Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Cell ; 167(4): 973-984.e12, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27814523

RESUMO

In obesity, macrophages and other immune cells accumulate in insulin target tissues, promoting a chronic inflammatory state and insulin resistance. Galectin-3 (Gal3), a lectin mainly secreted by macrophages, is elevated in both obese subjects and mice. Administration of Gal3 to mice causes insulin resistance and glucose intolerance, whereas inhibition of Gal3, through either genetic or pharmacologic loss of function, improved insulin sensitivity in obese mice. In vitro treatment with Gal3 directly enhanced macrophage chemotaxis, reduced insulin-stimulated glucose uptake in myocytes and 3T3-L1 adipocytes and impaired insulin-mediated suppression of glucose output in primary mouse hepatocytes. Importantly, we found that Gal3 can bind directly to the insulin receptor (IR) and inhibit downstream IR signaling. These observations elucidate a novel role for Gal3 in hepatocyte, adipocyte, and myocyte insulin resistance, suggesting that Gal3 can link inflammation to decreased insulin sensitivity. Inhibition of Gal3 could be a new approach to treat insulin resistance.


Assuntos
Galectina 3/sangue , Galectina 3/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Animais , Quimiotaxia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Galectina 3/antagonistas & inibidores , Galectina 3/genética , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Insulina/sangue , Resistência à Insulina , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Células Musculares/metabolismo , Células Musculares/patologia , Obesidade/imunologia , Obesidade/metabolismo , Obesidade/patologia
2.
Immunity ; 54(9): 2042-2056.e8, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34407391

RESUMO

Recruitment of immune cells to the site of inflammation by the chemokine CCL1 is important in the pathology of inflammatory diseases. Here, we examined the role of CCL1 in pulmonary fibrosis (PF). Bronchoalveolar lavage fluid from PF mouse models contained high amounts of CCL1, as did lung biopsies from PF patients. Immunofluorescence analyses revealed that alveolar macrophages and CD4+ T cells were major producers of CCL1 and targeted deletion of Ccl1 in these cells blunted pathology. Deletion of the CCL1 receptor Ccr8 in fibroblasts limited migration, but not activation, in response to CCL1. Mass spectrometry analyses of CCL1 complexes identified AMFR as a CCL1 receptor, and deletion of Amfr impaired fibroblast activation. Mechanistically, CCL1 binding triggered ubiquitination of the ERK inhibitor Spry1 by AMFR, thus activating Ras-mediated profibrotic protein synthesis. Antibody blockade of CCL1 ameliorated PF pathology, supporting the therapeutic potential of targeting this pathway for treating fibroproliferative lung diseases.


Assuntos
Quimiocina CCL1/metabolismo , Fibroblastos/metabolismo , Proteínas de Membrana/metabolismo , Miofibroblastos/metabolismo , Fosfoproteínas/metabolismo , Fibrose Pulmonar/metabolismo , Receptores do Fator Autócrino de Motilidade/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diferenciação Celular/fisiologia , Fibroblastos/patologia , Humanos , Camundongos , Miofibroblastos/patologia , Fibrose Pulmonar/patologia , Transdução de Sinais/fisiologia
3.
EMBO J ; 43(4): 507-532, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191811

RESUMO

Metabolic syndrome combines major risk factors for cardiovascular disease, making deeper insight into its pathogenesis important. We here explore the mechanistic basis of metabolic syndrome by recruiting an essential patient cohort and performing extensive gene expression profiling. The mitochondrial fatty acid metabolism enzyme acyl-CoA synthetase medium-chain family member 3 (ACSM3) was identified to be significantly lower expressed in the peripheral blood of metabolic syndrome patients. In line, hepatic ACSM3 expression was decreased in mice with metabolic syndrome. Furthermore, Acsm3 knockout mice showed glucose and lipid metabolic abnormalities, and hepatic accumulation of the ACSM3 fatty acid substrate lauric acid. Acsm3 depletion markedly decreased mitochondrial function and stimulated signaling via the p38 MAPK pathway cascade. Consistently, Acsm3 knockout mouse exhibited abnormal mitochondrial morphology, decreased ATP contents, and enhanced ROS levels in their livers. Mechanistically, Acsm3 deficiency, and lauric acid accumulation activated nuclear receptor Hnf4α-p38 MAPK signaling. In line, the p38 inhibitor Adezmapimod effectively rescued the Acsm3 depletion phenotype. Together, these findings show that disease-associated loss of ACSM3 facilitates mitochondrial dysfunction via a lauric acid-HNF4a-p38 MAPK axis, suggesting a novel therapeutic vulnerability in systemic metabolic dysfunction.


Assuntos
Ácidos Láuricos , Síndrome Metabólica , Humanos , Camundongos , Animais , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Fígado/metabolismo , Ácidos Graxos/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/farmacologia
4.
Immunity ; 51(3): 522-534.e7, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31471107

RESUMO

Although recent progress provides mechanistic insights into the pathogenesis of pulmonary fibrosis (PF), rare anti-PF therapeutics show definitive promise for treating this disease. Repeated lung epithelial injury results in injury-repairing response and inflammation, which drive the development of PF. Here, we report that chronic lung injury inactivated the ubiquitin-editing enzyme A20, causing progressive accumulation of the transcription factor C/EBPß in alveolar macrophages (AMs) from PF patients and mice, which upregulated a number of immunosuppressive and profibrotic factors promoting PF development. In response to chronic lung injury, elevated glycogen synthase kinase-3ß (GSK-3ß) interacted with and phosphorylated A20 to suppress C/EBPß degradation. Ectopic expression of A20 or pharmacological restoration of A20 activity by disturbing the A20-GSK-3ß interaction accelerated C/EBPß degradation and showed potent therapeutic efficacy against experimental PF. Our study indicates that a regulatory mechanism of the GSK-3ß-A20-C/EBPß axis in AMs may be a potential target for treating PF and fibroproliferative lung diseases.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Macrófagos/metabolismo , Fibrose Pulmonar/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Animais , Linhagem Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/fisiologia , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Regulação para Cima/fisiologia
5.
PLoS Pathog ; 20(5): e1012187, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718038

RESUMO

The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) has significant challenges to human health and clinical treatment, with KPC-2-producing CRKP being the predominant epidemic strain. Therefore, there is an urgent need to identify new therapeutic targets and strategies. Non-coding small RNA (sRNA) is a post-transcriptional regulator of genes involved in important biological processes in bacteria and represents an emerging therapeutic strategy for antibiotic-resistant bacteria. In this study, we analyzed the transcription profile of KPC-2-producing CRKP using RNA-seq. Of the 4693 known genes detected, the expression of 307 genes was significantly different from that of carbapenem-sensitive Klebsiella pneumoniae (CSKP), including 133 up-regulated and 174 down-regulated genes. Both the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis showed that these differentially expressed genes (DEGs) were mainly related to metabolism. In addition, we identified the sRNA expression profile of KPC-2-producing CRKP for the first time and detected 115 sRNAs, including 112 newly discovered sRNAs. Compared to CSKP, 43 sRNAs were differentially expressed in KPC-2-producing CRKP, including 39 up-regulated and 4 down-regulated sRNAs. We chose sRNA51, the most significantly differentially expressed sRNA in KPC-2-producing CRKP, as our research subject. By constructing sRNA51-overexpressing KPC-2-producing CRKP strains, we found that sRNA51 overexpression down-regulated the expression of acrA and alleviated resistance to meropenem and ertapenem in KPC-2-producing CRKP, while overexpression of acrA in sRNA51-overexpressing strains restored the reduction of resistance. Therefore, we speculated that sRNA51 could affect the resistance of KPC-2-producing CRKP by inhibiting acrA expression and affecting the formation of efflux pumps. This provides a new approach for developing antibiotic adjuvants to restore the sensitivity of CRKP.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Klebsiella pneumoniae , RNA Bacteriano , Pequeno RNA não Traduzido , beta-Lactamases , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Regulação Bacteriana da Expressão Gênica , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética
7.
Hepatology ; 78(2): 562-577, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35931467

RESUMO

BACKGROUND AND AIMS: NAFLD is the most prevalent chronic liver disease worldwide and has emerged as a serious public health issue with no approved treatment. The development of NAFLD is strongly associated with hepatic lipid content, and patients with NAFLD have significantly higher rates of hepatic de novo lipogenesis (DNL) than lean individuals. Leukotriene B4 (LTB4), a metabolite of arachidonic acid, is dramatically increased in obesity and plays important role in proinflammatory cytokine production and insulin resistance. But the role of liver LTB4/LTB4 receptor 1 (Ltb4r1) in lipid metabolism is unclear. APPROACH AND RESULTS: Hepatocyte-specific knockout (HKO) of Ltb4r1 improved hepatic steatosis and systemic insulin resistance in both diet-induced and genetically induced obese mice. The mRNA level of key enzymes involved in DNL and fatty acid esterification decreased in Ltb4r1 HKO obese mice. LTB4/Ltb4r1 directly promoted lipogenesis in HepG2 cells and primary hepatocytes. Mechanically, LTB4/Ltb4r1 promoted lipogenesis by activating the cAMP-protein kinase A (PKA)-inositol-requiring enzyme 1α (IRE1α)-spliced X-box-binding protein 1 (XBP1s) axis in hepatocytes, which in turn promoted the expression of lipogenesis genes regulated by XBP1s. In addition, Ltb4r1 suppression through the Ltb4r1 inhibitor or lentivirus-short hairpin RNA delivery alleviated the fatty liver phenotype in obese mice. CONCLUSIONS: LTB4/Ltb4r1 promotes hepatocyte lipogenesis directly by activating PKA-IRE1α-XBP1s to promote lipogenic gene expression. Inhibition of hepatocyte Ltb4r1 improved hepatic steatosis and insulin resistance. Ltb4r1 is a potential therapeutic target for NAFLD.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores do Leucotrieno B4/metabolismo , Leucotrieno B4/efeitos adversos , Leucotrieno B4/metabolismo , Camundongos Obesos , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Obesidade/complicações , Obesidade/genética , Lipogênese/fisiologia , Dieta Hiperlipídica
8.
Inflamm Res ; 73(4): 531-539, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498178

RESUMO

Metabolic remodeling is a key feature of macrophage activation and polarization. Recent studies have demonstrated the role of tricarboxylic acid (TCA) cycle metabolites in the innate immune system. In the current review, we summarize recent advances in the metabolic reprogramming of the TCA cycle during macrophage activation and polarization and address the effects of these metabolites in modulating macrophage function. Deciphering the crosstalk between the TCA cycle and the immune response might provide novel potential targets for the intervention of immune reactions and favor the development of new strategies for the treatment of infection, inflammation, and cancer.


Assuntos
Ciclo do Ácido Cítrico , Macrófagos , Ciclo do Ácido Cítrico/fisiologia , Macrófagos/metabolismo
9.
Mol Ther ; 31(6): 1562-1576, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37113055

RESUMO

Non-coding RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), are being studied extensively in a variety of fields. Their roles in metabolism have received increasing attention in recent years but are not yet clear. The regulation of glucose, fatty acid, and amino acid metabolism is an imperative physiological process that occurs in living organisms and takes part in cancer and cardiovascular diseases. Here, we summarize the important roles played by non-coding RNAs in glucose metabolism, fatty acid metabolism, and amino acid metabolism, as well as the mechanisms involved. We also summarize the therapeutic advances for non-coding RNAs in diseases such as obesity, cardiovascular disease, and some metabolic diseases. Overall, non-coding RNAs are indispensable factors in metabolism and have a significant role in the three major metabolisms, which may be exploited as therapeutic targets in the future.


Assuntos
MicroRNAs , RNA Longo não Codificante , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ácidos Graxos , Aminoácidos
10.
J Biol Chem ; 298(11): 102599, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36244448

RESUMO

Mutations in the hyperpolarization-activated nucleotide-gated channel 4 (HCN4) are known to be associated with arrhythmias in which QT prolongation (delayed ventricular repolarization) is rare. Here, we identified a HCN4 mutation, HCN4-R666Q, in two sporadic arrhythmia patients with sinus bradycardia, QT prolongation, and short bursts of ventricular tachycardia. To determine the functional effect of the mutation, we conducted clinical, genetic, and functional analyses using whole-cell voltage-clamp, qPCR, Western blot, confocal microscopy, and co-immunoprecipitation. The mean current density of HEK293T cells transfected with HCN4-R666Q was lower in 24 to 36 h after transfection and was much lower in 36 to 48 h after transfection relative to cells transfected with wildtype HCN4. Additionally, we determined that the HCN4-R666Q mutant was more susceptible to ubiquitin-proteasome system-mediated protein degradation than wildtype HCN4. This decreased current density for HCN4-R666Q could be partly rescued by treatment with a proteasome inhibitor. Therefore, we conclude that HCN4-R666Q had an effect on HCN4 function in two aspects, including decreasing the current density of the channel as a biophysical effect and weakening its protein stability. Our findings provide new insights into the pathogenesis of the HCN4-R666Q mutation.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Síndrome do QT Longo , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais de Potássio/metabolismo , Proteólise , Nucleotídeos/metabolismo , Células HEK293 , Proteínas Musculares/metabolismo , Arritmias Cardíacas/genética , Mutação , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética
11.
J Cell Physiol ; 238(11): 2556-2569, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37698039

RESUMO

Family with sequence similarity 20-member C (FAM20C) is a kinase specific to most of the secreted phosphoproteome. FAM20C has been identified as the causative gene of Raine syndrome, initially characterized by lethal osteosclerosis bone dysplasia. However, since the identification of the cases of nonlethal Raine syndrome characterized by hypophosphatemia rickets, the previous definition of Raine syndrome has become debatable and raised a question about the role of mutations of FAM20C in controversial skeletal manifestation in the two forms of the disease. In this study, we aimed to investigate the influence of FAM20C mutations on skeletogenesis. We developed transgenic mice expressing Fam20c mutations mimicking those associated with human lethal and nonlethal Raine syndrome. The results revealed that transgenic mice expressing the mutant Fam20c found in the lethal (KO;G374R) and nonlethal (KO;D446N) Raine syndrome exhibited osteomalacia without osteosclerotic features. Additionally, both mutants significantly increased the expression of the Fgf23, indicating that Fam20c deficiency in skeletal compartments causes hypophosphatemia rickets. Furthermore, as FAM20C kinase activity catalyzes the phosphorylation of secreted proteomes other than those in the skeletal system, global FAM20C deficiency may trigger alterations in other systems resulting in osteosclerosis secondary to hypophosphatemia rickets. Together, the findings of this study suggest that FAM20C deficiency primarily causes hypophosphatemia rickets or osteomalacia; however, the heterogeneous skeletal manifestation in Raine syndrome was not determined solely by specific mutations of FAM20C. The findings also implicated that rickets or osteomalacia caused by FAM20C deficiency would deteriorate into osteosclerosis by the defects from other systems or environmental impacts.


Assuntos
Hipofosfatemia , Osteomalacia , Osteosclerose , Raquitismo , Camundongos , Animais , Humanos , Osteomalacia/complicações , Osteomalacia/genética , Osteosclerose/genética , Osteosclerose/complicações , Mutação/genética , Raquitismo/complicações , Camundongos Transgênicos , Hipofosfatemia/genética , Hipofosfatemia/complicações , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Ligação ao Cálcio/genética
12.
J Cell Physiol ; 238(11): 2692-2709, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37796139

RESUMO

Oxidative stress has been considered to be closely related to spaceflight-induced bone loss; however, mechanism is elusive and there are no effective countermeasures. Using cultured rat calvarial osteoblasts exposed to microgravity simulated by a random positioning machine, this study addressed the hypotheses that microgravity-induced shortening of primary cilia leads to oxidative stress and that primary cilium protection prevents oxidative stress and osteogenesis loss. Microgravity was found to induce oxidative stress (as represented by increased levels of reactive oxygen species (ROS) and malondialdehyde production, and decreased activities of antioxidant enzymes), which was perfectly replicated in osteoblasts growing in NG with abrogated primary cilia (created by transfection of an interfering RNA), suggesting the possibility that shortening of primary cilia leads to oxidative stress. Oxidative stress was accompanied by mitochondrial dysfunction (represented by increased mitochondrial ROS and decreased mitochondrial membrane potential) and intracellular Ca2+ overload, and the latter was found to be caused by increased activity of Ca2+ channel transient receptor potential vanilloid 4 (TRPV4), as also evidenced by TRPV4 agonist GSK1016790A-elicited Ca2+ influx. Supplementation of HC-067047, a specific antagonist of TRPV4, attenuated microgravity-induced mitochondrial dysfunction, oxidative stress, and osteogenesis loss. Although TRPV4 was found localized in primary cilia and expressed at low levels in NG, microgravity-induced shortening of primary cilia led to increased TRPV4 levels and Ca2+ influx. When primary cilia were protected by miR-129-3p overexpression or supplementation with a natural flavonoid moslosooflavone, microgravity-induced increased TRPV4 expression, mitochondrial dysfunction, oxidative stress, and osteogenesis loss were all prevented. Our data revealed a new mechanism that primary cilia function as a controller for TRPV4 expression. Microgravity-induced injury on primary cilia leads to increased expression and overactive channel of TRPV4, causing intracellular Ca2+ overload and oxidative stress, and primary cilium protection could be an effective countermeasure against microgravity-induced oxidative stress and loss of osteogenic potential of osteoblasts.


Assuntos
Cílios , Osteoblastos , Osteogênese , Estresse Oxidativo , Canais de Cátion TRPV , Ausência de Peso , Animais , Ratos , Cílios/metabolismo , Osteoblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Células Cultivadas , Morfolinas/farmacologia , Pirróis/farmacologia , Gravitação
13.
Chemistry ; 29(39): e202203758, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37114329

RESUMO

Herein, an efficient and green procedure for the synthesis of tetrahydro-ß-carbolines via dehydrogenative coupling of alcohols with tryptamines is reported. The reaction was carried out under mild conditions in the presence of a catalytic amount of the iPr PNP-Mn catalyst and a weak base (Na2 CO3 ). This method tolerated a variety of benzylic and aliphatic alcohol substrates with different functional groups and afforded diverse products in good to excellent isolated yields using tryptamines. Using this strategy, we successfully synthesised pharmaceutical molecules harman, harmaline, and harmine in a concise manner.

15.
Molecules ; 28(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37375220

RESUMO

Electrochemical reduction of nitrate has broad application prospects. However, in traditional electrochemical reduction of nitrate, the low value of oxygen produced by the anodic oxygen evolution reaction and the high overpotential limit its application. Seeking a more valuable and faster anodic reaction to form a cathode-anode integrated system with nitrate reaction can effectively accelerate the reaction rate of the cathode and anode, and improve the utilization of electrical energy. Sulfite, as a pollutant after wet desulfurization, has faster reaction kinetics in its oxidation reaction compared to the oxygen evolution reaction. Therefore, this study proposes an integrated cathodic nitrate reduction and anodic sulfite oxidation system. The effect of operating parameters (cathode potential, initial NO3--N concentration, and initial SO32--S concentration) on the integrated system was studied. Under the optimal operating parameters, the nitrate reduction rate in the integrated system reached 93.26% within 1 h, and the sulfite oxidation rate reached 94.64%. Compared with the nitrate reduction rate (91.26%) and sulfite oxidation rate (53.33%) in the separate system, the integrated system had a significant synergistic effect. This work provides a reference for solving nitrate and sulfite pollution, and promotes the application and development of electrochemical cathode-anode integrated technology.

16.
Molecules ; 28(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138440

RESUMO

Currently, skin injuries have a serious impact on people's lives and socio-economic stress. Shikonin, a naphthoquinone compound derived from the root of the traditional Chinese medicine Shikonin, has favorable biological activities such as anti-inflammatory, antibacterial, immunomodulatory, anticancer, and wound-healing-promoting pharmacological activities. It has been reported that Shikonin can be used for repairing skin diseases due to its wide range of pharmacological effects. Moreover, the antimicrobial activity of Shikonin can play a great role in food and can also reduce the number of pathogenic bacteria in food. This paper summarizes the research on the pharmacological effects of Shikonin in recent years, as well as research on the mechanism of action of Shikonin in the treatment of certain skin diseases, to provide certain theoretical references for the clinical application of Shikonin, and also to provides research ideas for the investigation of the mechanism of action of Shikonin in other skin diseases.


Assuntos
Naftoquinonas , Dermatopatias , Humanos , Anti-Inflamatórios/farmacologia , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Medicina Tradicional Chinesa , Dermatopatias/tratamento farmacológico
17.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(2): 139-147, 2023 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37283097

RESUMO

OBJECTIVES: To construct a prognosis risk model based on long noncoding RNAs (lncRNAs) related to cuproptosis and to evaluate its application in assessing prognosis risk of bladder cancer patients. METHODS: RNA sequence data and clinical data of bladder cancer patients were downloaded from the Cancer Genome Atlas database. The correlation between lncRNAs related to cuproptosis and bladder cancer prognosis was analyzed with Pearson correlation analysis, univariate Cox regression, Lasso regression, and multivariate Cox regression. Then a cuproptosis-related lncRNA prognostic risk scoring equation was constructed. Patients were divided into high-risk and low-risk groups based on the median risk score, and the immune cell abundance between the two groups were compared. The accuracy of the risk scoring equation was evaluated using Kaplan-Meier survival curves, and the application of the risk scoring equation in predicting 1, 3 and 5-year survival rates was evaluated using receiver operating characteristic (ROC) curves. Univariate and multivariate Cox regression were used to screen for prognostic factors related to bladder cancer patients, and a prognostic risk assessment nomogram was constructed, the accuracy of which was evaluated with calibration curves. RESULTS: A prognostic risk scoring equation for bladder cancer patients was constructed based on nine cuproptosis-related lncRNAs. Immune infiltration analysis showed that the abundances of M0 macrophages, M1 macrophages, M2 macrophages, resting mast cells and neutrophils in the high-risk group were significantly higher than those in the low-risk group, while the abundances of CD8+ T cells, helper T cells, regulatory T cells and plasma cells in the low-risk group were significantly higher than those in the high-risk group (all P<0.05). Kaplan-Meier survival curve analysis showed that the total survival and progression-free survival of the low-risk group were longer than those of the high-risk group (both P<0.01). Univariate and multivariate Cox analysis showed that the risk score, age and tumor stage were independent factors for patient prognosis. The ROC curve analysis showed that the area under the curve (AUC) of the risk score in predicting 1, 3 and 5-year survival was 0.716, 0.697 and 0.717, respectively. When combined with age and tumor stage, the AUC for predicting 1-year prognosis increased to 0.725. The prognostic risk assessment nomogram for bladder cancer patients constructed based on patient age, tumor stage, and risk score had a prediction value that was consistent with the actual value. CONCLUSIONS: A bladder cancer patient prognosis risk assessment model based on cuproptosis-related lncRNA has been successfully constructed in this study. The model can predict the prognosis of bladder cancer patients and their immune infiltration status, which may also provide a reference for tumor immunotherapy.


Assuntos
Apoptose , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Humanos , Linfócitos T CD8-Positivos , Prognóstico , RNA Longo não Codificante/genética , Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Cobre
18.
J Am Chem Soc ; 144(3): 1087-1093, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35007081

RESUMO

Enantioselective [3 + 2] annulation of N-heteroarenes with alkynes has been developed via a cobalt-catalyzed dearomative umpolung strategy in the presence of chiral ligand and reducing reagent. A variety of electron-deficient N-heteroarenes, including quinolines, isoquinolines, quinoxaline, and pyridines, and internal or terminal alkynes are employed in this reaction, showing a broad substrate scope and good functionality tolerance. Annulation of electron-rich indoles with alkynes is also developed. This protocol provides a straightforward access to a variety of N-spiroheterocyclic molecules in excellent enantioselectivities (76 examples, up to 99% ee).

19.
BMC Med ; 20(1): 463, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36447229

RESUMO

BACKGROUND: Compared with patients who require fewer antihypertensive agents, those with apparent treatment-resistant hypertension (aTRH) are at increased risk for cardiovascular and all-cause mortality, independent of blood pressure control. However, the etiopathogenesis of aTRH is still poorly elucidated. METHODS: We performed a genome-wide association study (GWAS) in first cohort including 586 aTRHs and 871 healthy controls. Next, expression quantitative trait locus (eQTL) analysis was used to identify genes that are regulated by single nucleotide polymorphisms (SNPs) derived from the GWAS. Then, we verified the genes obtained from the eQTL analysis in the validation cohort including 65 aTRHs, 96 hypertensives, and 100 healthy controls through gene expression profiling analysis and real-time quantitative polymerase chain reaction (RT-qPCR) assay. RESULTS: The GWAS in first cohort revealed four suggestive loci (1p35, 4q13.2-21.1, 5q22-23.2, and 15q11.1-q12) represented by 23 SNPs. The 23 significant SNPs were in or near LAPTM5, SDC3, UGT2A1, FTMT, and NIPA1. eQTL analysis uncovered 14 SNPs in 1p35 locus all had same regulation directions for SDC3 and LAPTM5. The disease susceptible alleles of SNPs in 1p35 locus were associated with lower gene expression for SDC3 and higher gene expression for LAPTM5. The disease susceptible alleles of SNPs in 4q13.2-21.1 were associated with higher gene expression for UGT2B4. GTEx database did not show any statistically significant eQTLs between the SNPs in 5q22-23.2 and 15q11.1-q12 loci and their influenced genes. Then, gene expression profiling analysis in the validation cohort confirmed lower expression of SDC3 in aTRH but no significant differences on LAPTM5 and UGT2B4, when compared with controls and hypertensives, respectively. RT-qPCR assay further verified the lower expression of SDC3 in aTRH. CONCLUSIONS: Our study identified a novel association of SDC3 with aTRH, which contributes to the elucidation of its etiopathogenesis and provides a promising therapeutic target.


Assuntos
Estudo de Associação Genômica Ampla , Hipertensão , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/genética , Locos de Características Quantitativas/genética , Polimorfismo de Nucleotídeo Único/genética , Anti-Hipertensivos , Sindecana-3 , Glucuronosiltransferase
20.
Clin Genet ; 101(4): 411-420, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35023146

RESUMO

Elevated serum uric acid (UA) level has been shown to be influenced by multiple genetic variants, but it remains uncertain how UA-associated variants differ in their influence on hyperuricemia risk in people taking antihypertensive drugs. We examined a total of 43 UA-related variants at 29 genes in 1840 patients with hypertension from a community-based longitudinal cohort during a median 2.25-year follow-up (including 1031 participants with normal UA, 440 prevalent hyperuricemia at baseline, and 369 new-onset hyperuricemia). Compared with the wild-type genotypes, patients carrying the SLC2A9 rs3775948G allele or the rs13129697G allele had decreased risk of hyperuricemia, while patients carrying the SLC2A9 rs11722228T allele had increased risk of hyperuricemia, after adjustment for cardiovascular risk factors and correction for multiple comparisons; moreover, these associations were modified by the use of diuretics, ß-blockers, or angiotensin converting enzyme inhibitors. The rs10821905A allele of A1CF gene was associated with increased risk of hyperuricemia, and this risk was enhanced by diuretics use. The studied variants were not observed to confer risk for incident cardiovascular events during the follow-up. In conclusion, the genes SLC2A9 and A1CF may serve as potential genetic markers for hyperuricemia risk in relation to antihypertensive drugs therapy in Chinese hypertensive patients.


Assuntos
Hipertensão , Hiperuricemia , Anti-Hipertensivos/efeitos adversos , Diuréticos/efeitos adversos , Proteínas Facilitadoras de Transporte de Glucose/genética , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hiperuricemia/complicações , Hiperuricemia/tratamento farmacológico , Hiperuricemia/genética , Estudos Longitudinais , Fatores de Risco , Ácido Úrico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa