Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 171(1): 165-78, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26979331

RESUMO

Arabidopsis (Arabidopsis thaliana) seed coat epidermal cells produce large amounts of mucilage that is released upon imbibition. This mucilage is structured into two domains: an outer diffuse layer that can be easily removed by agitation and an inner layer that remains attached to the outer seed coat. Both layers are composed primarily of pectic rhamnogalacturonan I (RG-I), the inner layer also containing rays of cellulose that extend from the top of each columella. Perturbation in cellulosic ray formation has systematically been associated with a redistribution of pectic mucilage from the inner to the outer layer, in agreement with cellulose-pectin interactions, the nature of which remained unknown. Here, by analyzing the outer layer composition of a series of mutant alleles, a tight proportionality of xylose, galacturonic acid, and rhamnose was evidenced, except for mucilage modified5-1 (mum5-1; a mutant showing a redistribution of mucilage pectin from the inner adherent layer to the outer soluble one), for which the rhamnose-xylose ratio was increased drastically. Biochemical and in vitro binding assay data demonstrated that xylan chains are attached to RG-I chains and mediate the adsorption of mucilage to cellulose microfibrils. mum5-1 mucilage exhibited very weak adsorption to cellulose. MUM5 was identified as a putative xylosyl transferase recently characterized as MUCI21. Together, these findings suggest that the binding affinity of xylose ramifications on RG-I to a cellulose scaffold is one of the factors involved in the formation of the adherent mucilage layer.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Mucilagem Vegetal/genética , Mucilagem Vegetal/metabolismo , Sementes/metabolismo , Xilanos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/química , Celulose/metabolismo , Análise por Conglomerados , Genes de Plantas , Ligação Genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Ácidos Hexurônicos/metabolismo , Mutação , Pectinas/química , Pectinas/metabolismo , Extratos Vegetais/química , Mucilagem Vegetal/química , Ramnose/metabolismo , Sementes/enzimologia , Análise de Sequência de DNA , Coloração e Rotulagem , Xilanos/química , Xilose/metabolismo
2.
J Biol Chem ; 290(38): 23320-35, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26183897

RESUMO

Pectin methylesterases (PMEs) catalyze the demethylesterification of homogalacturonan domains of pectin in plant cell walls and are regulated by endogenous pectin methylesterase inhibitors (PMEIs). In Arabidopsis dark-grown hypocotyls, one PME (AtPME3) and one PMEI (AtPMEI7) were identified as potential interacting proteins. Using RT-quantitative PCR analysis and gene promoter::GUS fusions, we first showed that AtPME3 and AtPMEI7 genes had overlapping patterns of expression in etiolated hypocotyls. The two proteins were identified in hypocotyl cell wall extracts by proteomics. To investigate the potential interaction between AtPME3 and AtPMEI7, both proteins were expressed in a heterologous system and purified by affinity chromatography. The activity of recombinant AtPME3 was characterized on homogalacturonans (HGs) with distinct degrees/patterns of methylesterification. AtPME3 showed the highest activity at pH 7.5 on HG substrates with a degree of methylesterification between 60 and 80% and a random distribution of methyl esters. On the best HG substrate, AtPME3 generates long non-methylesterified stretches and leaves short highly methylesterified zones, indicating that it acts as a processive enzyme. The recombinant AtPMEI7 and AtPME3 interaction reduces the level of demethylesterification of the HG substrate but does not inhibit the processivity of the enzyme. These data suggest that the AtPME3·AtPMEI7 complex is not covalently linked and could, depending on the pH, be alternately formed and dissociated. Docking analysis indicated that the inhibition of AtPME3 could occur via the interaction of AtPMEI7 with a PME ligand-binding cleft structure. All of these data indicate that AtPME3 and AtPMEI7 could be partners involved in the fine tuning of HG methylesterification during plant development.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Hidrolases de Éster Carboxílico/química , Inibidores Enzimáticos/química , Hipocótilo/química , Complexos Multiproteicos/química , Pectinas/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Inibidores Enzimáticos/metabolismo , Concentração de Íons de Hidrogênio , Hipocótilo/genética , Hipocótilo/metabolismo , Simulação de Acoplamento Molecular , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Pectinas/genética , Pectinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
3.
Planta ; 242(6): 1321-34, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26208585

RESUMO

MAIN CONCLUSION: The derivation of two sensitive monoclonal antibodies directed to heteroxylan cell wall polysaccharide preparations has allowed the identification of potential inter-linkages between xylan and pectin in potato tuber cell walls and also between xylan and arabinogalactan-proteins in oat grain cell walls. Plant cell walls are complex composites of structurally distinct glycans that are poorly understood in terms of both in muro inter-linkages and developmental functions. Monoclonal antibodies (MAbs) are versatile tools that can detect cell wall glycans with high sensitivity through the specific recognition of oligosaccharide structures. The isolation of two novel MAbs, LM27 and LM28, directed to heteroxylan, subsequent to immunisation with a potato cell wall fraction enriched in rhamnogalacturonan-I (RG-I) oligosaccharides, is described. LM27 binds strongly to heteroxylan preparations from grass cell walls and LM28 binds to a glucuronosyl-containing epitope widely present in heteroxylans. Evidence is presented suggesting that in potato tuber cell walls, some glucuronoxylan may be linked to pectic macromolecules. Evidence is also presented that suggests in oat spelt xylan both the LM27 and LM28 epitopes are linked to arabinogalactan-proteins as tracked by the LM2 arabinogalactan-protein epitope. This work extends knowledge of the potential occurrence of inter-glycan links within plant cell walls and describes molecular tools for the further analysis of such links.


Assuntos
Anticorpos Monoclonais/análise , Parede Celular/metabolismo , Células Vegetais/metabolismo , Polissacarídeos/metabolismo , Anticorpos Monoclonais/metabolismo , Pectinas/metabolismo , Xilanos/metabolismo
4.
Ann Bot ; 114(6): 1319-26, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25081519

RESUMO

BACKGROUND AND AIMS: Pectin is a complex macromolecule, the fine structure of which is influenced by many factors. It is used as a gelling, thickening and emulsifying agent in a wide range of applications, from food to pharmaceutical products. Current industrial pectin extraction processes are based on fruit peel, a waste product from the juicing industry, in which thousands of tons of citrus are processed worldwide every year. This study examines how pectin components vary in relation to the plant source (orange, lemon, lime, grapefruit) and considers the influence of extraction conditions on the chemical and macromolecular characteristics of pectin samples. METHODS: Citrus peel (orange, lemon, lime and grapefruit) from a commercial supplier was used as raw material. Pectin samples were obtained on a bulk plant scale (kilograms; harsh nitric acid, mild nitric acid and harsh oxalic acid extraction) and on a laboratory scale (grams; mild oxalic acid extraction). Pectin composition (acidic and neutral sugars) and physicochemical properties (molar mass and intrinsic viscosity) were determined. KEY RESULTS: Oxalic acid extraction allowed the recovery of pectin samples of high molecular weight. Mild oxalic acid-extracted pectins were rich in long homogalacturonan stretches and contained rhamnogalacturonan I stretches with conserved side chains. Nitric acid-extracted pectins exhibited lower molecular weights and contained rhamnogalacturonan I stretches encompassing few and/or short side chains. Grapefruit pectin was found to have short side chains compared with orange, lime and lemon. Orange and grapefruit pectin samples were both particularly rich in rhamnogalacturonan I backbones. CONCLUSIONS: Structural, and hence macromolecular, variations within the different citrus pectin samples were mainly related to their rhamnogalacturonan I contents and integrity, and, to a lesser extent, to the length of their homogalacturonan domains.


Assuntos
Citrus/química , Pectinas/isolamento & purificação , Rutaceae/química , Carboidratos/análise , Carboidratos/isolamento & purificação , Frutas/química , Concentração de Íons de Hidrogênio , Peso Molecular , Ácido Nítrico , Ácido Oxálico , Pectinas/análise
5.
Sci Rep ; 9(1): 12551, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467440

RESUMO

The pectin methylesterase action is usually studied in a homogeneous aqueous medium in the presence of a large excess of soluble substrate and water. However in the cell wall, the water content is much lower, the substrate is cross-linked with itself or with other polymers, and the enzyme has to diffuse through the solid matrix before catalysing the linkage breakdown. As plant primary cell walls can be considered as cellulose-reinforced hydrogels, this study investigated the diffusion of a fungal pectin methylesterase in pectin/cellulose gels used as cell wall-mimicking matrix to understand the impact of this matrix and its (micro) structure on the enzyme's diffusion within it. The enzyme mobility was followed by synchrotron microscopy thanks to its auto-fluorescence after deep-UV excitation. Time-lapse imaging and quantification of intensity signal by image analysis revealed that the diffusion of the enzyme was impacted by at least two criteria: (i) only the active enzyme was able to diffuse, showing that the mobility was related to the catalytic ability, and (ii) the diffusion was improved by the presence of cellulose in the gel.

6.
Biomacromolecules ; 9(5): 1454-60, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18355028

RESUMO

Pectins are a family of highly complex multifunctional cell wall polysaccharides. Little is known on the relation between pectin structure, hydrodynamic properties, and cellular function. In this study, we took advantage of the Arabidopsis pectin mutant quasimodo2 (qua2), which specifically lacks half of its homogalacturonan blocks, to study the relationship between the amount of homogalacturonan blocks and the hydrodynamic properties of pectins. It was first shown that, in qua2 pectins, homogalacturonans had maintained the same size as those in the wild type. The persistence lengths of isolated homogalacturonan and rhamnogalacturonan-I blocks were then measured and it was shown that homogalacturonan was over 4-fold more rigid than rhamnogalacturonan-I. WT and qua2 pectins were next compared and it appeared that the specific reduction of the number of homogalacturonan blocks leads to an increased flexibility of qua2 pectins. These results show for the first time how mutant pectins can be used to demonstrate the opposite influence of rhamnogalacturonan-I and homogalacturonan blocks on the hydrodynamic properties of pectins.


Assuntos
Pectinas/química , Arabidopsis , Movimento (Física) , Mutação , Maleabilidade , Reologia
7.
Phytochemistry ; 69(9): 1903-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18448141

RESUMO

Commercial acid-extracted sugar beet pectin was extensively hydrolysed using an endo-polygalacturonase (AnPGI from Aspergillus niger or AnPGII from A. niger or FmPG from Fusarium moniliforme) in combination with Aspergillus aculeatus pectin methyl-esterase (AaPME). The homogalacturonan-derived oligogalacturonates released were quantified by high-performance anion-exchange chromatography and their structure determined by mass spectrometry. The different endo-polygalacturonases exhibited variable tolerance towards acetyl groups. AnPGI was the most active and FmPG the less. A hypothetical homogalacturonan was constructed using the AnPGI-recovered oligogalacturonates as building blocks and the validity of the model was checked taking into account FmPG observed requirements and hydrolysis products. A blockwise repartition of the acetyl groups onto sugar beet pectin homogalacturonan is proposed.


Assuntos
Beta vulgaris/química , Galactose/química , Pectinas/química , Acetilação , Configuração de Carboidratos , Sequência de Carboidratos , Cromatografia por Troca Iônica , Hidrólise , Metilação
8.
Front Plant Sci ; 7: 1073, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27524986

RESUMO

The plant cell wall is held together by the interactions between four major components: cellulose, pectin, hemicellulose, and proteins. Mucilage is a powerful model system to study the interactions between these components as it is formed of polysaccharides that are deposited in the apoplast of seed coat epidermal cells during seed development. When seeds are hydrated, these polysaccharides expand rapidly out of the apoplastic pocket, and form an adherent halo of mucilage around the seed. In Arabidopsis, mutations in multiple genes have similar loss of mucilage adherence phenotypes including CELLULOSE SYNTHASE 5 (CESA5)/MUCILAGE-MODIFIED 3 (MUM3), MUM5/MUCI21, SALT-OVERLY SENSITIVE 5 (SOS5), and FEI2. Here, we examine the interactions between these factors to better understand how they participate to control mucilage adherence. Double mutant phenotypes indicated that MUM5 and CESA5 function in a common mechanism that adheres pectin to the seed through the biosynthesis of cellulose and xylan, whereas SOS5 and FEI2, encoding a fasciclin-like arabinogalactan protein or a receptor-like kinase, respectively, function through an independent pathway. Cytological analyses of mucilage indicates that heteromannans are associated with cellulose, and not in the pathway involving SOS5 or FEI2. A SOS5 fluorescent protein fusion (SOS5-mCITRINE) was localized throughout the mucilage pocket, consistent with a structural role in pectin adhesion. The relationship between SOS5 and FEI2 mediated mucilage adherence was examined in more detail and while sos5 and fei2 mutants show similar phenotypes, key differences in the macromolecular characteristics and amounts of mucilage polymers were observed. FEI2 thus appears to have additional, as well as overlapping functions, with SOS5. Given that FEI2 is required for SOS5 function, we propose that FEI2 serves to localize SOS5 at the plasma membrane where it establishes interactions with mucilage polysaccharides, notably pectins, required for mucilage adherence prior to SOS5 being released into the apoplast.

9.
Carbohydr Polym ; 124: 57-65, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-25839794

RESUMO

Pectin gels and pectin-cellulose binary gels were used as cell wall-mimicking systems to investigate the diffusion ability of a fungal pectin methylesterase. Increasing content of cellulose in the gel appears to result: (i) in longer demethylated blocks thus favouring AaPME processivity, and (ii) in accelerated enzyme kinetics. To better understand this unexpected behaviour, a method was set up to investigate the gel porosity as a function of the cellulose content by following the passive diffusion of three pullulans having different hydrodynamic volumes. Like the enzyme, the pullulans diffused more efficiently in the gels containing the highest proportions of cellulose. Altogether, these results suggest that the gel settled differently during formation according to the respective proportions of the two polysaccharides. With cellulose present, a fraction of pectin would form close interactions with the microfibrils resulting in a larger volume accessible to diffusing molecules. This volume would be related to the cellulose concentration.


Assuntos
Hidrolases de Éster Carboxílico/química , Parede Celular/química , Celulose/química , Modelos Biológicos , Pectinas/química , Aspergillus/enzimologia , Parede Celular/metabolismo , Difusão , Proteínas Fúngicas/química , Géis/química
10.
Int J Biol Macromol ; 31(4-5): 235-44, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-12568932

RESUMO

13C and 1H NMR spectra of an ethanol insoluble material (EIM) prepared from the pericarp of mature-green (MG) and red-ripe (RR) tomato fruits were acquired in 'liquid-like' and cross-polarisation with dipolar decoupling and magic angle spinning (CPMAS) conditions using the same triple resonance probe. Such a strategy allowed acquisitions of various NMR experiments aimed at detecting compositional differences as well as distinguishing differences in molecular mobility for various constituent polysaccharides related with the two ripening stages. Increase of the proton dipolar decoupling power levels from 3 to 50-55 kHz during single pulse 13C acquisition, led to more intense signals for pectic and hemicellulosic polysaccharides. This behaviour was interpreted as reflecting motional restrictions of these polysaccharides inside the porous cell wall network. Measurements of the proton rotating frame relaxation times T(1rho) in the 'liquid-like' conditions and of the proton transverse relaxation times T(2) from CPMAS spectra, revealed changes in mobilities for some pectic polysaccharides in relation with ripening, particularly for the H1 and H5 protons of alpha-1,5 arabinan (Ara) side chains of rhamnogalacturonans. These data are discussed in relation with known pectic modifications occurring during ripening and associated with the tomato fruit softening.


Assuntos
Parede Celular/química , Espectrometria de Massas/métodos , Carbono/química , Cromatografia Líquida de Alta Pressão , Solanum lycopersicum , Espectroscopia de Ressonância Magnética , Prótons , Temperatura , Fatores de Tempo
11.
Phytochemistry ; 72(1): 59-67, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21051061

RESUMO

Fruit development is a highly complex process, which involves major changes in plant metabolism leading to cell growth and differentiation. Changes in cell wall composition and structure play a major role in modulating cell growth. We investigated the changes in cell wall composition and the activities of associated enzymes during the dry fruit development of the model plant Arabidopsis thaliana. Silique development is characterized by several specific phases leading to fruit dehiscence and seed dispersal. We showed that early phases of silique growth were characterized by specific changes in non-cellulosic sugar content (rhamnose, arabinose, xylose, galactose and galacturonic acid). Xyloglucan oligosaccharide mass profiling further showed a strong increase in O-acetylated xyloglucans over the course of silique development, which could suggest a decreased capacity of xyloglucans to be associated with each other or to cellulose. The degree of methylesterification, mediated by the activity of pectin methylesterases (PMEs), decreased over the course of silique growth and dehiscence. The major changes in cell wall composition revealed by our analysis suggest that it could be major determinants in modulating cell wall rheology leading to growth or growth arrest.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Parede Celular/química , Glucanos/metabolismo , Pectinas/metabolismo , Xilanos/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Parede Celular/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Glucanos/análise , Pectinas/análise , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Xilanos/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa