Compared to the single drugs, the combined molecules showed a superior activity in Plasmodium and a potent inhibition against human HDAC6, exerting no cytotoxicity in human cell lines. These new compounds are fully active in multidrug-resistant Plasmodium falciparum Cambodian isolates. They target transmission of the parasite by inducing irreversible morphological changes in gametocytes and inhibiting exflagellation. The compounds are slow-acting and have an additive antimalarial effect in combination with fast-acting epidrugs and dihydroartemisinin. The lead compound decreases parasitemia in mice in a severe malaria model. Taken together, this novel fused molecule offers an affordable alternative to current failing antimalarial therapy.


Assuntos
Antimaláricos/farmacologia , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Procainamida/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Relação Dose-Resposta a Droga , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Ácidos Hidroxâmicos/química , Estrutura Molecular , Procainamida/química , Relação Estrutura-Atividade
17.
FASEB J ; 21(9): 2185-94, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17384139

RESUMO

In addition to their role in controlling water and salt homeostasis, recent work suggests that aldosterone and mineralocorticoid receptors (MR) may be involved in adipocyte biology. This is of particular relevance given the role of MR as a high-affinity receptor for both mineralocorticoids and glucocorticoids. We have thus examined the effect of aldosterone and MR on white adipose cell differentiation. When cells are cultured in a steroid-free medium, aldosterone promotes acquisition of the adipose phenotype of 3T3-L1 and 3T3-F442A cells in a time-, dose-, and MR-dependent manner. In contrast, late and long-term exposure to dexamethasone inhibits adipocyte terminal maturation. The aldosterone effect on adipose maturation was accompanied by induction of PPARgamma mRNA expression, which was blocked by the MR antagonist spironolactone. Under permissive culture conditions, specific MR down-regulation by siRNAs markedly inhibited 3T3-L1 differentiation by interfering with the transcriptional control of adipogenesis, an effect not mimicked by specific inactivation of the glucocorticoid receptor. These results demonstrate that MR represents an important proadipogenic transcription factor that may mediate both aldosterone and glucocorticoid effects on adipose tissue development. MR thus may be of pathophysiological relevance to the development of obesity and the metabolic syndrome.


Assuntos
Adipogenia/fisiologia , Aldosterona/farmacologia , Receptores de Mineralocorticoides/fisiologia , Transcrição Gênica/fisiologia , Adipócitos Brancos , Adipogenia/efeitos dos fármacos , Tecido Adiposo Branco , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Dexametasona/farmacologia , Relação Dose-Resposta a Droga , Insulina/farmacologia , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/fisiopatologia , Camundongos , Obesidade/etiologia , Obesidade/fisiopatologia , PPAR gama/biossíntese , PPAR gama/genética , Fenótipo , RNA Mensageiro/biossíntese , RNA Interferente Pequeno/farmacologia , Receptores de Glucocorticoides/biossíntese , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Mineralocorticoides/biossíntese , Receptores de Mineralocorticoides/genética , Espironolactona/farmacologia , Células Swiss 3T3/citologia , Células Swiss 3T3/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
18.
Genome Announc ; 6(5)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29437092

RESUMO

Plasmodium falciparum is the species of human malaria parasite that causes the most severe form of the disease. Here, we used single-molecule real-time (SMRT) sequencing technology from Pacific Biosciences (PacBio) to sequence, assemble de novo, and annotate the genome of a P. falciparum NF54 clone.

19.
Hum Mutat ; 28(1): 33-40, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16972228

RESUMO

Aldosterone plays a key role in electrolyte balance and blood pressure regulation. Type 1 pseudohypoaldosteronism (PHA1) is a primary form of mineralocorticoid resistance characterized in the newborn by salt wasting, hyperkalemia, and failure to thrive. Inactivating mutations of the mineralocorticoid receptor (MR; NR3C2) are responsible for autosomal dominant and some sporadic cases of PHA1. The question as to whether other genes may be involved in the disease is of major importance because of the potential life-threatening character of the disease, the potential cardiovascular effects of compensatory aldosterone excess, and the role of the mineralocorticoid system in human hypertension. We present the first comprehensive study seeking nucleotide substitutions in coding regions, intron-exon junctions, and untranslated exons, as well as for large deletions. A total of 22 MR gene abnormalities were found in 33 patients. We demonstrate that MR mutations are extremely frequent in PHA1 patients classified according to aldosterone and potassium levels and give indications for accurate clinical and biological investigation. In our study the possibility of a genocopy exists in three PHA1 kindreds. The other patients without MR mutations might have different diseases resembling to PHA1 in the neonatal period, which could be identified by extensive clinical and functional exploration.


Assuntos
Pseudo-Hipoaldosteronismo/genética , Receptores de Mineralocorticoides/genética , Análise Mutacional de DNA , Feminino , Deleção de Genes , Humanos , Imageamento Tridimensional , Recém-Nascido , Rim/patologia , Masculino , Modelos Moleculares , Proteínas Mutantes/química , Mutação , Pseudo-Hipoaldosteronismo/patologia , Receptores de Mineralocorticoides/química
20.
Sci Rep ; 7(1): 14042, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070841

RESUMO

Variegated surface antigen expression is key to chronic infection and pathogenesis of the human malaria parasite Plasmodium falciparum. This protozoan parasite expresses distinct surface molecules that are encoded by clonally variant gene families such as var, rif and stevor. The molecular mechanisms governing activation of individual members remain ill-defined. To investigate the molecular events of the initial transcriptional activation process we focused on a member of the apicomplexan ApiAP2 transcription factor family predicted to bind to the 5' upstream regions of the var gene family, AP2-exp (PF3D7_1466400). Viable AP2-exp mutant parasites rely on expressing no less than a short truncated protein including the N-terminal AP2 DNA-binding domain. RNA-seq analysis in mutant parasites revealed transcriptional changes in a subset of exported proteins encoded by clonally variant gene families. Upregulation of RIFINs and STEVORs was validated at the protein levels. In addition, morphological alterations were observed on the surface of the host cells infected by the mutants. This work points to a complex regulatory network of clonally variant gene families in which transcription of a subset of members is regulated by the same transcription factor. In addition, we highlight the importance of the non-DNA binding AP2 domain in functional gene regulation.


Assuntos
Regulação da Expressão Gênica , Plasmodium falciparum/genética , Proteínas de Protozoários/fisiologia , Genes de Protozoários , Variação Genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa