Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Cell ; 83(24): 4442-4444, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38134884

RESUMO

In this issue of Molecular Cell, Bao et al.1 set out to elucidate "functional lysines" in the genome using adenine base editors. The study reveals several cases of alteration of functions that previous canonical CRISPR-Cas9 screens were unable to detect.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Adenina
2.
Cell ; 149(5): 1023-34, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22632967

RESUMO

F-box proteins are the substrate binding subunits of SCF (Skp1-Cul1-F-box protein) ubiquitin ligase complexes. Using affinity purifications and mass spectrometry, we identified RRM2 (the ribonucleotide reductase family member 2) as an interactor of the F-box protein cyclin F. Ribonucleotide reductase (RNR) catalyzes the conversion of ribonucleotides to deoxyribonucleotides (dNTPs), which are necessary for both replicative and repair DNA synthesis. We found that, during G2, following CDK-mediated phosphorylation of Thr33, RRM2 is degraded via SCF(cyclin F) to maintain balanced dNTP pools and genome stability. After DNA damage, cyclin F is downregulated in an ATR-dependent manner to allow accumulation of RRM2. Defective elimination of cyclin F delays DNA repair and sensitizes cells to DNA damage, a phenotype that is reverted by expressing a nondegradable RRM2 mutant. In summary, we have identified a biochemical pathway that controls the abundance of dNTPs and ensures efficient DNA repair in response to genotoxic stress.


Assuntos
Ciclinas/metabolismo , Reparo do DNA , Ribonucleosídeo Difosfato Redutase/metabolismo , Motivos de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Dano ao DNA , Regulação para Baixo , Fase G2 , Instabilidade Genômica , Humanos , Proteínas Serina-Treonina Quinases/metabolismo
3.
Mol Cell ; 66(2): 206-220.e9, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28416140

RESUMO

Cells exposed to hypoxia experience replication stress but do not accumulate DNA damage, suggesting sustained DNA replication. Ribonucleotide reductase (RNR) is the only enzyme capable of de novo synthesis of deoxyribonucleotide triphosphates (dNTPs). However, oxygen is an essential cofactor for mammalian RNR (RRM1/RRM2 and RRM1/RRM2B), leading us to question the source of dNTPs in hypoxia. Here, we show that the RRM1/RRM2B enzyme is capable of retaining activity in hypoxia and therefore is favored over RRM1/RRM2 in order to preserve ongoing replication and avoid the accumulation of DNA damage. We found two distinct mechanisms by which RRM2B maintains hypoxic activity and identified responsible residues in RRM2B. The importance of RRM2B in the response to tumor hypoxia is further illustrated by correlation of its expression with a hypoxic signature in patient samples and its roles in tumor growth and radioresistance. Our data provide mechanistic insight into RNR biology, highlighting RRM2B as a hypoxic-specific, anti-cancer therapeutic target.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neoplasias do Colo/enzimologia , Replicação do DNA , DNA de Neoplasias/biossíntese , Oxigênio/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/radioterapia , Dano ao DNA , DNA de Neoplasias/genética , Feminino , Células HCT116 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Interferência de RNA , Tolerância a Radiação , Ribonucleosídeo Difosfato Redutase/metabolismo , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/genética , Fatores de Tempo , Transfecção , Carga Tumoral , Hipóxia Tumoral , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
EMBO J ; 38(20): e101443, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31424118

RESUMO

Cyclins are central engines of cell cycle progression in conjunction with cyclin-dependent kinases (CDKs). Among the different cyclins controlling cell cycle progression, cyclin F does not partner with a CDK, but instead forms via its F-box domain an SCF (Skp1-Cul1-F-box)-type E3 ubiquitin ligase module. Although various substrates of cyclin F have been identified, the vulnerabilities of cells lacking cyclin F are not known. Thus, we assessed viability of cells lacking cyclin F upon challenging them with more than 180 different kinase inhibitors. The screen revealed a striking synthetic lethality between Chk1 inhibition and cyclin F loss. Chk1 inhibition in cells lacking cyclin F leads to DNA replication catastrophe. Replication catastrophe depends on accumulation of the transcription factor E2F1 in cyclin F-depleted cells. We find that SCF-cyclin F controls E2F1 ubiquitylation and degradation during the G2/M phase of the cell cycle and upon challenging cells with Chk1 inhibitors. Thus, Cyclin F restricts E2F1 activity during the cell cycle and upon checkpoint inhibition to prevent DNA replication stress. Our findings pave the way for patient selection in the clinical use of checkpoint inhibitors.


Assuntos
Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Ciclinas/metabolismo , Fator de Transcrição E2F1/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteólise , Proteínas Ligases SKP Culina F-Box/metabolismo , Mutações Sintéticas Letais , Ciclo Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/genética , Ciclinas/genética , Replicação do DNA , Fator de Transcrição E2F1/genética , Células HeLa , Humanos , Fosforilação , Ligação Proteica , Proteínas Ligases SKP Culina F-Box/genética , Ubiquitinação
5.
Biochem J ; 479(5): 661-675, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35179207

RESUMO

The BTB-Kelch protein KLHL3 is a Cullin3-dependent E3 ligase that mediates the ubiquitin-dependent degradation of kinases WNK1-4 to control blood pressure and cell volume. A crystal structure of KLHL3 has defined its binding to an acidic degron motif containing a PXXP sequence that is strictly conserved in WNK1, WNK2 and WNK4. Mutations in the second proline abrograte the interaction causing the hypertension syndrome pseudohypoaldosteronism type II. WNK3 shows a diverged degron motif containing four amino acid substitutions that remove the PXXP motif raising questions as to the mechanism of its binding. To understand this atypical interaction, we determined the crystal structure of the KLHL3 Kelch domain in complex with a WNK3 peptide. The electron density enabled the complete 11-mer WNK-family degron motif to be traced for the first time revealing several conserved features not captured in previous work, including additional salt bridge and hydrogen bond interactions. Overall, the WNK3 peptide adopted a conserved binding pose except for a subtle shift to accommodate bulkier amino acid substitutions at the binding interface. At the centre, the second proline was substituted by WNK3 Thr541, providing a unique phosphorylatable residue among the WNK-family degrons. Fluorescence polarisation and structural modelling experiments revealed that its phosphorylation would abrogate the KLHL3 interaction similarly to hypertension-causing mutations. Together, these data reveal how the KLHL3 Kelch domain can accommodate the binding of multiple WNK isoforms and highlight a potential regulatory mechanism for the recruitment of WNK3.


Assuntos
Hipertensão , Ubiquitina-Proteína Ligases , Proteínas Adaptadoras de Transdução de Sinal/genética , Humanos , Proteínas dos Microfilamentos/genética , Fosforilação , Prolina , Proteínas Serina-Treonina Quinases/genética , Ubiquitina
6.
EMBO J ; 35(13): 1400-16, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27234298

RESUMO

Skp1-Cul1-F-box protein (SCF) ubiquitin ligases direct cell survival decisions by controlling protein ubiquitylation and degradation. Sufu (Suppressor of fused) is a central regulator of Hh (Hedgehog) signaling and acts as a tumor suppressor by maintaining the Gli (Glioma-associated oncogene homolog) transcription factors inactive. Although Sufu has a pivotal role in Hh signaling, the players involved in controlling Sufu levels and their role in tumor growth are unknown. Here, we show that Fbxl17 (F-box and leucine-rich repeat protein 17) targets Sufu for proteolysis in the nucleus. The ubiquitylation of Sufu, mediated by Fbxl17, allows the release of Gli1 from Sufu for proper Hh signal transduction. Depletion of Fbxl17 leads to defective Hh signaling associated with an impaired cancer cell proliferation and medulloblastoma tumor growth. Furthermore, we identify a mutation in Sufu, occurring in medulloblastoma of patients with Gorlin syndrome, which increases Sufu turnover through Fbxl17-mediated polyubiquitylation and leads to a sustained Hh signaling activation. In summary, our findings reveal Fbxl17 as a novel regulator of Hh pathway and highlight the perturbation of the Fbxl17-Sufu axis in the pathogenesis of medulloblastoma.


Assuntos
Proteínas F-Box/metabolismo , Proteínas Hedgehog/metabolismo , Meduloblastoma/patologia , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Modelos Animais de Doenças , Humanos , Camundongos , Ratos , Transdução de Sinais , Ubiquitinação
7.
EMBO Rep ; 19(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29348145

RESUMO

Aberrant centrosome organisation with ensuing alterations of microtubule nucleation capacity enables tumour cells to proliferate and invade despite increased genomic instability. CEP192 is a key factor in the initiation process of centrosome duplication and in the control of centrosome microtubule nucleation. However, regulatory means of CEP192 have remained unknown. Here, we report that FBXL13, a binding determinant of SCF (SKP1-CUL1-F-box)-family E3 ubiquitin ligases, is enriched at centrosomes and interacts with the centrosomal proteins Centrin-2, Centrin-3, CEP152 and CEP192. Among these, CEP192 is specifically targeted for proteasomal degradation by FBXL13. Accordingly, induced FBXL13 expression downregulates centrosomal γ-tubulin and disrupts centrosomal microtubule arrays. In addition, depletion of FBXL13 induces high levels of CEP192 and γ-tubulin at the centrosomes with the consequence of defects in cell motility. Together, we characterise FBXL13 as a novel regulator of microtubule nucleation activity and highlight a role in promoting cell motility with potential tumour-promoting implications.


Assuntos
Centrossomo/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas F-Box/genética , Tubulina (Proteína)/genética , Ubiquitina-Proteína Ligases/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica , Instabilidade Genômica/genética , Homeostase/genética , Humanos , Camundongos , Microtúbulos/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Ligases SKP Culina F-Box/genética
9.
Nature ; 495(7440): 255-9, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23486064

RESUMO

Centrosome duplication is critical for cell division, and genome instability can result if duplication is not restricted to a single round per cell cycle. Centrosome duplication is controlled in part by CP110, a centriolar protein that positively regulates centriole duplication while restricting centriole elongation and ciliogenesis. Maintenance of normal CP110 levels is essential, as excessive CP110 drives centrosome over-duplication and suppresses ciliogenesis, whereas its depletion inhibits centriole amplification and leads to highly elongated centrioles and aberrant assembly of cilia in growing cells. CP110 levels are tightly controlled, partly through ubiquitination by the ubiquitin ligase complex SCF(cyclin F) during G2 and M phases of the cell cycle. Here, using human cells, we report a new mechanism for the regulation of centrosome duplication that requires USP33, a deubiquitinating enzyme that is able to regulate CP110 levels. USP33 interacts with CP110 and localizes to centrioles primarily in S and G2/M phases, the periods during which centrioles duplicate and elongate. USP33 potently and specifically deubiquitinates CP110, but not other cyclin-F substrates. USP33 activity antagonizes SCF(cyclin F)-mediated ubiquitination and promotes the generation of supernumerary centriolar foci, whereas ablation of USP33 destabilizes CP110 and thereby inhibits centrosome amplification and mitotic defects. To our knowledge, we have identified the first centriolar deubiquitinating enzyme whose expression regulates centrosome homeostasis by countering cyclin-F-mediated destruction of a key substrate. Our results point towards potential therapeutic strategies for inhibiting tumorigenesis associated with centrosome amplification.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação , Animais , Ciclo Celular , Linhagem Celular , Centríolos/metabolismo , Ciclinas/metabolismo , Homeostase , Humanos , Neoplasias/patologia , Neoplasias/terapia , Estabilidade Proteica , Proteínas Ligases SKP Culina F-Box/metabolismo
10.
Nature ; 466(7302): 138-42, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20596027

RESUMO

Generally, F-box proteins are the substrate recognition subunits of SCF (Skp1-Cul1-F-box protein) ubiquitin ligase complexes, which mediate the timely proteolysis of important eukaryotic regulatory proteins. Mammalian genomes encode roughly 70 F-box proteins, but only a handful have established functions. The F-box protein family obtained its name from Cyclin F (also called Fbxo1), in which the F-box motif (the approximately 40-amino-acid domain required for binding to Skp1) was first described. Cyclin F, which is encoded by an essential gene, also contains a cyclin box domain, but in contrast to most cyclins, it does not bind or activate any cyclin-dependent kinases (CDKs). However, like other cyclins, Cyclin F oscillates during the cell cycle, with protein levels peaking in G2. Despite its essential nature and status as the founding member of the F-box protein family, Cyclin F remains an orphan protein, whose functions are unknown. Starting from an unbiased screen, we identified CP110, a protein that is essential for centrosome duplication, as an interactor and substrate of Cyclin F. Using a mode of substrate binding distinct from other F-box protein-substrate pairs, CP110 and Cyclin F physically associate on the centrioles during the G2 phase of the cell cycle, and CP110 is ubiquitylated by the SCF(Cyclin F) ubiquitin ligase complex, leading to its degradation. siRNA-mediated depletion of Cyclin F in G2 induces centrosomal and mitotic abnormalities, such as multipolar spindles and asymmetric, bipolar spindles with lagging chromosomes. These phenotypes were reverted by co-silencing CP110 and were recapitulated by expressing a stable mutant of CP110 that cannot bind Cyclin F. Finally, expression of a stable CP110 mutant in cultured cells also promotes the formation of micronuclei, a hallmark of chromosome instability. We propose that SCF(Cyclin F)-mediated degradation of CP110 is required for the fidelity of mitosis and genome integrity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Ciclinas/metabolismo , Homeostase , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Fosfoproteínas/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Centríolos/metabolismo , Centrossomo/química , Ciclinas/química , Ciclinas/deficiência , Ciclinas/genética , Fase G2 , Humanos , Camundongos , Complexos Multiproteicos/metabolismo , Fenótipo , Ligação Proteica , Proteínas Ligases SKP Culina F-Box/metabolismo , Especificidade por Substrato , Ubiquitinação
11.
Sci Rep ; 14(1): 14912, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942922

RESUMO

Breast cancer is a prevalent and significant cause of mortality in women, and manifests as six molecular subtypes. Its further histologic classification into non-invasive ductal or lobular carcinoma (DCIS) and invasive carcinoma (ILC or IDC) underscores its heterogeneity. The ubiquitin-proteasome system plays a crucial role in breast cancer, with inhibitors targeting the 26S proteasome showing promise in clinical treatment. The Cullin-RING ubiquitin ligases, including CUL3, have direct links to breast cancer. This study focuses on CUL3 as a potential biomarker, leveraging high-throughput sequencing, gene expression profiling, experimental and data analysis tools. Through comprehensive analysis using databases like GEPIA2 and UALCAN, as well as TCGA datasets, CUL3's expression and its association with prognostic values were assessed. Additionally, the impact of CUL3 overexpression was explored in MCF-7 and MDA-MB-231 breast cancer cell lines, revealing distinct differences in molecular and phenotypic characteristics. We further profiled its expression and localization in breast cancer tissues identifying prominent differences between luminal A and TNBC tumors. Conclusively, CUL3 was found to be associated with cell cycle progression, and DNA damage response, exhibiting diverse roles depending on the tumor's molecular type. It exhibits a tendency to act as an oncogene in triple-negative tumors and as a tumor suppressor in luminal A types, suggesting a potential significance in breast cancer progression and therapeutic directions.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Proteínas Culina , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Culina/metabolismo , Proteínas Culina/genética , Feminino , Prognóstico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Células MCF-7 , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo
12.
Sci Adv ; 10(32): eado0636, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121215

RESUMO

Ubiquitination is a crucial posttranslational modification required for the proper repair of DNA double-strand breaks (DSBs) induced by ionizing radiation (IR). DSBs are mainly repaired through homologous recombination (HR) when template DNA is present and nonhomologous end joining (NHEJ) in its absence. In addition, microhomology-mediated end joining (MMEJ) and single-strand annealing (SSA) provide backup DSBs repair pathways. However, the mechanisms controlling their use remain poorly understood. By using a high-resolution CRISPR screen of the ubiquitin system after IR, we systematically uncover genes required for cell survival and elucidate a critical role of the E3 ubiquitin ligase SCFcyclin F in cell cycle-dependent DSB repair. We show that SCFcyclin F-mediated EXO1 degradation prevents DNA end resection in mitosis, allowing MMEJ to take place. Moreover, we identify a conserved cyclin F recognition motif, distinct from the one used by other cyclins, with broad implications in cyclin specificity for cell cycle control.


Assuntos
Ciclo Celular , Ciclinas , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Exodesoxirribonucleases , Humanos , Ciclo Celular/genética , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Ciclinas/metabolismo , Ciclinas/genética , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Reparo do DNA por Junção de Extremidades , Ubiquitinação , Radiação Ionizante
13.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798357

RESUMO

Cancer mutations can create neomorphic protein-protein interactions to drive aberrant function 1 . As a substrate receptor of the CULLIN3-RBX1 E3 ubiquitin ligase complex, KBTBD4 is recurrently mutated in medulloblastoma (MB) 2 , the most common embryonal brain tumor in children, and pineoblastoma 3 . These mutations impart gain-of-function to KBTBD4 to induce aberrant degradation of the transcriptional corepressor CoREST 4 . However, their mechanism of action remains unresolved. Here, we elucidate the mechanistic basis by which KBTBD4 mutations promote CoREST degradation through engaging HDAC1/2, the direct neomorphic target of the substrate receptor. Using deep mutational scanning, we systematically map the mutational landscape of the KBTBD4 cancer hotspot, revealing distinct preferences by which insertions and substitutions can promote gain-of-function and the critical residues involved in the hotspot interaction. Cryo-electron microscopy (cryo-EM) analysis of two distinct KBTBD4 cancer mutants bound to LSD1-HDAC1-CoREST reveals that a KBTBD4 homodimer asymmetrically engages HDAC1 with two KELCH-repeat propeller domains. The interface between HDAC1 and one of the KBTBD4 propellers is stabilized by the MB mutations, which directly insert a bulky side chain into the active site pocket of HDAC1. Our structural and mutational analyses inform how this hotspot E3-neo-substrate interface can be chemically modulated. First, our results unveil a converging shape complementarity-based mechanism between gain-of-function E3 mutations and a molecular glue degrader, UM171. Second, we demonstrate that HDAC1/2 inhibitors can block the mutant KBTBD4-HDAC1 interface, the aberrant degradation of CoREST, and the growth of KBTBD4-mutant MB models. Altogether, our work reveals the structural and mechanistic basis of cancer mutation-driven neomorphic protein-protein interactions and pharmacological strategies to modulate their action for therapeutic applications.

14.
Cell Death Differ ; 29(10): 1955-1969, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35379950

RESUMO

Medulloblastoma is the most common malignant brain tumour in children. Genomic studies have identified distinct disease subgroups: wnt/wingless (WNT), sonic hedgehog (SHH), and non-WNT/non-SHH, comprising group 3 and group 4. Alterations in WNT and SHH signalling form the pathogenetic basis for their subgroups, whereas those for non-WNT/non-SHH tumours remain largely elusive. Recent analyses have revealed recurrent in-frame insertions in the E3 ubiquitin ligase adaptor Kelch Repeat and BTB Domain Containing 4 (KBTBD4) in cases of group 3/4 medulloblastoma. Critically, group 3/4 tumours with KBTBD4 mutations typically lack other gene-specific alterations, such as MYC amplification, indicating KBTBD4 insertion mutations as the primary genetic driver. Delineating the role of KBTBD4 mutations thus offers significant opportunities to understand tumour pathogenesis and to exploit the underpinning mechanisms therapeutically. Here, we show a novel mechanism in cancer pathogenesis whereby indel mutations in KBTBD4 drive its recognition of neo-substrates for degradation. We observe that KBTBD4 mutants promote the recruitment and ubiquitylation of the REST Corepressor (CoREST), which forms a complex to modulate chromatin accessibility and transcriptional programmes. The degradation of CoREST promoted by KBTBD4 mutation diverts epigenetic programmes inducing significant alterations in transcription to promote increased stemness of cancer cells. Transcriptional analysis of >200 human group 3 and 4 medulloblastomas by RNA-seq, highlights the presence of CoREST and stem-like signatures in tumours with KBTBD4 mutations, which extend to a further sub-set of non-mutant tumours, suggesting CoREST alterations as a novel pathogenetic mechanism of wide relevance in groups 3 and 4. Our findings uncover KBTBD4 mutation as a novel driver of epigenetic reprogramming in non-WNT/non-SHH medulloblastoma, establish a novel mode of tumorigenesis through gain-of-function mutations in ubiquitin ligases (neo-substrate recruitment) and identify both mutant KBTBD4 and CoREST complexes as new druggable targets for improved tumour-specific therapies.


Assuntos
Proteínas de Transporte/genética , Neoplasias Cerebelares , Meduloblastoma , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Criança , Cromatina , Proteínas Correpressoras/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Mutação/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitinas/metabolismo
15.
Cell Death Differ ; 28(2): 522-537, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432111

RESUMO

Despite recent advances in our understanding of the disease, glioblastoma (GB) continues to have limited treatment options and carries a dismal prognosis for patients. Efforts to stratify this heterogeneous malignancy using molecular classifiers identified frequent alterations in targetable proteins belonging to several pathways including the receptor tyrosine kinase (RTK) and mitogen-activated protein kinase (MAPK) signalling pathways. However, these findings have failed to improve clinical outcomes for patients. In almost all cases, GB becomes refractory to standard-of-care therapy, and recent evidence suggests that disease recurrence may be associated with a subpopulation of cells known as glioma stem cells (GSCs). Therefore, there remains a significant unmet need for novel therapeutic strategies. E3 ubiquitin ligases are a family of >700 proteins that conjugate ubiquitin to target proteins, resulting in an array of cellular responses, including DNA repair, pro-survival signalling and protein degradation. Ubiquitin modifications on target proteins are diverse, ranging from mono-ubiquitination through to the formation of polyubiquitin chains and mixed chains. The specificity in substrate tagging and chain elongation is dictated by E3 ubiquitin ligases, which have essential regulatory roles in multiple aspects of brain cancer pathogenesis. In this review, we begin by briefly summarising the histological and molecular classification of GB. We comprehensively describe the roles of E3 ubiquitin ligases in RTK and MAPK, as well as other, commonly altered, oncogenic and tumour suppressive signalling pathways in GB. We also describe the role of E3 ligases in maintaining glioma stem cell populations and their function in promoting resistance to ionizing radiation (IR) and chemotherapy. Finally, we consider how our knowledge of E3 ligase biology may be used for future therapeutic interventions in GB, including the use of blood-brain barrier permeable proteolysis targeting chimeras (PROTACs).


Assuntos
Neoplasias Encefálicas/enzimologia , Glioblastoma/enzimologia , Poliubiquitina/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Humanos , Ligação Proteica , Proteólise , Ubiquitinação
16.
Nat Commun ; 12(1): 6959, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845229

RESUMO

Efficient entry into S phase of the cell cycle is necessary for embryonic development and tissue homoeostasis. However, unscheduled S phase entry triggers DNA damage and promotes oncogenesis, underlining the requirement for strict control. Here, we identify the NUCKS1-SKP2-p21/p27 axis as a checkpoint pathway for the G1/S transition. In response to mitogenic stimulation, NUCKS1, a transcription factor, is recruited to chromatin to activate expression of SKP2, the F-box component of the SCFSKP2 ubiquitin ligase, leading to degradation of p21 and p27 and promoting progression into S phase. In contrast, DNA damage induces p53-dependent transcriptional repression of NUCKS1, leading to SKP2 downregulation, p21/p27 upregulation, and cell cycle arrest. We propose that the NUCKS1-SKP2-p21/p27 axis integrates mitogenic and DNA damage signalling to control S phase entry. The Cancer Genome Atlas (TCGA) data reveal that this mechanism is hijacked in many cancers, potentially allowing cancer cells to sustain uncontrolled proliferation.


Assuntos
Transformação Celular Neoplásica/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Fase S/genética , Proteínas Quinases Associadas a Fase S/genética , Células A549 , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/antagonistas & inibidores , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Dano ao DNA , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patologia , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Proteínas Quinases Associadas a Fase S/metabolismo , Células Sf9 , Transdução de Sinais , Spodoptera , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
17.
Front Mol Biosci ; 7: 599332, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33665206

RESUMO

In mammalian cells, cell cycle entry occurs in response to the correct stimuli and is promoted by the transcriptional activity of E2F family members. E2F proteins regulate the transcription of S phase cyclins and genes required for DNA replication, DNA repair, and apoptosis. The activity of E2F1, the archetypal and most heavily studied E2F family member, is tightly controlled by the DNA damage checkpoints to modulate cell cycle progression and initiate programmed cell death, when required. Altered tumor suppressor and oncogenic signaling pathways often result in direct or indirect interference with E2F1 regulation to ensure higher rates of cell proliferation independently of external cues. Despite a clear link between dysregulated E2F1 activity and cancer progression, literature on the contribution of E2F1 to DNA replication stress phenotypes is somewhat scarce. This review discusses how dysfunctional tumor suppressor and oncogenic signaling pathways promote the disruption of E2F1 transcription and hence of its transcriptional targets, and how such events have the potential to drive DNA replication stress. In addition to the involvement of E2F1 upstream of DNA replication stress, this manuscript also considers the role of E2F1 as a downstream effector of the response to this type of cellular stress. Lastly, the review introduces some reflections on how E2F1 activity is integrated with checkpoint control through post-translational regulation, and proposes an exploitable tumor weakness based on this axis.

18.
Open Biol ; 10(6): 200041, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32574548

RESUMO

Wnt signalling is dependent on dishevelled proteins (DVL1-3), which assemble an intracellular Wnt signalosome at the plasma membrane. The levels of DVL1-3 are regulated by multiple Cullin-RING E3 ligases that mediate their ubiquitination and degradation. The BTB-Kelch protein KLHL12 was the first E3 ubiquitin ligase to be identified for DVL1-3, but the molecular mechanisms determining its substrate interactions have remained unknown. Here, we mapped the interaction of DVL1-3 to a 'PGXPP' motif that is conserved in other known partners and substrates of KLHL12, including PLEKHA4, PEF1, SEC31 and DRD4. To determine the binding mechanism, we solved a 2.4 Å crystal structure of the Kelch domain of KLHL12 in complex with a DVL1 peptide that bound with low micromolar affinity. The DVL1 substrate adopted a U-shaped turn conformation that enabled hydrophobic interactions with all six blades of the Kelch domain ß-propeller. In cells, the mutation or deletion of this motif reduced the binding and ubiquitination of DVL1 and increased its stability confirming this sequence as a degron motif for KLHL12 recruitment. These results define the molecular mechanisms determining DVL regulation by KLHL12 and establish the KLHL12 Kelch domain as a new protein interaction module for a novel proline-rich motif.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Desgrenhadas/metabolismo , Mutação , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Estabilidade Proteica , Ubiquitinação , Via de Sinalização Wnt
19.
Front Physiol ; 10: 1144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632280

RESUMO

Treatment with ionizing radiation (IR) remains the cornerstone of therapy for multiple cancer types, including disseminated and aggressive diseases in the palliative setting. Radiotherapy efficacy could be improved in combination with drugs that regulate the ubiquitin-proteasome system (UPS), many of which are currently being tested in clinical trials. The UPS operates through the covalent attachment of ATP-activated ubiquitin molecules onto substrates following the transfer of ubiquitin from an E1, to an E2, and then to the substrate via an E3 enzyme. The specificity of ubiquitin ligation is dictated by E3 ligases, which select substrates to be ubiquitylated. Among the E3s, cullin ring ubiquitin ligases (CRLs) represent prototypical multi-subunit E3s, which use the cullin subunit as a central assembling scaffold. CRLs have crucial roles in controlling the cell cycle, hypoxia signaling, reactive oxygen species clearance and DNA repair; pivotal factors regulating the cancer and normal tissue response to IR. Here, we summarize the findings on the involvement of CRLs in the response of cancer cells to IR, and we discuss the therapeutic approaches to target the CRLs which could be exploited in the clinic.

20.
Structure ; 27(9): 1395-1404.e4, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31279627

RESUMO

BTB-Kelch proteins form the largest subfamily of Cullin-RING E3 ligases, yet their substrate complexes are mapped and structurally characterized only for KEAP1 and KLHL3. KLHL20 is a related CUL3-dependent ubiquitin ligase linked to autophagy, cancer, and Alzheimer's disease that promotes the ubiquitination and degradation of substrates including DAPK1, PML, and ULK1. We identified an "LPDLV"-containing motif in the DAPK1 death domain that determines its recruitment and degradation by KLHL20. A 1.1-Å crystal structure of a KLHL20 Kelch domain-DAPK1 peptide complex reveals DAPK1 binding as a loose helical turn that inserts deeply into the central pocket of the Kelch domain to contact all six blades of the ß propeller. Here, KLHL20 forms salt-bridge and hydrophobic interactions including tryptophan and cysteine residues ideally positioned for covalent inhibitor development. The structure highlights the diverse binding modes of ß-propeller domains versus linear grooves and suggests a new target for structure-based drug design.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Quinases Associadas com Morte Celular/química , Proteínas Quinases Associadas com Morte Celular/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Feminino , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Proteólise , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa