Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Infect Immun ; 92(3): e0042723, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38391207

RESUMO

To address the problem of increased antimicrobial resistance, we developed a glycoconjugate vaccine comprised of O-polysaccharides (OPS) of the four most prevalent serotypes of Klebsiella pneumoniae (KP) linked to recombinant flagellin types A and B (rFlaA and rFlaB) of Pseudomonas aeruginosa (PA). Flagellin is the major subunit of the flagellar filament. Flagella A and B, essential virulence factors for PA, are glycosylated with different glycans. We previously reported that while both rFlaA and rFlaB were highly immunogenic, only the rFlaB antisera reduced PA motility and protected mice from lethal PA infection in a mouse model of thermal injury. Since recombinant flagellin is not glycosylated, we examined the possibility that the glycan on native FlaA (nFlaA) might be critical to functional immune responses. We compared the ability of nFlaA to that of native, deglycosylated FlaA (dnFlaA) to induce functionally active antisera. O glycan was removed from nFlaA with trifluoromethanesulfonic acid. Despite the similar high-titered anti-FlaA antibody levels elicited by nFlaA, rFlaA, and dnFlaA, only the nFlaA antisera inhibited PA motility and protected mice following lethal intraperitoneal bacterial challenge. Both the protective efficacy and carrier protein function of nFlaA were retained when conjugated to KP O1 OPS. We conclude that unlike the case with FlaB O glycan, the FlaA glycan is an important epitope for the induction of functionally active anti-FlaA antibodies.


Assuntos
Flagelina , Pseudomonas aeruginosa , Camundongos , Animais , Flagelina/metabolismo , Anticorpos , Klebsiella pneumoniae , Polissacarídeos , Flagelos/metabolismo , Soros Imunes
2.
BMC Microbiol ; 22(1): 13, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991476

RESUMO

BACKGROUND: Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide range of acute and chronic infections and is frequently associated with healthcare-associated infections. Because of its ability to rapidly acquire resistance to antibiotics, P. aeruginosa infections are difficult to treat. Alternative strategies, such as a vaccine, are needed to prevent infections. We collected a total of 413 P. aeruginosa isolates from the blood and cerebrospinal fluid of patients from 10 countries located on 4 continents during 2005-2017 and characterized these isolates to inform vaccine development efforts. We determined the diversity and distribution of O antigen and flagellin types and antibiotic susceptibility of the invasive P. aeruginosa. We used an antibody-based agglutination assay and PCR for O antigen typing and PCR for flagellin typing. We determined antibiotic susceptibility using the Kirby-Bauer disk diffusion method. RESULTS: Of the 413 isolates, 314 (95%) were typed by an antibody-based agglutination assay or PCR (n = 99). Among the 20 serotypes of P. aeruginosa, the most common serotypes were O1, O2, O3, O4, O5, O6, O8, O9, O10 and O11; a vaccine that targets these 10 serotypes would confer protection against more than 80% of invasive P. aeruginosa infections. The most common flagellin type among 386 isolates was FlaB (41%). Resistance to aztreonam (56%) was most common, followed by levofloxacin (42%). We also found that 22% of strains were non-susceptible to meropenem and piperacillin-tazobactam. Ninety-nine (27%) of our collected isolates were resistant to multiple antibiotics. Isolates with FlaA2 flagellin were more commonly multidrug resistant (p = 0.04). CONCLUSIONS: Vaccines targeting common O antigens and two flagellin antigens, FlaB and FlaA2, would offer an excellent strategy to prevent P. aeruginosa invasive infections.


Assuntos
Farmacorresistência Bacteriana , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Flagelina/classificação , Flagelina/genética , Humanos , Testes de Sensibilidade Microbiana , Antígenos O/classificação , Antígenos O/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Sorogrupo , Sorotipagem
3.
Infect Immun ; 89(10): e0009121, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34152806

RESUMO

Of the 486,000 burn injuries that required medical treatment in the United States in 2016, 40,000 people were hospitalized, with >3,000 fatalities. After burn injury, humans are at increased risk of sepsis and mortality from infections caused by Pseudomonas aeruginosa, an opportunistic pathogen. We hypothesize that systemic events were initiated from the burn that increased the host's susceptibility to P. aeruginosa. A nonlethal 10% total body surface area (TBSA), full-thickness flame burn was performed in CD-1 mice without and with subsequent P. aeruginosa (strain M2) infection. The 50% lethal dose for subcutaneous infection with P. aeruginosa M2 at the burn site immediately after the burn decreased by 6 log, with mortality occurring between 18 and 26 h, compared with P. aeruginosa-infected mice without burn injury. Bacteria in distal organs were detected by 18 h, concurrent with the onset of clinical symptoms. Serum proinflammatory cytokines (interleukin-6 [IL-6], IL-1ß, gamma interferon, and tumor necrosis factor alpha) and the anti-inflammatory cytokine IL-10 were first detected at 12 h postburn with infection and continued to increase until death. Directly after burn alone, serum levels of HMGB1, a danger-associated molecular pattern and TLR4 agonist, transiently increased to 50 ng/ml before returning to 20 ng/ml. Burn with P. aeruginosa infection increased serum HMGB1 concentrations >10-fold (250 ng/ml) at the time of death. This HMGB1-rich serum stimulated TLR4-mediated NF-κB activation in a TLR4 reporter cell line. Treatment of infected burned mice with P5779, a peptide inhibitor of HMGB1, increased the mean survival from 23 to 42 h (P < 0.0001). We conclude that the high level of serum HMGB1, which preceded the increase in proinflammatory cytokines, is associated with postburn mortality.


Assuntos
Queimaduras/imunologia , Queimaduras/microbiologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Animais , Modelos Animais de Doenças , Feminino , Proteína HMGB1/imunologia , Inflamação/imunologia , Inflamação/microbiologia , Interferon gama/imunologia , Interleucina-10/imunologia , Interleucina-6/imunologia , Camundongos , NF-kappa B/imunologia , Sepse/imunologia , Sepse/microbiologia , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/imunologia
4.
J Biol Chem ; 294(2): 662-678, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30429216

RESUMO

Pseudomonas aeruginosa (Pa) expresses an adhesin, flagellin, that engages the mucin 1 (MUC1) ectodomain (ED) expressed on airway epithelia, increasing association of MUC1-ED with neuraminidase 1 (NEU1) and MUC1-ED desialylation. The MUC1-ED desialylation unmasks both cryptic binding sites for Pa and a protease recognition site, permitting its proteolytic release as a hyperadhesive decoy receptor for Pa. We found here that intranasal administration of Pa strain K (PAK) to BALB/c mice increases MUC1-ED shedding into the bronchoalveolar compartment. MUC1-ED levels increased as early as 12 h, peaked at 24-48 h with a 7.8-fold increase, and decreased by 72 h. The a-type flagellin-expressing PAK strain and the b-type flagellin-expressing PAO1 strain stimulated comparable levels of MUC1-ED shedding. A flagellin-deficient PAK mutant provoked dramatically reduced MUC1-ED shedding compared with the WT strain, and purified flagellin recapitulated the WT effect. In lung tissues, Pa increased association of NEU1 and protective protein/cathepsin A with MUC1-ED in reciprocal co-immunoprecipitation assays and stimulated MUC1-ED desialylation. NEU1-selective sialidase inhibition protected against Pa-induced MUC1-ED desialylation and shedding. In Pa-challenged mice, MUC1-ED-enriched bronchoalveolar lavage fluid (BALF) inhibited flagellin binding and Pa adhesion to human airway epithelia by up to 44% and flagellin-driven motility by >30%. Finally, Pa co-administration with recombinant human MUC1-ED dramatically diminished lung and BALF bacterial burden, proinflammatory cytokine levels, and pulmonary leukostasis and increased 5-day survival from 0% to 75%. We conclude that Pa flagellin provokes NEU1-mediated airway shedding of MUC1-ED, which functions as a decoy receptor protecting against lethal Pa lung infection.


Assuntos
Flagelina/metabolismo , Mucina-1/metabolismo , Neuraminidase/metabolismo , Pneumonia Bacteriana/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/fisiologia , Animais , Feminino , Interações Hospedeiro-Patógeno , Humanos , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos BALB C , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Fatores de Proteção , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia
5.
Glycobiology ; 26(8): 834-49, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27226251

RESUMO

Neuraminidase-1 (NEU1) is the predominant sialidase expressed in human airway epithelia and lung microvascular endothelia where it mediates multiple biological processes. We tested whether the NEU1-selective sialidase inhibitor, C9-butyl-amide-2-deoxy-2,3-dehydro-N-acetylneuraminic acid (C9-BA-DANA), inhibits one or more established NEU1-mediated bioactivities in human lung cells. We established the IC50 values of C9-BA-DANA for total sialidase activity in human airway epithelia, lung microvascular endothelia and lung fibroblasts to be 3.74 µM, 13.0 µM and 4.82 µM, respectively. In human airway epithelia, C9-BA-DANA dose-dependently inhibited flagellin-induced, NEU1-mediated mucin-1 ectodomain desialylation, adhesiveness for Pseudomonas aeruginosa and shedding. In lung microvascular endothelia, C9-BA-DANA reversed NEU1-driven restraint of cell migration into a wound and disruption of capillary-like tube formation. NEU1 and its chaperone/transport protein, protective protein/cathepsin A (PPCA), were differentially expressed in these same cells. Normalized NEU1 protein expression correlated with total sialidase activity whereas PPCA expression did not. In contrast to eukaryotic sialidases, C9-BA-DANA exerted far less inhibitory activity for three selected bacterial neuraminidases (IC50 > 800 µM). Structural modeling of the four human sialidases and three bacterial neuraminidases revealed a loop between the seventh and eighth strands of the ß-propeller fold, that in NEU1, was substantially shorter than that seen in the six other enzymes. Predicted steric hindrance between this loop and C9-BA-DANA could explain its selectivity for NEU1. Finally, pretreatment of mice with C9-BA-DANA completely protected against flagellin-induced increases in lung sialidase activity. Our combined data indicate that C9-BA-DANA inhibits endogenous and ectopically expressed sialidase activity and established NEU1-mediated bioactivities in human airway epithelia, lung microvascular endothelia, and fibroblasts in vitro and murine lungs in vivo.


Assuntos
Inibidores Enzimáticos/farmacologia , Pulmão/efeitos dos fármacos , Mucina-1/química , Ácido N-Acetilneuramínico/farmacologia , Neuraminidase/antagonistas & inibidores , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catepsina A/genética , Catepsina A/metabolismo , Movimento Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/enzimologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Flagelina/antagonistas & inibidores , Flagelina/farmacologia , Regulação da Expressão Gênica , Humanos , Hidrólise , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Pulmão/citologia , Pulmão/enzimologia , Camundongos , Modelos Moleculares , Mucina-1/genética , Mucina-1/metabolismo , Ácido N-Acetilneuramínico/análogos & derivados , Ácido N-Acetilneuramínico/química , Neuraminidase/genética , Neuraminidase/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Pseudomonas aeruginosa/química
6.
Cytokine ; 86: 1-3, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27434223

RESUMO

Healthy and septic human neonates have elevated serum IL-18 levels compared with adults. Using a murine neonatal model of intraabdominal sepsis with systemic (intraperitoneal) IL-18 complementation, Wynn et al. report that IL-18 potentiated mortality in both neonatal sepsis and endotoxemia through the induction of IL-17A, and depended on IL-1 receptor 1 signaling (but not IL-1ß). They propose that targeting this IL-18/IL-1/IL-17A axis may improve outcomes for human neonates with sepsis. However, given the important roles of Th17 responses and IL-18 in host defenses, some caution is in order during a potentially microbe-induced septic process in neonates. The important differences in neonatal and adult responses to sepsis highlighted in this paper emphasize the need for further study of the immune responses of neonates.


Assuntos
Sepse Neonatal , Sepse , Animais , Humanos , Interleucina-1 , Interleucina-17 , Interleucina-18 , Camundongos
7.
J Infect Dis ; 211(6): 995-1003, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25305323

RESUMO

BACKGROUND: Severe gram-negative bacterial infections and sepsis are major causes of morbidity and mortality. Dysregulated, excessive proinflammatory cytokine expression contributes to the pathogenesis of sepsis. A CD28 mimetic peptide (AB103; previously known as p2TA) that attenuates CD28 signaling and T-helper type 1 cytokine responses was tested for its ability to increase survival in models of polymicrobial infection and gram-negative sepsis. METHODS: Mice received AB103, followed by an injection of Escherichia coli 0111:B4 lipopolysaccharide (LPS); underwent induction E. coli 018:K1 peritonitis induction, followed by treatment with AB103; or underwent cecal ligation and puncture (CLP), followed by treatment with AB103. The effects of AB103 on factors associated with and the lethality of challenge infections were analyzed. RESULTS: AB103 strongly attenuated induction of tumor necrosis factor α and interleukin 6 (IL-6) by LPS in human peripheral blood mononuclear cells. Receipt of AB103 following intraperitoneal injection of LPS resulted in survival among 73% of CD1 mice (11 of 15), compared with 20% of controls (3 of 15). Suboptimal doses of antibiotic alone protected 20% of mice (1 of 5) from E. coli peritonitis, whereas 100% (15 of 15) survived when AB103 was added 4 hours following infection. Survival among mice treated with AB103 12 hours after CLP was 100% (8 of 8), compared with 17% among untreated mice (1 of 6). In addition, receipt of AB103 12 hours after CLP attenuated inflammatory cytokine responses and neutrophil influx into tissues and promoted bacterial clearance. Receipt of AB103 24 hours after CLP still protected 63% of mice (5 of 8). CONCLUSIONS: Single-dose AB103 reduces mortality in experimental models of polymicrobial and gram-negative bacterial infection and sepsis, warranting further studies of this agent in clinical trials.


Assuntos
Antibacterianos/uso terapêutico , Antígenos CD28/química , Infecções por Escherichia coli/prevenção & controle , Peritonite/prevenção & controle , Sepse/prevenção & controle , Animais , Animais não Endogâmicos , Antibacterianos/farmacologia , Antígenos CD28/uso terapêutico , Células Cultivadas , Quimiocinas/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Feminino , Humanos , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos BALB C , Mimetismo Molecular , Infiltração de Neutrófilos/efeitos dos fármacos , Peritonite/tratamento farmacológico , Peritonite/imunologia , Domínios e Motivos de Interação entre Proteínas , Sepse/tratamento farmacológico
8.
J Biol Chem ; 289(13): 9121-35, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24550400

RESUMO

The highly sialylated vascular endothelial surface undergoes changes in sialylation upon adopting the migratory/angiogenic phenotype. We recently established endothelial cell (EC) expression of NEU1 sialidase (Cross, A. S., Hyun, S. W., Miranda-Ribera, A., Feng, C., Liu, A., Nguyen, C., Zhang, L., Luzina, I. G., Atamas, S. P., Twaddell, W. S., Guang, W., Lillehoj, E. P., Puché, A. C., Huang, W., Wang, L. X., Passaniti, A., and Goldblum, S. E. (2012) NEU1 and NEU3 sialidase activity expressed in human lung microvascular endothelia. NEU1 restrains endothelial cell migration whereas NEU3 does not. J. Biol. Chem. 287, 15966-15980). We asked whether NEU1 might regulate EC capillary-like tube formation on a Matrigel substrate. In human pulmonary microvascular ECs (HPMECs), prior silencing of NEU1 did not alter tube formation. Infection of HPMECs with increasing multiplicities of infection of an adenovirus encoding for catalytically active WT NEU1 dose-dependently impaired tube formation, whereas overexpression of either a catalytically dead NEU1 mutant, NEU1-G68V, or another human sialidase, NEU3, did not. NEU1 overexpression also diminished EC adhesion to the Matrigel substrate and restrained EC migration in a wounding assay. In HPMECs, the adhesion molecule, CD31, also known as platelet endothelial cell adhesion molecule-1, was sialylated via α2,6-linkages, as shown by Sambucus nigra agglutinin lectin blotting. NEU1 overexpression increased CD31 binding to Arachis hypogaea or peanut agglutinin lectin, indicating CD31 desialylation. In the postconfluent state, when CD31 ectodomains are homophilically engaged, NEU1 was recruited to and desialylated CD31. In postconfluent ECs, CD31 was desialylated compared with subconfluent cells, and prior NEU1 silencing completely protected against CD31 desialylation. Prior CD31 silencing and the use of CD31-null ECs each abrogated the NEU1 inhibitory effect on EC tube formation. Sialyltransferase 6 GAL-I overexpression increased α2,6-linked CD31 sialylation and dose-dependently counteracted NEU1-mediated inhibition of EC tube formation. These combined data indicate that catalytically active NEU1 inhibits in vitro angiogenesis through desialylation of its substrate, CD31.


Assuntos
Capilares/citologia , Células Endoteliais/metabolismo , Pulmão/irrigação sanguínea , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Animais , Antígenos CD/genética , Capilares/fisiologia , Adesão Celular , Movimento Celular , Células Endoteliais/citologia , Humanos , Camundongos , Neovascularização Fisiológica , Transporte Proteico , Sialiltransferases/genética
9.
Eur J Immunol ; 44(3): 752-62, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24643777

RESUMO

The neutralization of toxins is considered essential for protection against lethal infection with Bacillus anthracis (BA), a select agent and bioterrorism threat. However, toxin-neutralizing activity alone would not be expected to provide sterile immunity. Therefore, we hypothesized that the development of an adaptive immune response against BA is required for bacterial clearance. We found that human monocyte-derived dendritic cells (hDCs) kill germinated BA bacilli, but not nongerminated BA spores. hDCs produce IL-1ß, IL-6, IL-12, and IL-23, and these cytokines are differentially regulated by germination-proficient versus germination-deficient BA spores. Moreover, the IL-23 response to BA spores is regulated by IL-1R-mediated signaling. hDCs infected with germinating BA spores stimulated autologous CD4(+) T cells to secrete IL-17A and IFN-γ in a contact-dependent and antigen-specific manner. The T-cell response to BA spores was not recapitulated by hDCs infected with germination-deficient BA spores, implying that the germination of spores into replicating bacilli triggers the proinflammatory cytokine response in hDCs. Our results provide primary evidence that hDCs can generate a BA-specific Th17 response, and help elucidate the mechanisms involved. These novel findings suggest that the IL-23/Th17 axis is involved in the immune response to anthrax in humans.


Assuntos
Imunidade Adaptativa , Antraz/imunologia , Antraz/metabolismo , Bacillus anthracis/imunologia , Interleucina-23/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Antígenos de Bactérias/imunologia , Citocinas/biossíntese , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Células Dendríticas/ultraestrutura , Epitopos de Linfócito T/imunologia , Humanos , Fagocitose/imunologia , Esporos Bacterianos/imunologia , Células Th1/imunologia , Células Th1/metabolismo
10.
J Immunol ; 191(9): 4828-37, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24068662

RESUMO

We previously reported that removal of sialyl residues primed PBMCs to respond to bacterial LPS stimulation in vitro. Therefore, we speculated that prior desialylation can sensitize the host to generate an enhanced inflammatory response upon exposure to a TLR ligand, such as LPS, in a murine model of acute lung injury. Intratracheal instillation of neuraminidase (NA) 30 min prior to intratracheal administration of LPS increased polymorphonuclear leukocytes (PMNs) in the bronchoalveolar lavage fluid and the wet-to-dry lung weight ratio, a measure of pulmonary edema, compared with mice that received LPS alone. Administration of NA alone resulted in desialylation of bronchiolar and alveolar surfaces and induction of TNF-α, IL-1ß, and chemokines in lung homogenates and bronchoalveolar lavage fluid; however, PMN recruitment in mice treated with NA alone did not differ from that of PBS-administered controls. NA pretreatment alone induced apoptosis and markedly enhanced LPS-induced endothelial apoptosis. Administration of recombinant Bcl-2, an antiapoptotic molecule, abolished the effect of NA treatment on LPS-induced PMN recruitment and pulmonary edema formation. We conclude that NA pretreatment potentiates LPS-induced lung injury through enhanced PMN recruitment, pulmonary edema formation, and endothelial and myeloid cell apoptosis. A similar "reprogramming" of immune responses with desialylation may occur during respiratory infection with NA-expressing microbes and contribute to severe lung injury.


Assuntos
Lesão Pulmonar Aguda/imunologia , Neuraminidase/metabolismo , Neutrófilos/imunologia , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Apoptose/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Lipopolissacarídeos/administração & dosagem , Pulmão/citologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Edema Pulmonar/imunologia
11.
Proc Natl Acad Sci U S A ; 109(26): 10316-21, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22699507

RESUMO

The IFN family of cytokines operates a frontline defense against pathogens and neoplastic cells in vivo by controlling the expression of several genes. The death-associated protein kinase 1 (DAPK1), an IFN-γ-induced enzyme, controls cell cycle, apoptosis, autophagy, and tumor metastasis, and its expression is frequently down-regulated in a number of human tumors. Although the biochemical action of DAPK1 is well understood, mechanisms that regulate its expression are unclear. Previously, we have shown that transcription factor C/EBP-ß is required for the basal and IFN-γ-induced expression of DAPK1. Here, we show that ATF6, an ER stress-induced transcription factor, interacts with C/EBP-ß in an IFN-stimulated manner and is obligatory for Dapk1 expression. IFN-stimulated proteolytic processing of ATF6 and ERK1/2-mediated phosphorylation of C/EBP-ß are necessary for these interactions. More importantly, IFN-γ failed to activate autophagic response in cells lacking either ATF6 or C/EBP-ß. Consistent with these observations, the Atf6(-/-) mice were highly susceptible to lethal bacterial infections compared with the wild-type mice. These studies not only unravel an IFN signaling pathway that controls cell growth and antibacterial defense, but also expand the role of ATF6 beyond ER stress.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Interferon gama/fisiologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Associadas com Morte Celular , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Proteólise , Fatores de Transcrição/metabolismo
12.
Glycobiology ; 24(9): 864-79, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24865221

RESUMO

Polysialic acid (polySia) is a unique linear homopolymer of α2,8-linked sialic acid that has been studied extensively as a posttranslational modification of neural cell adhesion molecule in the central nervous system. Only two proteins are known to be polysialylated in cells of the immune system: CD56 on human natural killer cells and murine bone marrow (BM) leukocytes, and neuropilin-2 (NRP-2) on dendritic cells (DCs). We tested the hypothesis that polySia expression is regulated during maturation and migration of leukocytes and plays a role in functional activity. Using wild-type and NCAM(-/-) mice, we show that BM neutrophils express only polysialylated CD56, whereas a subset of BM monocytes expresses polysialylated CD56 and/or another polysialylated protein(s). We demonstrate that polysialylated CD56 expression is progressively down-regulated in wild-type monocytes and monocyte-derived cells during migration from BM through peripheral blood to pulmonary and peritoneal sites of inflammation. Freshly isolated monocyte-derived peritoneal macrophages are devoid of polySia yet re-express polySia on NRP-2 and an additional protein(s) after maintenance in culture. Removal of polySia from these cells enhances phagocytosis of Klebsiella pneumoniae, suggesting that down-regulation of polySia on macrophages facilitates bacterial clearance. Using wild-type and NRP-2(-/-) mice, we demonstrate that NRP-2 and an additional protein(s) are polysialylated by ST8 SiaIV in BM-derived DCs. We conclude that polySia expression in monocyte-derived cells is dynamically regulated by ST8 SiaIV activity and by expression of carrier proteins during recruitment to sites of inflammation and influences cellular interactions with microbes, contributing to innate and adaptive immune responses.


Assuntos
Antígeno CD56/metabolismo , Hematopoese , Células Mieloides/metabolismo , Fagocitose , Ácidos Siálicos/metabolismo , Animais , Antígeno CD56/genética , Movimento Celular , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/citologia , Neuropilina-2/genética , Neuropilina-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Am J Physiol Lung Cell Mol Physiol ; 306(9): L876-86, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24658138

RESUMO

Sialic acids on glycoconjugates play a pivotal role in many biological processes. In the airways, sialylated glycoproteins and glycolipids are strategically positioned on the plasma membranes of epithelia to regulate receptor-ligand, cell-cell, and host-pathogen interactions at the molecular level. We now demonstrate, for the first time, sialidase activity for ganglioside substrates in human airway epithelia. Of the four known mammalian sialidases, NEU3 has a substrate preference for gangliosides and is expressed at mRNA and protein levels at comparable abundance in epithelia derived from human trachea, bronchi, small airways, and alveoli. In small airway and alveolar epithelia, NEU3 protein was immunolocalized to the plasma membrane, cytosolic, and nuclear subcellular fractions. Small interfering RNA-induced silencing of NEU3 expression diminished sialidase activity for a ganglioside substrate by >70%. NEU3 immunostaining of intact human lung tissue could be localized to the superficial epithelia, including the ciliated brush border, as well as to nuclei. However, NEU3 was reduced in subepithelial tissues. These results indicate that human airway epithelia express catalytically active NEU3 sialidase.


Assuntos
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Epitélio/metabolismo , Neuraminidase/metabolismo , Sistema Respiratório/metabolismo , Biotinilação , Western Blotting , Catálise , Células Cultivadas , Citometria de Fluxo , Gangliosídeos/metabolismo , Humanos , Técnicas Imunoenzimáticas , Neuraminidase/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácidos Siálicos/metabolismo , Frações Subcelulares
14.
J Infect Dis ; 207(12): 1869-77, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23493729

RESUMO

Staphylococcus aureus and group A Streptococcus pyogenes (GAS) express superantigen (SAg) exotoxin proteins capable of inducing lethal shock. To induce toxicity, SAgs must bind not only to the major histocompatibility complex II molecule of antigen-presenting cells and the variable ß chain of the T-cell receptor but also to the dimer interface of the T-cell costimulatory receptor CD28. Here, we show that the CD28-mimetic peptide AB103 (originally designated "p2TA") protects mice from lethal challenge with streptococcal exotoxin A, as well as from lethal GAS bacterial infection in a murine model of necrotizing soft-tissue infection. Administration of a single dose of AB103 increased survival when given up to 5 hours after infection, reduced inflammatory cytokine expression and bacterial burden at the site of infection, and improved muscle inflammation in a dose-dependent manner, without compromising cellular and humoral immunity. Thus, AB103 merits further investigation as a potential therapeutic in SAg-mediated necrotizing soft-tissue infection.


Assuntos
Antígenos CD28/imunologia , Peptídeos/uso terapêutico , Choque Séptico/tratamento farmacológico , Infecções Estreptocócicas/tratamento farmacológico , Streptococcus pyogenes/imunologia , Superantígenos/toxicidade , Animais , Anticorpos Antibacterianos/imunologia , Antígenos CD28/antagonistas & inibidores , Antígenos CD28/metabolismo , Proliferação de Células , Contagem de Colônia Microbiana , Citocinas/sangue , Citocinas/imunologia , Relação Dose-Resposta a Droga , Exotoxinas/antagonistas & inibidores , Exotoxinas/imunologia , Exotoxinas/toxicidade , Feminino , Imunidade Celular , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/farmacologia , Choque Séptico/imunologia , Choque Séptico/microbiologia , Transdução de Sinais , Infecções dos Tecidos Moles/tratamento farmacológico , Infecções dos Tecidos Moles/microbiologia , Organismos Livres de Patógenos Específicos , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/metabolismo , Superantígenos/imunologia , Fatores de Virulência
15.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746292

RESUMO

Background: Klebsiella pneumonia (Kpn) is the fourth leading cause of infection-related deaths globally, yet little is known about human antibody responses to invasive Kpn. In this study, we sought to determine whether the O-specific polysaccharide (OPS) antigen, a vaccine candidate, is immunogenic in humans with Kpn bloodstream infection (BSI). We also sought to define the cross-reactivity of human antibody responses among structurally related Kpn OPS subtypes and to assess the impact of capsule production on OPS-targeted antibody binding and function. Methods: We measured plasma antibody responses to OPS (and MrkA, a fimbrial protein) in a cohort of patients with Kpn BSI and compared these with controls, including a cohort of healthy individuals and a cohort of individuals with Enterococcus BSI. We performed flow cytometry to measure the impact of Kpn capsule production on whole cell antibody binding and complement deposition, utilizing patient isolates with variable levels of capsule production and isogenic capsule-deficient strains derived from these isolates. Findings: We enrolled 69 patients with Kpn BSI. Common OPS serotypes accounted for 57/69 (83%) of infections. OPS was highly immunogenic in patients with Kpn BSI, and peak OPS-IgG antibody responses in patients were 10 to 30-fold higher than antibody levels detected in healthy controls, depending on the serotype. There was significant cross-reactivity among structurally similar OPS subtypes, including the O1v1/O1v2, O2v1/O2v2 and O3/O3b subtypes. Physiological amounts of capsule produced by both hyperencapsulated and non-hyperencapsulated Kpn significantly inhibited OPS-targeted antibody binding and function. Interpretation: OPS was highly immunogenic in patients with Kpn BSI, supporting its potential as a candidate vaccine antigen. The strong cross-reactivity observed between similar OPS subtypes in humans with Kpn BSI suggests that it may not be necessary to include all subtypes in an OPS-based vaccine. However, these observations are tempered by the fact that capsule production, even in non-highly encapsulated strains, has the potential to interfere with OPS antibody binding. This may limit the effectiveness of vaccines that exclusively target OPS. Funding: National Institute of Allergy and Infectious Diseases at the National Institutes of Health. Research in Context: Evidence before this study: Despite the potential of O-specific polysaccharide (OPS) as a vaccine antigen against Klebsiella pneumoniae (Kpn), the immunogenicity of OPS in humans remains largely unstudied, creating a significant knowledge gap with regard to vaccine development. A search of PubMed for publications up to March 18, 2024, using the terms " Klebsiella pneumoniae " and "O-specific polysaccharide" or "O-antigen" or "lipopolysaccharide" revealed no prior studies addressing OPS antibody responses in humans with Kpn bloodstream infections (BSI). One prior study 1 evaluated antibody response to a single lipopolysaccharide (which contains one subtype of OPS) in humans with invasive Kpn infection; however, in this study OPS typing of the infecting strains and target antigen were not described. Added value of this study: Our investigation into OPS immunogenicity in a human cohort marks a significant advance. Analyzing plasma antibody responses in 69 patients with Kpn BSI, we found OPS to be broadly immunogenic across all the types and subtypes examined, and there was significant cross-reactivity among structurally related OPS antigens. We also demonstrated that Kpn capsule production inhibit OPS antibody binding and the activation of complement on the bacterial surface, even in classical Kpn strains expressing lower levels of capsule.Implications of all the available evidence: While the immunogenicity and broad cross-reactivity of OPS in humans with Kpn BSI suggests it is a promising vaccine candidate, the obstruction of OPS antibody binding and engagement by physiologic levels of Kpn capsule underscores the potential limitations of an exclusively OPS-antigen based vaccine for Kpn. Our study provides insights for the strategic development of vaccines aimed at combating Kpn infections, an important antimicrobial resistant pathogen.

16.
J Biol Chem ; 287(19): 15966-80, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22403397

RESUMO

The microvascular endothelial surface expresses multiple molecules whose sialylation state regulates multiple aspects of endothelial function. To better regulate these sialoproteins, we asked whether endothelial cells (ECs) might express one or more catalytically active sialidases. Human lung microvascular EC lysates contained heat-labile sialidase activity for a fluorogenic substrate, 2'-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid (4-MU-NANA), that was dose-dependently inhibited by the competitive sialidase inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid but not its negative control. The EC lysates also contained sialidase activity for a ganglioside mixture. Using real time RT-PCR to detect mRNAs for the four known mammalian sialidases, NEU1, -2, -3, and -4, NEU1 mRNA was expressed at levels 2700-fold higher that those found for NEU2, -3, or -4. Western analyses indicated NEU1 and -3 protein expression. Using confocal microscopy and flow cytometry, NEU1 was immunolocalized to both the plasma membrane and the perinuclear region. NEU3 was detected both in the cytosol and nucleus. Prior siRNA-mediated knockdown of NEU1 and NEU3 each decreased EC sialidase activity for 4-MU-NANA by >65 and >17%, respectively, and for the ganglioside mixture by 0 and 40%, respectively. NEU1 overexpression in ECs reduced their migration into a wound by >40%, whereas NEU3 overexpression did not. Immunohistochemical studies of normal human tissues immunolocalized NEU1 and NEU3 proteins to both pulmonary and extrapulmonary vascular endothelia. These combined data indicate that human lung microvascular ECs as well as other endothelia express catalytically active NEU1 and NEU3. NEU1 restrains EC migration, whereas NEU3 does not.


Assuntos
Movimento Celular , Células Endoteliais/enzimologia , Neuraminidase/metabolismo , Aorta/enzimologia , Artérias Carótidas/enzimologia , Linhagem Celular , Membrana Celular/enzimologia , Núcleo Celular/enzimologia , Artérias Cerebrais/enzimologia , Citosol/enzimologia , Células Endoteliais/metabolismo , Citometria de Fluxo , Regulação Enzimológica da Expressão Gênica , Humanos , Himecromona/análogos & derivados , Himecromona/farmacologia , Immunoblotting , Rim/enzimologia , Pulmão/enzimologia , Microscopia Confocal , Ácido N-Acetilneuramínico/análogos & derivados , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/antagonistas & inibidores , Neuraminidase/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade por Substrato
17.
J Biol Chem ; 287(11): 8214-31, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22247545

RESUMO

Epithelial cells (ECs) lining the airways provide a protective barrier between the external environment and the internal host milieu. These same airway epithelia express receptors that respond to danger signals and initiate repair programs. Because the sialylation state of a receptor can influence its function and is dictated in part by sialidase activity, we asked whether airway epithelia express catalytically active sialidase(s). Human primary small airway and A549 ECs expressed NEU1 sialidase at the mRNA and protein levels, and NEU1 accounted for >70% of EC sialidase activity. Blotting with Maackia amurensis and peanut agglutinin lectins established epidermal growth factor receptor (EGFR) and MUC1 as in vivo substrates for NEU1. NEU1 associated with EGFR and MUC1, and NEU1-EGFR association was regulated by EGF stimulation. NEU1 overexpression diminished EGF-stimulated EGFR Tyr-1068 autophosphorylation by up to 44% but enhanced MUC1-dependent Pseudomonas aeruginosa adhesion by 1.6-1.7-fold and flagellin-stimulated ERK1/2 activation by 1.7-1.9-fold. In contrast, NEU1 depletion increased EGFR activation (1.5-fold) and diminished MUC1-mediated bacterial adhesion (38-56%) and signaling (73%). These data indicate for the first time that human airway epithelia express catalytically active NEU1 sialidase that regulates EGFR- and MUC1-dependent signaling and bacterial adhesion. NEU1 catalytic activity may offer an additional level of regulation over the airway epithelial response to ligands, pathogens, and injurious stimuli.


Assuntos
Receptores ErbB/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Mucina-1/metabolismo , Neuraminidase/biossíntese , Mucosa Respiratória/metabolismo , Linhagem Celular Transformada , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Regulação Enzimológica da Expressão Gênica/genética , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mucina-1/genética , Neuraminidase/genética , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Mucosa Respiratória/microbiologia
18.
Microbiol Mol Biol Rev ; 87(3): e0004522, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37432116

RESUMO

Infections with antimicrobial-resistant (AMR) bacteria pose an increasing threat to the ability to perform surgical procedures, organ transplantation, and treat cancer among many other medical conditions. There are few new antimicrobials in the development pipeline. Vaccines against AMR Gram-negative bacteria may reduce the use of antimicrobials and prevent bacterial transmission. This review traces the origins of lipopolysaccharide (LPS)-based vaccines against Gram-negative bacteria, the role of O polysaccharides and LPS core regions as potential vaccine targets, the development of new vaccine technologies, and their application to vaccines in current development.


Assuntos
Anti-Infecciosos , Infecções por Bactérias Gram-Negativas , Vacinas , Humanos , Lipopolissacarídeos , Bactérias Gram-Negativas , Bactérias , Antibacterianos/farmacologia , Infecções por Bactérias Gram-Negativas/prevenção & controle
19.
Mol Immunol ; 156: 127-135, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36921487

RESUMO

The lung airway epithelial surface is heavily covered with sialic acids as the terminal carbohydrate on most cell surface glycoconjugates and can be removed by microbial neuraminidases or endogenous sialidases. By desialylating the lung epithelial surface, neuraminidase acts as an important virulence factor in many mucosal pathogens, such as influenza and S. pneumoniae. Desialylation exposes the subterminal galactosyl moieties - the binding glycotopes for galectins, a family of carbohydrate-recognition proteins playing important roles in various aspects of immune responses. Galectin-1 and galectin-3 have been extensively studied in their roles related to host immune responses, but some questions about their role(s) in leukocyte recruitment during lung bacterial infection remain unanswered. In this study, we found that both galectin-1 and galectin-3 bind to polymorphonuclear leukocytes (PMNs) and enhance the interaction of endothelial intercellular adhesion molecule-1 (ICAM-1) with PMNs, which is further increased by PMN desialylation. In addition, we observed that in vitro galectin-1 mediates the binding of PMNs, particularly desialylated PMNs, onto the endothelial cells. Finally, in a murine model for LPS-mediated acute lung injury, we observed that galectin-1 modulates PMN infiltration to the lung without altering the expression of chemoattractant cytokines. We conclude that galectins, particularly galectin-1, may function as adhesion molecules that mediate PMN-endothelial cell interactions, and modulate PMN infiltration during acute lung injury.


Assuntos
Lesão Pulmonar Aguda , Neutrófilos , Humanos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Células Endoteliais , Galectina 1 , Galectina 3 , Adesão Celular , Pulmão , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Streptococcus pneumoniae , Molécula 1 de Adesão Intercelular/metabolismo
20.
mBio ; : e0245423, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37929965

RESUMO

Burns are a leading cause of morbidity and mortality worldwide with the most common cause of death resulting from sepsis, often from Pseudomonas aeruginosa. We previously reported that a non-lethal flame burn induced an altered host immune response. Using this model, gene expression in both the murine host and P. aeruginosa was measured using a NanoString custom probe panel. We observed differing patterns of gene expression in both host and P. aeruginosa in the skin, blood, liver, and spleen of mice that were burned and/or infected, compared to mice that were neither burned nor infected (i.e., Sham). In mice that were both burned and infected (B/I), we observed changes in gene expression in both the host and P. aeruginosa that were distinct from all other treatment conditions. These data suggest that the combination of the burned state and superimposed infection affects both host and pathogen gene expression to increase infection propensity. Gene transcription significantly changed from 6 to 24 h post-B/I in each tissue. Finally, inhibiting IL-10 signaling or co-administering arginine at the time of P. aeruginosa infection prolonged or restored survival in an otherwise 100% fatal burn and infection model. These findings suggest that disease states such as burns may differentially alter innate immune response gene expression in both a host- and pathogen-specific manner.IMPORTANCEThe interaction between an underlying disease process and a specific pathogen may lead to the unique expression of genes that affect bacterial pathogenesis. These genes may not be observed during infection in the absence of, or with a different underlying process or infection during the underlying process with a different pathogen. To test this hypothesis, we used Nanostring technology to compare gene transcription in a murine-burned wound infected with P. aeruginosa. The Nanostring probeset allowed the simultaneous direct comparison of immune response gene expression in both multiple host tissues and P. aeruginosa in conditions of burn alone, infection alone, and burn with infection. While RNA-Seq is used to discover novel transcripts, NanoString could be a technique to monitor specific changes in transcriptomes between samples and bypass the additional adjustments for multispecies sample processing or the need for the additional steps of alignment and assembly required for RNASeq. Using Nanostring, we identified arginine and IL-10 as important contributors to the lethal outcome of burned mice infected with P. aeruginosa. While other examples of altered gene transcription are in the literature, our study suggests that a more systematic comparison of gene expression in various underlying diseases during infection with specific bacterial pathogens may lead to the identification of unique host-pathogen interactions and result in more precise therapeutic interventions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa