Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(31): e2207978120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487086

RESUMO

Loss-of-function mutations in the KCNA1(Kv1.1) gene cause episodic ataxia type 1 (EA1), a neurological disease characterized by cerebellar dysfunction, ataxic attacks, persistent myokymia with painful cramps in skeletal muscles, and epilepsy. Precision medicine for EA1 treatment is currently unfeasible, as no drug that can enhance the activity of Kv1.1-containing channels and offset the functional defects caused by KCNA1 mutations has been clinically approved. Here, we uncovered that niflumic acid (NFA), a currently prescribed analgesic and anti-inflammatory drug with an excellent safety profile in the clinic, potentiates the activity of Kv1.1 channels. NFA increased Kv1.1 current amplitudes by enhancing the channel open probability, causing a hyperpolarizing shift in the voltage dependence of both channel opening and gating charge movement, slowing the OFF-gating current decay. NFA exerted similar actions on both homomeric Kv1.2 and heteromeric Kv1.1/Kv1.2 channels, which are formed in most brain structures. We show that through its potentiating action, NFA mitigated the EA1 mutation-induced functional defects in Kv1.1 and restored cerebellar synaptic transmission, Purkinje cell availability, and precision of firing. In addition, NFA ameliorated the motor performance of a knock-in mouse model of EA1 and restored the neuromuscular transmission and climbing ability in Shaker (Kv1.1) mutant Drosophila melanogaster flies (Sh5). By virtue of its multiple actions, NFA has strong potential as an efficacious single-molecule-based therapeutic agent for EA1 and serves as a valuable model for drug discovery.


Assuntos
Mioquimia , Animais , Camundongos , Drosophila melanogaster , Ataxia , Drosophila , Canal de Potássio Kv1.2
2.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499661

RESUMO

Locus coeruleus (LC) neurons, with their extensive innervations throughout the brain, control a broad range of physiological processes. Several ion channels have been characterized in LC neurons that control intrinsic membrane properties and excitability. However, ERG (ether-à-go-go-related gene) K+ channels that are particularly important in setting neuronal firing rhythms and automaticity have not as yet been discovered in the LC. Moreover, the neurophysiological and pathophysiological roles of ERG channels in the brain remain unclear despite their expression in several structures. By performing immunohistochemical investigations, we found that ERG-1A, ERG-1B, ERG-2 and ERG-3 are highly expressed in the LC neurons of mice. To examine the functional role of ERG channels, current-clamp recordings were performed on mouse LC neurons in brain slices under visual control. ERG channel blockade by WAY-123,398, a class III anti-arrhythmic agent, increased the spontaneous firing activity and discharge irregularity of LC neurons. Here, we have shown the presence of distinct ERG channel subunits in the LC which play an imperative role in modulating neuronal discharge patterns. Thus, we propose that ERG channels are important players behind the changes in, and/or maintenance of, LC firing patterns that are implicated in the generation of different behaviors and in several disorders.


Assuntos
Canais de Potássio Éter-A-Go-Go , Locus Cerúleo , Camundongos , Animais , Locus Cerúleo/metabolismo , Potenciais de Ação , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Neurônios/metabolismo , Antiarrítmicos/farmacologia
3.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897654

RESUMO

Mutations in the KCNA1 gene, encoding the voltage-gated potassium channel Kv1.1, have been associated with a spectrum of neurological phenotypes, including episodic ataxia type 1 and developmental and epileptic encephalopathy. We have recently identified a de novo variant in KCNA1 in the highly conserved Pro-Val-Pro motif within the pore of the Kv1.1 channel in a girl affected by early onset epilepsy, ataxia and developmental delay. Other mutations causing severe epilepsy are located in Kv1.1 pore domain. The patient was initially treated with a combination of antiepileptic drugs with limited benefit. Finally, seizures and ataxia control were achieved with lacosamide and acetazolamide. The aim of this study was to functionally characterize Kv1.1 mutant channel to provide a genotype-phenotype correlation and discuss therapeutic options for KCNA1-related epilepsy. To this aim, we transfected HEK 293 cells with Kv1.1 or P403A cDNAs and recorded potassium currents through whole-cell patch-clamp. P403A channels showed smaller potassium currents, voltage-dependent activation shifted by +30 mV towards positive potentials and slower kinetics of activation compared with Kv1.1 wild-type. Heteromeric Kv1.1+P403A channels, resembling the condition of the heterozygous patient, confirmed a loss-of-function biophysical phenotype. Overall, the functional characterization of P403A channels correlates with the clinical symptoms of the patient and supports the observation that mutations associated with severe epileptic phenotype cluster in a highly conserved stretch of residues in Kv1.1 pore domain. This study also strengthens the beneficial effect of acetazolamide and sodium channel blockers in KCNA1 channelopathies.


Assuntos
Epilepsia , Canal de Potássio Kv1.1 , Acetazolamida , Ataxia/tratamento farmacológico , Ataxia/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Células HEK293 , Humanos , Canal de Potássio Kv1.1/química , Canal de Potássio Kv1.1/genética , Mutação , Potássio
4.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576077

RESUMO

Kv1.2 channels, encoded by the KCNA2 gene, are localized in the central and peripheral nervous system, where they regulate neuronal excitability. Recently, heterozygous mutations in KCNA2 have been associated with a spectrum of symptoms extending from epileptic encephalopathy, intellectual disability, and cerebellar ataxia. Patients are treated with a combination of antiepileptic drugs and 4-aminopyridine (4-AP) has been recently trialed in specific cases. We identified a novel variant in KCNA2, E236K, in a Serbian proband with non-progressive congenital ataxia and early onset epilepsy, treated with sodium valproate. To ascertain the pathogenicity of E236K mutation and to verify its sensitivity to 4-AP, we transfected HEK 293 cells with Kv1.2 WT or E236K cDNAs and recorded potassium currents through the whole-cell patch-clamp. In silico analysis supported the electrophysiological data. E236K channels showed voltage-dependent activation shifted towards negative potentials and slower kinetics of deactivation and activation compared with Kv1.2 WT. Heteromeric Kv1.2 WT+E236K channels, resembling the condition of the heterozygous patient, confirmed a mixed gain- and loss-of-function (GoF/LoF) biophysical phenotype. 4-AP inhibited both Kv1.2 and E236K channels with similar potency. Homology modeling studies of mutant channels suggested a reduced interaction between the residue K236 in the S2 segment and the gating charges at S4. Overall, the biophysical phenotype of E236K channels correlates with the mild end of the clinical spectrum reported in patients with GoF/LoF defects. The response to 4-AP corroborates existing evidence that KCNA2-disorders could benefit from variant-tailored therapeutic approaches, based on functional studies.


Assuntos
4-Aminopiridina/uso terapêutico , Ataxia Cerebelar/congênito , Ataxia Cerebelar/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Canal de Potássio Kv1.2/genética , Sequência de Aminoácidos , Encéfalo/diagnóstico por imagem , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/tratamento farmacológico , Criança , Pré-Escolar , Epilepsia/diagnóstico por imagem , Humanos , Lactente , Canal de Potássio Kv1.2/química , Imageamento por Ressonância Magnética , Masculino , Simulação de Dinâmica Molecular , Adulto Jovem
5.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205849

RESUMO

The ability of spermatozoa to swim towards an oocyte and fertilize it depends on precise K+ permeability changes. Kir5.1 is an inwardly-rectifying potassium (Kir) channel with high sensitivity to intracellular H+ (pHi) and extracellular K+ concentration [K+]o, and hence provides a link between pHi and [K+]o changes and membrane potential. The intrinsic pHi sensitivity of Kir5.1 suggests a possible role for this channel in the pHi-dependent processes that take place during fertilization. However, despite the localization of Kir5.1 in murine spermatozoa, and its increased expression with age and sexual maturity, the role of the channel in sperm morphology, maturity, motility, and fertility is unknown. Here, we confirmed the presence of Kir5.1 in spermatozoa and showed strong expression of Kir4.1 channels in smooth muscle and epithelial cells lining the epididymal ducts. In contrast, Kir4.2 expression was not detected in testes. To examine the possible role of Kir5.1 in sperm physiology, we bred mice with a deletion of the Kcnj16 (Kir5.1) gene and observed that 20% of Kir5.1 knock-out male mice were infertile. Furthermore, 50% of knock-out mice older than 3 months were unable to breed. By contrast, 100% of wild-type (WT) mice were fertile. The genetic inactivation of Kcnj16 also resulted in smaller testes and a greater percentage of sperm with folded flagellum compared to WT littermates. Nevertheless, the abnormal sperm from mutant animals displayed increased progressive motility. Thus, ablation of the Kcnj16 gene identifies Kir5.1 channel as an important element contributing to testis development, sperm flagellar morphology, motility, and fertility. These findings are potentially relevant to the understanding of the complex pHi- and [K+]o-dependent interplay between different sperm ion channels, and provide insight into their role in fertilization and infertility.


Assuntos
Infertilidade Masculina/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Espermatozoides/metabolismo , Animais , Fertilidade/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Infertilidade Masculina/patologia , Masculino , Potenciais da Membrana/genética , Camundongos , Camundongos Knockout , Músculo Liso/metabolismo , Oócitos/crescimento & desenvolvimento , Potássio/metabolismo , Motilidade dos Espermatozoides/genética , Espermatozoides/crescimento & desenvolvimento , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Canal Kir5.1
6.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199759

RESUMO

The TWIK-related spinal cord potassium channel (TRESK) is encoded by KCNK18, and variants in this gene have previously been associated with susceptibility to familial migraine with aura (MIM #613656). A single amino acid substitution in the same protein, p.Trp101Arg, has also been associated with intellectual disability (ID), opening the possibility that variants in this gene might be involved in different disorders. Here, we report the identification of KCNK18 biallelic missense variants (p.Tyr163Asp and p.Ser252Leu) in a family characterized by three siblings affected by mild-to-moderate ID, autism spectrum disorder (ASD) and other neurodevelopment-related features. Functional characterization of the variants alone or in combination showed impaired channel activity. Interestingly, Ser252 is an important regulatory site of TRESK, suggesting that alteration of this residue could lead to additive downstream effects. The functional relevance of these mutations and the observed co-segregation in all the affected members of the family expand the clinical variability associated with altered TRESK function and provide further insight into the relationship between altered function of this ion channel and human disease.


Assuntos
Alelos , Deficiência Intelectual/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Canais de Potássio/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Calcineurina/metabolismo , Feminino , Genoma Humano , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ionomicina/farmacologia , Masculino , Linhagem , Canais de Potássio/química , Irmãos , Xenopus laevis/metabolismo , Adulto Jovem
7.
Pflugers Arch ; 472(7): 923-930, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32394190

RESUMO

Mutations in the KCNK18 gene that encodes the TRESK K2P potassium channel have previously been linked with typical familial migraine with aura. Recently, an atypical clinical case has been reported in which a male individual carrying the p.Trp101Arg (W101R) missense mutation in the KCNK18 gene was diagnosed with intellectual disability and migraine with brainstem aura. Here we report the functional characterization of this new missense variant. This mutation is located in a highly conserved residue close to the selectivity filter, and our results show although these mutant channels retain their K+ selectivity and calcineurin-dependent regulation, the variant causes an overall dramatic loss of TRESK channel function as well as an initial dominant-negative effect when co-expressed with wild-type channels in Xenopus laevis oocytes. The dramatic functional consequences of this mutation thereby support a potentially pathogenic role for this variant and provide further insight into the relationship between the structure and function of this ion channel.


Assuntos
Deficiência Intelectual/genética , Transtornos de Enxaqueca/genética , Mutação de Sentido Incorreto/genética , Canais de Potássio/genética , Animais , Calcineurina/genética , Humanos , Deficiência Intelectual/metabolismo , Potenciais da Membrana/genética , Transtornos de Enxaqueca/metabolismo , Oócitos/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
8.
Pflugers Arch ; 472(7): 899-909, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32577860

RESUMO

Investigating the Shaker-related K+ channel Kv1.1, the dysfunction of which is responsible for episodic ataxia 1 (EA1), at the functional and molecular level provides valuable understandings on normal channel dynamics, structural correlates underlying voltage-gating, and disease-causing mechanisms. Most studies focused on apparently functional amino acid residues composing voltage-gated K+ channels, neglecting the simplest ones. Glycine at position 311 of Kv1.1 is highly conserved both evolutionarily and within the Kv channel superfamily, is located in a region functionally relevant (the S4-S5 linker), and results in overt disease when mutated (p.G311D). By mutating the G311 residue to aspartate, we show here that the channel voltage-gating, activation, deactivation, inactivation, and window currents are markedly affected. In silico, modeling shows this glycine residue is strategically placed at one end of the linker helix which must be free to both bend and move past other portions of the protein during the channel's opening and closing. This is befitting of a glycine residue as its small neutral side chain allows for movement unhindered by interaction with any other amino acid. Results presented reveal the crucial importance of a distinct glycine residue, within the S4-S5 linker, in the voltage-dependent electromechanical coupling that control channel gating.


Assuntos
Aminoácidos/metabolismo , Ativação do Canal Iônico/fisiologia , Canal de Potássio Kv1.1/genética , Sequência de Aminoácidos , Animais , Ataxia/metabolismo , Ataxia/patologia , Xenopus laevis/metabolismo
9.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331416

RESUMO

Kv1.1 belongs to the Shaker subfamily of voltage-gated potassium channels and acts as a critical regulator of neuronal excitability in the central and peripheral nervous systems. KCNA1 is the only gene that has been associated with episodic ataxia type 1 (EA1), an autosomal dominant disorder characterized by ataxia and myokymia and for which different and variable phenotypes have now been reported. The iterative characterization of channel defects at the molecular, network, and organismal levels contributed to elucidating the functional consequences of KCNA1 mutations and to demonstrate that ataxic attacks and neuromyotonia result from cerebellum and motor nerve alterations. Dysfunctions of the Kv1.1 channel have been also associated with epilepsy and kcna1 knock-out mouse is considered a model of sudden unexpected death in epilepsy. The tissue-specific association of Kv1.1 with other Kv1 members, auxiliary and interacting subunits amplifies Kv1.1 physiological roles and expands the pathogenesis of Kv1.1-associated diseases. In line with the current knowledge, Kv1.1 has been proposed as a novel and promising target for the treatment of brain disorders characterized by hyperexcitability, in the attempt to overcome limited response and side effects of available therapies. This review recounts past and current studies clarifying the roles of Kv1.1 in and beyond the nervous system and its contribution to EA1 and seizure susceptibility as well as its wide pharmacological potential.


Assuntos
Canalopatias/etiologia , Canalopatias/terapia , Predisposição Genética para Doença , Canal de Potássio Kv1.1/genética , Mutação , Alelos , Animais , Canalopatias/diagnóstico , Canalopatias/metabolismo , Gerenciamento Clínico , Regulação da Expressão Gênica , Estudos de Associação Genética , Genótipo , Humanos , Ativação do Canal Iônico , Canal de Potássio Kv1.1/química , Canal de Potássio Kv1.1/metabolismo , Terapia de Alvo Molecular , Fenótipo , Relação Estrutura-Atividade
10.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471306

RESUMO

Episodic ataxia type 2 (EA2) is characterized by paroxysmal attacks of ataxia with typical onset in childhood or early adolescence. The disease is associated with mutations in the voltage-gated calcium channel alpha 1A subunit (Cav2.1) that is encoded by the CACNA1A gene. However, previously unrecognized atypical symptoms and the genetic overlap existing between EA2, spinocerebellar ataxia type 6, familial hemiplegic migraine type 1, and other neurological diseases blur the genotype/phenotype correlations, making a differential diagnosis difficult to formulate correctly and delaying early therapeutic intervention. Here we report a new clinical phenotype of a CACNA1A-associated disease characterized by absence epilepsy occurring during childhood. However, much later in life the patient displayed non-episodic, slowly progressive gait ataxia. Gene panel sequencing for hereditary ataxias led to the identification of a novel heterozygous CACNA1A mutation (c.1913 + 2T > G), altering the donor splice site of intron 14. This genetic defect was predicted to result in an in-frame deletion removing 44 amino acids from the voltage-gated calcium channel Cav2.1. An RT-PCR analysis of cDNA derived from patient skin fibroblasts confirmed the skipping of the entire exon 14. Furthermore, two-electrode voltage-clamp recordings performed from Xenopus laevis oocytes expressing a wild-type versus mutant channel showed that the genetic defect caused a complete loss of channel function. This represents the first description of distinct clinical manifestations that remarkably expand the genetic and phenotypic spectrum of CACNA1A-related diseases and should be considered for an early diagnosis and effective therapeutic intervention.


Assuntos
Canais de Cálcio/genética , Ataxia Cerebelar/genética , Epilepsia/genética , Mutação com Perda de Função , Animais , Canais de Cálcio/metabolismo , Células Cultivadas , Ataxia Cerebelar/complicações , Ataxia Cerebelar/patologia , Epilepsia/complicações , Epilepsia/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Splicing de RNA , Xenopus
11.
Mol Cell Neurosci ; 83: 6-12, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28666963

RESUMO

Episodic ataxia type 1 (EA1) is a human dominant neurological syndrome characterized by continuous myokymia, episodic attacks of ataxic gait and spastic contractions of skeletal muscles that can be triggered by emotional stress and fatigue. This rare disease is caused by missense mutations in the KCNA1 gene coding for the neuronal voltage gated potassium channel Kv1.1, which contributes to nerve cell excitability in the cerebellum, hippocampus, cortex and peripheral nervous system. We identified a novel KCNA1 mutation, E283K, in an Italian proband presenting with paroxysmal ataxia and myokymia aggravated by painful contractures and metabolic dysfunctions. The E283K mutation is located in the S3-S4 extracellular linker belonging to the voltage sensor domain of Kv channels. In order to test whether the E283K mutation affects Kv1.1 biophysical properties we transfected HEK293 cells with WT or mutant cDNAs alone or in a 1:1 combination, and recorded relative potassium currents in the whole-cell configuration of patch-clamp. Mutant E283K channels display voltage-dependent activation shifted by 10mV toward positive potentials and kinetics of activation slowed by ~2 fold compared to WT channels. Potassium currents resulting from heteromeric WT/E283K channels show voltage-dependent gating and kinetics of activation intermediate between WT and mutant homomeric channels. Based on homology modeling studies of the mutant E283K, we propose a molecular explanation for the reduced voltage sensitivity and slow channel opening. Overall, our results suggest that the replacement of a negatively charged residue with a positively charged lysine at position 283 in Kv1.1 causes a drop of potassium current that likely accounts for EA-1 symptoms in the heterozygous carrier.


Assuntos
Ataxia/genética , Canal de Potássio Kv1.1/metabolismo , Mutação de Sentido Incorreto , Mioquimia/genética , Ataxia/metabolismo , Ataxia/patologia , Feminino , Células HEK293 , Humanos , Ativação do Canal Iônico , Canal de Potássio Kv1.1/química , Canal de Potássio Kv1.1/genética , Pessoa de Meia-Idade , Mioquimia/metabolismo , Mioquimia/patologia , Linhagem
12.
J Neurophysiol ; 118(4): 2402-2411, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28747464

RESUMO

A 2-yr-old boy presented profound developmental delay, failure to thrive, ataxia, hypotonia, and tonic-clonic seizures that caused the death of the patient. Targeted and whole exome sequencing revealed two heterozygous missense variants: a novel mutation in the KCNJ10 gene that encodes for the inward-rectifying K+ channel Kir4.1 and another previously characterized mutation in KCNT1 that encodes for the Na+-activated K+ channel known as Slo2.2 or SLACK. The objectives of this study were to perform the clinical and genetic characterization of the proband and his family and to examine the functional consequence of the Kir4.1 mutation. The mutant and wild-type KCNJ10 constructs were generated and heterologously expressed in Xenopus laevis oocytes, and whole cell K+ currents were measured using the two-electrode voltage-clamp technique. The KCNJ10 mutation c.652C>T resulted in a p.L218F substitution at a highly conserved residue site. Wild-type KCNJ10 expression yielded robust Kir current, whereas currents from oocytes expressing the mutation were reduced, remarkably. Western Blot analysis revealed reduced protein expression by the mutation. Kir5.1 subunits display selective heteromultimerization with Kir4.1 constituting channels with unique kinetics. The effect of the mutation on Kir4.1/5.1 channel activity was twofold: a reduction in current amplitudes and an increase in the pH-dependent inhibition. We thus report a novel loss-of-function mutation in Kir4.1 found in a patient with a coexisting mutation in SLACK channels that results in a fatal disease.NEW & NOTEWORTHY We present and characterize a novel mutation in KCNJ10 Unlike previously reported EAST/SeSAME patients, our patient was heterozygous, and contrary to previous studies, mimicking the heterozygous state by coexpression resulted in loss of channel function. We report in the same patient co-occurrence of a KCNT1 mutation resulting in a more severe phenotype. This study provides new insights into the phenotypic spectrum and to the genotype-phenotype correlations associated with EAST/SeSAME and MMFSI.


Assuntos
Deficiências do Desenvolvimento/genética , Mutação com Perda de Função , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio/genética , Convulsões/genética , Animais , Deficiências do Desenvolvimento/patologia , Heterozigoto , Humanos , Lactente , Masculino , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Ativados por Sódio , Convulsões/patologia , Síndrome , Xenopus
13.
J Med Genet ; 53(11): 786-792, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27582084

RESUMO

BACKGROUND: Voltage-gated potassium channels are highly diverse proteins representing the most complex class of voltage-gated ion channels from structural and functional perspectives. Deficiency of these channels usually results in various human disorders. OBJECTIVES: To describe a novel autosomal recessive syndrome associated with KCNA4 deficiency leading to congenital cataract, abnormal striatum, intellectual disability and attention deficit hyperactivity disorder. METHODS: We used SNP arrays, linkage analyses, autozygosity mapping, whole-exome sequencing, RT-PCR and two-electrode voltage-clamp recording. RESULTS: We identified a missense variant (p.Arg89Gln) in KCNA4 in four patients from a consanguineous family manifesting a novel syndrome of congenital cataract, abnormal striatum, intellectual disability and attention deficit hyperactivity disorder. The variant was fully segregated with the disease and absent in 747 ethnically matched exomes. Xenopus oocytes were injected with human Kv1.4 wild-type mRNA, R89Q and WT/R89Q channels. The wild type had mean current amplitude that was significantly greater than those recorded from the cells expressing the same amount of mutant mRNA. Co-expression of the wild type and mutant mRNAs resulted in mean current amplitude that was significantly different from that of the wild type. RT-PCR indicated that KCNA4 is present in mouse brain, lens and retina. KCNA4 interacts with several molecules including synaptotagmin I, DLG1 and DLG2. The channel co-localises with cholinergic amacrine and rod bipolar cells in rats and is widely distributed in the central nervous system. Based on previous studies, the channel is highly expressed in outer retina, rod inner segments, hippocampus and concentrated in axonal membranes. CONCLUSION: KCNA4 (Kv1.4) is implicated in a novel syndrome characterised by striatal thinning, congenital cataract and attention deficit hyperactivity disorder. Our study highlights potassium channels' role in ocular and neuronal genetics.

14.
Brain ; 138(Pt 7): 1817-32, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25981959

RESUMO

Cerebral palsy is a sporadic disorder with multiple likely aetiologies, but frequently considered to be caused by birth asphyxia. Genetic investigations are rarely performed in patients with cerebral palsy and there is little proven evidence of genetic causes. As part of a large project investigating children with ataxia, we identified four patients in our cohort with a diagnosis of ataxic cerebral palsy. They were investigated using either targeted next generation sequencing or trio-based exome sequencing and were found to have mutations in three different genes, KCNC3, ITPR1 and SPTBN2. All the mutations were de novo and associated with increased paternal age. The mutations were shown to be pathogenic using a combination of bioinformatics analysis and in vitro model systems. This work is the first to report that the ataxic subtype of cerebral palsy can be caused by de novo dominant point mutations, which explains the sporadic nature of these cases. We conclude that at least some subtypes of cerebral palsy may be caused by de novo genetic mutations and patients with a clinical diagnosis of cerebral palsy should be genetically investigated before causation is ascribed to perinatal asphyxia or other aetiologies.


Assuntos
Ataxia/genética , Paralisia Cerebral/genética , Doenças Genéticas Inatas/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Mutação Puntual , Canais de Potássio Shaw/genética , Espectrina/genética , Sequência de Bases , Criança , Pré-Escolar , Análise Mutacional de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Técnicas de Patch-Clamp , Análise de Sequência de DNA
15.
J Neurophysiol ; 113(7): 2653-65, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25652918

RESUMO

Trigeminal ganglion (TG) neurons are functionally and morphologically heterogeneous, and the molecular basis of this heterogeneity is still not fully understood. Here we describe experiments showing that a subpopulation of neurons expresses a delayed-rectifying K(+) current (IDRK) with a characteristically high (nanomolar) sensitivity to the dihydroquinoline CP339,818 (CP). Although submicromolar CP has previously been shown to selectively block Kv1.3 and Kv1.4 channels, the CP-sensitive IDRK found in TG neurons could not be associated with either of these two K(+) channels. It could neither be associated with Kv2.1 channels homomeric or heteromerically associated with the Kv9.2, Kv9.3, or Kv6.4 subunits, whose block by CP, tested using two-electrode voltage-clamp recordings from Xenopus oocytes, resulted in the low micromolar range, nor to the Kv7 subfamily, given the lack of blocking efficacy of 3 µM XE991. Within the group of multiple-firing neurons considered in this study, the CP-sensitive IDRK was preferentially expressed in a subpopulation showing several nociceptive markers, such as small membrane capacitance, sensitivity to capsaicin, and slow afterhyperpolarization (AHP); in these neurons the CP-sensitive IDRK controls the membrane resting potential, the firing frequency, and the AHP duration. A biophysical study of the CP-sensitive IDRK indicated the presence of two kinetically distinct components: a fast deactivating component having a relatively depolarized steady-state inactivation (IDRKf) and a slow deactivating component with a more hyperpolarized V1/2 for steady-state inactivation (IDRKs).


Assuntos
Canais de Potássio de Retificação Tardia/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Neurônios/fisiologia , Nociceptores/fisiologia , Quinolinas/administração & dosagem , Quinolinas/farmacologia , Gânglio Trigeminal/fisiologia , Aminoquinolinas , Animais , Iminas , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Nociceptores/efeitos dos fármacos , Gânglio Trigeminal/efeitos dos fármacos , Xenopus
16.
Exp Brain Res ; 230(4): 453-62, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23702970

RESUMO

The activity of voltage-gated K(+) channels (Kv) can be dynamically modulated by several events, including neurotransmitter stimulated biochemical cascades mediated by G protein-coupled receptors such as 5-HT2 receptors (5-HT2Rs). Activation of 5-HT2A/CR inhibits the Shaker-like K(+) channels Kv1.1 and Kv1.2, and this modulation involves the dual coordination of both RPTPα and distinct tyrosine kinases coupled to this receptor; 5-HT2Rs-mediated modulation of Kv channels controls glutamate release onto prefrontal cortex neurons that might play critical roles in neurophysiological, neurological, and psychiatric conditions. Noticeably, hallucinogens modulate Kv channel activity, acting at 5-HT2R. Hence, comprehensive knowledge of 5-HT2R signaling through modulation of distinct K(+) channels is a pivotal step in the direction that will enable scientists to discover novel 5-HT functions and dysfunctions in the brain and to identify original therapeutic targets.


Assuntos
Neurônios/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Receptores 5-HT2 de Serotonina/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Fosforilação/fisiologia , Serotonina/metabolismo
17.
Neurobiol Dis ; 47(3): 310-21, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22609489

RESUMO

Episodic ataxia type 1 (EA1) is an autosomal dominant neurological disorder characterized by myokymia and attacks of ataxic gait often precipitated by stress. Several genetic mutations have been identified in the Shaker-like K(+) channel Kv1.1 (KCNA1) of EA1 individuals, including V408A, which result in remarkable channel dysfunction. By inserting the heterozygous V408A, mutation in one Kv1.1 allele, a mouse model of EA1 has been generated (Kv1.1(V408A/+)). Here, we investigated the neuromuscular transmission of Kv1.1(V408A/+) ataxic mice and their susceptibility to physiologically relevant stressors. By using in vivo preparations of lateral gastrocnemius (LG) nerve-muscle from Kv1.1(+/+) and Kv1.1(V408A/+) mice, we show that the mutant animals exhibit spontaneous myokymic discharges consisting of repeated singlets, duplets or multiplets, despite motor nerve axotomy. Two-photon laser scanning microscopy from the motor nerve, ex vivo, revealed spontaneous Ca(2+) signals that occurred abnormally only in preparations dissected from Kv1.1(V408A/+) mice. Spontaneous bursting activity, as well as that evoked by sciatic nerve stimulation, was exacerbated by muscle fatigue, ischemia and low temperatures. These stressors also increased the amplitude of compound muscle action potential. Such abnormal neuromuscular transmission did not alter fiber type composition, neuromuscular junction and vascularization of LG muscle, analyzed by light and electron microscopy. Taken together these findings provide direct evidence that identifies the motor nerve as an important generator of myokymic activity, that dysfunction of Kv1.1 channels alters Ca(2+) homeostasis in motor axons, and also strongly suggest that muscle fatigue contributes more than PNS fatigue to exacerbate the myokymia/neuromyotonia phenotype. More broadly, this study points out that juxtaparanodal K(+) channels composed of Kv1.1 subunits exert an important role in dampening the excitability of motor nerve axons during fatigue or ischemic insult.


Assuntos
Ataxia , Temperatura Baixa/efeitos adversos , Isquemia/complicações , Canal de Potássio Kv1.1/genética , Fadiga Muscular/fisiologia , Mioquimia/complicações , Alanina/genética , Animais , Ataxia/complicações , Ataxia/genética , Ataxia/patologia , Cálcio/metabolismo , Sinalização do Cálcio/genética , Modelos Animais de Doenças , Eletromiografia , Potenciais Evocados/genética , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Fadiga Muscular/genética , Tono Muscular/genética , Mutação/genética , Mioquimia/genética , Mioquimia/patologia , Junção Neuromuscular/genética , Junção Neuromuscular/fisiopatologia , Junção Neuromuscular/ultraestrutura , Nervo Isquiático/patologia , Nervo Isquiático/fisiopatologia , Fatores de Tempo , Valina/genética
18.
Cells ; 11(17)2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36078064

RESUMO

Astrocytes, the main glial cells of the central nervous system, play a key role in brain volume control due to their intimate contacts with cerebral blood vessels and the expression of a distinctive equipment of proteins involved in solute/water transport. Among these is MLC1, a protein highly expressed in perivascular astrocytes and whose mutations cause megalencephalic leukoencephalopathy with subcortical cysts (MLC), an incurable leukodystrophy characterized by macrocephaly, chronic brain edema, cysts, myelin vacuolation, and astrocyte swelling. Although, in astrocytes, MLC1 mutations are known to affect the swelling-activated chloride currents (ICl,swell) mediated by the volume-regulated anion channel (VRAC), and the regulatory volume decrease, MLC1's proper function is still unknown. By combining molecular, biochemical, proteomic, electrophysiological, and imaging techniques, we here show that MLC1 is a Ca2+/Calmodulin-dependent protein kinase II (CaMKII) target protein, whose phosphorylation, occurring in response to intracellular Ca2+ release, potentiates VRAC-mediated ICl,swell. Overall, these findings reveal that MLC1 is a Ca2+-regulated protein, linking volume regulation to Ca2+ signaling in astrocytes. This knowledge provides new insight into the MLC1 protein function and into the mechanisms controlling ion/water exchanges in the brain, which may help identify possible molecular targets for the treatment of MLC and other pathological conditions caused by astrocyte swelling and brain edema.


Assuntos
Edema Encefálico , Cistos , Astrócitos/metabolismo , Edema Encefálico/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cloretos/metabolismo , Cistos/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Humanos , Proteínas de Membrana/metabolismo , Proteômica , Canais de Ânion Dependentes de Voltagem/metabolismo , Água/metabolismo
19.
Am J Physiol Cell Physiol ; 300(6): C1314-22, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21307345

RESUMO

Episodic ataxia type 1 (EA1) is an autosomal dominant disorder characterized by continuous myokymia and episodic attacks of ataxia. Mutations in the gene KCNA1 that encodes the voltage-gated potassium channel Kv1.1 are responsible for EA1. In several brain areas, Kv1.1 coassembles with Kv1.4, which confers N-type inactivating properties to heteromeric channels. It is therefore likely that the rate of inactivation will be determined by the number of Kv1.4 inactivation particles, as set by the precise subunit stoichiometry. We propose that EA1 mutations affect the rate of N-type inactivation either by reduced subunit surface expression, giving rise to a reduced number of Kv1.1 subunits in heterotetramer Kv1.1-Kv1.4 channels, or by reduced affinity for the Kv1.4 inactivation domain. To test this hypothesis, quantified amounts of mRNA for Kv1.4 or Kv1.1 containing selected EA1 mutations either in the inner vestibule of Kv1.1 on S6 or in the transmembrane regions were injected into Xenopus laevis oocytes and the relative rates of inactivation and stoichiometry were determined. The S6 mutations, V404I and V408A, which had normal surface expression, reduced the rate of inactivation by a decreased affinity for the inactivation domain while the mutations I177N in S1 and E325D in S5, which had reduced subunit surface expression, increased the rate of N-type inactivation due to a stoichiometric increase in the number of Kv1.4 subunits.


Assuntos
Ataxia/genética , Ataxia/metabolismo , Canal de Potássio Kv1.1/metabolismo , Canal de Potássio Kv1.4/metabolismo , Mutação , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Animais , Humanos , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Canal de Potássio Kv1.1/química , Canal de Potássio Kv1.1/genética , Canal de Potássio Kv1.2/genética , Canal de Potássio Kv1.2/metabolismo , Canal de Potássio Kv1.4/química , Canal de Potássio Kv1.4/genética , Modelos Moleculares , Oócitos/fisiologia , Técnicas de Patch-Clamp , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Ratos , Xenopus laevis
20.
Neurobiol Dis ; 43(1): 239-47, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21458570

RESUMO

The inwardly-rectifying potassium channel Kir4.1 is a major player in the astrocyte-mediated regulation of [K(+)](o) in the brain, which is essential for normal neuronal activity and synaptic functioning. KCNJ10, encoding Kir4.1, has been recently linked to seizure susceptibility in humans and mice, and is a possible candidate gene for Autism Spectrum Disorders (ASD). In this study, we performed a mutational screening of KCNJ10 in 52 patients with epilepsy of "unknown cause" associated with impairment of either cognitive or communicative abilities, or both. Among them, 14 patients fitted the diagnostic criteria for ASD. We identified two heterozygous KCNJ10 mutations (p.R18Q and p.V84M) in three children (two unrelated families) with seizures, ASD, and intellectual disability. The mutations replaced amino acid residues that are highly conserved throughout evolution and were undetected in about 500 healthy chromosomes. The effects of mutations on channel activity were functionally assayed using a heterologous expression system. These studies indicated that the molecular mechanism contributing to the disorder relates to an increase in either surface-expression or conductance of the Kir4.1 channel. Unlike previous syndromic associations of genetic variants in KCNJ10, the pure neuropsychiatric phenotype in our patients suggests that the new mutations affect K(+) homeostasis mainly in the brain, by acting through gain-of-function defects. Dysfunction in astrocytic-dependent K(+) buffering may contribute to autism/epilepsy phenotype, by altering neuronal excitability and synaptic function, and may represent a new target for novel therapeutic approaches.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/metabolismo , Epilepsia/metabolismo , Deficiência Intelectual/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Adolescente , Criança , Transtornos Globais do Desenvolvimento Infantil/genética , Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Pré-Escolar , Epilepsia/genética , Epilepsia/fisiopatologia , Feminino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa