Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Pflugers Arch ; 474(5): 553-565, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35169901

RESUMO

Paracrine ATP release by erythrocytes has been shown to regulate endothelial cell function via purinergic signaling, and this erythoid-endothelial signaling network is pathologically dysregulated in sickle cell disease. We tested the role of extracellular ATP-mediated purinergic signaling in the activation of Psickle, the mechanosensitive Ca2+-permeable cation channel of human sickle erythrocytes (SS RBC). Psickle activation increases intracellular [Ca2+] to stimulate activity of the RBC Gardos channel, KCNN4/KCa3.1, leading to cell shrinkage and accelerated deoxygenation-activated sickling.We found that hypoxic activation of Psickle recorded by cell-attached patch clamp in SS RBC is inhibited by extracellular apyrase, which hydrolyzes extracellular ATP. Hypoxic activation of Psickle was also inhibited by the pannexin-1 inhibitor, probenecid, and by the P2 antagonist, suramin. A Psickle-like activity was also activated in normoxic SS RBC (but not in control red cells) by bath pH 6.0. Acid-activated Psickle-like activity was similarly blocked by apyrase, probenecid, and suramin, as well as by the Psickle inhibitor, Grammastola spatulata mechanotoxin-4 (GsMTx-4).In vitro-differentiated cultured human sickle reticulocytes (SS cRBC), but not control cultured reticulocytes, also exhibited hypoxia-activated Psickle activity that was abrogated by GsMTx-4. Psickle-like activity in SS cRBC was similarly elicited by normoxic exposure to acid pH, and this acid-stimulated activity was nearly completely blocked by apyrase, probenecid, and suramin, as well as by GsMTx-4.Thus, hypoxia-activated and normoxic acid-activated cation channel activities are expressed in both SS RBC and SS cRBC, and both types of activation appear to be mediated or greatly amplified by autocrine or paracrine purinergic signaling.


Assuntos
Anemia Falciforme , Reticulócitos , Trifosfato de Adenosina/metabolismo , Anemia Falciforme/metabolismo , Apirase/metabolismo , Cátions/metabolismo , Células Cultivadas , Eritrócitos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hipóxia/metabolismo , Probenecid/metabolismo , Reticulócitos/metabolismo , Suramina/metabolismo , Suramina/farmacologia
2.
Infect Immun ; 85(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28760933

RESUMO

Plasmodium falciparum, the parasite that causes the deadliest form of malaria, has evolved multiple proteins known as invasion ligands that bind to specific erythrocyte receptors to facilitate invasion of human erythrocytes. The EBA-175/glycophorin A (GPA) and Rh5/basigin ligand-receptor interactions, referred to as invasion pathways, have been the subject of intense study. In this study, we focused on the less-characterized sialic acid-containing receptors glycophorin B (GPB) and glycophorin C (GPC). Through bioinformatic analysis, we identified extensive variation in glycophorin B (GYPB) transcript levels in individuals from Benin, suggesting selection from malaria pressure. To elucidate the importance of the GPB and GPC receptors relative to the well-described EBA-175/GPA invasion pathway, we used an ex vivo erythrocyte culture system to decrease expression of GPA, GPB, or GPC via lentiviral short hairpin RNA transduction of erythroid progenitor cells, with global surface proteomic profiling. We assessed the efficiency of parasite invasion into knockdown cells using a panel of wild-type P. falciparum laboratory strains and invasion ligand knockout lines, as well as P. falciparum Senegalese clinical isolates and a short-term-culture-adapted strain. For this, we optimized an invasion assay suitable for use with small numbers of erythrocytes. We found that all laboratory strains and the majority of field strains tested were dependent on GPB expression level for invasion. The collective data suggest that the GPA and GPB receptors are of greater importance than the GPC receptor, supporting a hierarchy of erythrocyte receptor usage in P. falciparum.


Assuntos
Eritrócitos/fisiologia , Eritrócitos/parasitologia , Glicoforinas/genética , Plasmodium falciparum/patogenicidade , Biologia Computacional , Glicoforinas/metabolismo , Humanos , Ligantes , Plasmodium falciparum/imunologia , Plasmodium falciparum/fisiologia , Ligação Proteica , Proteômica , Receptores de Superfície Celular/metabolismo
3.
Life Sci Alliance ; 7(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467420

RESUMO

Kinases are key players in endothelial barrier regulation, yet their temporal function and regulatory phosphosignaling networks are incompletely understood. We developed a novel methodology, Temporally REsolved KInase Network Generation (TREKING), which combines a 28-kinase inhibitor screen with machine learning and network reconstruction to build time-resolved, functional phosphosignaling networks. We demonstrated the utility of TREKING for identifying pathways mediating barrier integrity after activation by thrombin with or without TNF preconditioning in brain endothelial cells. TREKING predicted over 100 kinases involved in barrier regulation and discerned complex condition-specific pathways. For instance, the MAPK-activated protein kinase 2 (MAPKAPK2/MK2) had early barrier-weakening activity in both inflammatory conditions but late barrier-strengthening activity exclusively with thrombin alone. Using temporal Western blotting, we confirmed that MAPKAPK2/MK2 was differentially phosphorylated under the two inflammatory conditions. We further showed with lentivirus-mediated knockdown of MAPK14/p38α and drug targeting the MAPK14/p38α-MAPKAPK2/MK2 complex that a MAP3K20/ZAK-MAPK14/p38α axis controlled the late activation of MAPKAPK2/MK2 in the thrombin-alone condition. Beyond the MAPKAPK2/MK2 switch, TREKING predicts extensive interconnected networks that control endothelial barrier dynamics.


Assuntos
Células Endoteliais , Proteína Quinase 14 Ativada por Mitógeno , Células Endoteliais/metabolismo , Trombina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases
4.
Proc Natl Acad Sci U S A ; 107(16): 7521-6, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20368441

RESUMO

The Mycobacterium tuberculosis genome encodes 11 serine/threonine protein kinases (STPKs) that are structurally related to eukaryotic kinases. To gain insight into the role of Ser/Thr phosphorylation in this major global pathogen, we used a phosphoproteomic approach to carry out an extensive analysis of protein phosphorylation in M. tuberculosis. We identified more than 500 phosphorylation events in 301 proteins that are involved in a broad range of functions. Bioinformatic analysis of quantitative in vitro kinase assays on peptides containing a subset of these phosphorylation sites revealed a dominant motif shared by six of the M. tuberculosis STPKs. Kinase assays on a second set of peptides incorporating targeted substitutions surrounding the phosphoacceptor validated this motif and identified additional residues preferred by individual kinases. Our data provide insight into processes regulated by STPKs in M. tuberculosis and create a resource for understanding how specific phosphorylation events modulate protein activity. The results further provide the potential to predict likely cognate STPKs for newly identified phosphoproteins.


Assuntos
Mycobacterium tuberculosis/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Biologia Computacional/métodos , Dados de Sequência Molecular , Peptídeos/química , Fosfoproteínas/química , Fosforilação , Proteínas Serina-Treonina Quinases/fisiologia , Proteômica/métodos , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Especificidade por Substrato
5.
Cell Chem Biol ; 28(12): 1679-1692.e4, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34216546

RESUMO

Kinase inhibitors are promising drugs to stabilize the endothelial barrier following inflammatory damage. However, our limited knowledge of how kinase signaling activates barrier-restorative pathways and the complexity of multi-target drugs have hindered drug discovery and repurposing efforts. Here, we apply a kinase regression approach that exploits drug polypharmacology to investigate endothelial barrier regulation. A screen of 28 kinase inhibitors identified multiple inhibitors that promote endothelial barrier integrity and revealed divergent barrier phenotypes for BCR-ABL drugs. Target deconvolution predicted 50 barrier-regulating kinases from diverse kinase families. Using gene knockdowns, we identified kinases with a role in endothelial barrier regulation and dissected different mechanisms of action of barrier-protective kinase inhibitors. These results demonstrate the importance of polypharmacology in the endothelial barrier phenotype of kinase inhibitors and provide promising new leads for barrier-strengthening therapies.


Assuntos
Compostos de Anilina/farmacologia , Carbazóis/farmacologia , Alcaloides Indólicos/farmacologia , Nitrilas/farmacologia , Fosfotransferases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Compostos de Anilina/química , Carbazóis/química , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Alcaloides Indólicos/química , Nitrilas/química , Fosfotransferases/genética , Fosfotransferases/metabolismo , Polifarmacologia , Inibidores de Proteínas Quinases/química , Quinolinas/química , Transdução de Sinais/efeitos dos fármacos
6.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34549725

RESUMO

Cerebral malaria (CM) affects children and adults, but brain swelling is more severe in children. To investigate features associated with brain swelling in malaria, we performed blood profiling and brain MRI in a cohort of pediatric and adult patients with CM in Rourkela, India, and compared them with an African pediatric CM cohort in Malawi. We determined that higher plasma Plasmodium falciparum histidine rich protein 2 (PfHRP2) levels and elevated var transcripts that encode for binding to endothelial protein C receptor (EPCR) were linked to CM at both sites. Machine learning models trained on the African pediatric cohort could classify brain swelling in Indian children CM cases but had weaker performance for adult classification, due to overall lower parasite var transcript levels in this age group and more severe thrombocytopenia in Rourkela adults. Subgrouping of patients with CM revealed higher parasite biomass linked to severe thrombocytopenia and higher Group A-EPCR var transcripts in mild thrombocytopenia. Overall, these findings provide evidence that higher parasite biomass and a subset of Group A-EPCR binding variants are common features in children and adult CM cases, despite age differences in brain swelling.


Assuntos
Antígenos de Protozoários/sangue , Edema Encefálico/sangue , Malária Cerebral/complicações , Carga Parasitária , Proteínas de Protozoários/sangue , Proteínas de Protozoários/genética , Trombocitopenia/sangue , Adolescente , Adulto , Fatores Etários , Idoso , Biomarcadores/sangue , Edema Encefálico/classificação , Edema Encefálico/diagnóstico por imagem , Edema Encefálico/parasitologia , Criança , Pré-Escolar , Receptor de Proteína C Endotelial/metabolismo , Humanos , Índia , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Malaui , Pessoa de Meia-Idade , Gravidade do Paciente , Proteínas de Protozoários/metabolismo , Trombocitopenia/parasitologia , Transcrição Gênica , Adulto Jovem
7.
Nat Commun ; 10(1): 4512, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586047

RESUMO

Plasmodium species are frequently host-specific, but little is currently known about the molecular factors restricting host switching. This is particularly relevant for P. falciparum, the only known human-infective species of the Laverania sub-genus, all other members of which infect African apes. Here we show that all tested P. falciparum isolates contain an inactivating mutation in an erythrocyte invasion associated gene, PfEBA165, the homologues of which are intact in all ape-infective Laverania species. Recombinant EBA165 proteins only bind ape, not human, erythrocytes, and this specificity is due to differences in erythrocyte surface sialic acids. Correction of PfEBA165 inactivating mutations by genome editing yields viable parasites, but is associated with down regulation of both PfEBA165 and an adjacent invasion ligand, which suggests that PfEBA165 expression is incompatible with parasite growth in human erythrocytes. Pseudogenization of PfEBA165 may represent a key step in the emergence and evolution of P. falciparum.


Assuntos
Eritrócitos/parasitologia , Especificidade de Hospedeiro/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Animais , Sistemas CRISPR-Cas/genética , Engenharia Celular , Eritrócitos/metabolismo , Evolução Molecular , Mutação da Fase de Leitura , Edição de Genes , Células HEK293 , Humanos , Mutação com Perda de Função , Pan troglodytes/parasitologia , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/patogenicidade , Ácidos Siálicos/metabolismo
8.
Trends Parasitol ; 34(10): 843-860, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30122551

RESUMO

Despite the recent successes of artemisinin-based antimalarial drugs, many still die from severe malaria, and eradication efforts are hindered by the limited drugs currently available to target transmissible gametocyte parasites and liver-resident dormant Plasmodium vivax hypnozoites. Host-targeted therapy is a new direction for infectious disease drug development and aims to interfere with host molecules, pathways, or networks that are required for infection or that contribute to disease. Recent advances in our understanding of host pathways involved in parasite development and pathogenic mechanisms in severe malaria could facilitate the development of host-targeted interventions against Plasmodium infection and malaria disease. This review discusses new opportunities for host-targeted therapeutics for malaria and the potential to harness drug polypharmacology to simultaneously target multiple host pathways using a single drug intervention.


Assuntos
Antimaláricos/imunologia , Sistemas de Liberação de Medicamentos , Antimaláricos/farmacologia , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Fatores Imunológicos/farmacologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-28213436

RESUMO

Plasmodium falciparum and Plasmodium vivax account for most of the mortality and morbidity associated with malaria in humans. Research and control efforts have focused on infections caused by P. falciparum and P. vivax, but have neglected other malaria parasite species that infect humans. Additionally, many related malaria parasite species infect nonhuman primates (NHPs), and have the potential for transmission to humans. For malaria elimination, the varied and specific challenges of all of these Plasmodium species will need to be considered. Recent advances in molecular genetics and genomics have increased our knowledge of the prevalence and existing diversity of the human and NHP Plasmodium species. We are beginning to identify the extent of the reservoirs of each parasite species in humans and NHPs, revealing their origins as well as potential for adaptation in humans. Here, we focus on the red blood cell stage of human infection and the host cell tropism of each human Plasmodium species. Determinants of tropism are unique among malaria parasite species, presenting a complex challenge for malaria elimination.


Assuntos
Eritrócitos/parasitologia , Malária/parasitologia , Plasmodium/fisiologia , Tropismo Viral , Animais , Culicidae/parasitologia , Erradicação de Doenças , Interações Hospedeiro-Parasita , Humanos , Malária/prevenção & controle , Vacinas Antimaláricas/uso terapêutico , Mosquitos Vetores , Plasmodium/classificação
10.
Cell Host Microbe ; 22(5): 601-614.e5, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29107642

RESUMO

Brain swelling is a major predictor of mortality in pediatric cerebral malaria (CM). However, the mechanisms leading to swelling remain poorly defined. Here, we combined neuroimaging, parasite transcript profiling, and laboratory blood profiles to develop machine-learning models of malarial retinopathy and brain swelling. We found that parasite var transcripts encoding endothelial protein C receptor (EPCR)-binding domains, in combination with high parasite biomass and low platelet levels, are strong indicators of CM cases with malarial retinopathy. Swelling cases presented low platelet levels and increased transcript abundance of parasite PfEMP1 DC8 and group A EPCR-binding domains. Remarkably, the dominant transcript in 50% of swelling cases encoded PfEMP1 group A CIDRα1.7 domains. Furthermore, a recombinant CIDRα1.7 domain from a pediatric CM brain autopsy inhibited the barrier-protective properties of EPCR in human brain endothelial cells in vitro. Together, these findings suggest a detrimental role for EPCR-binding CIDRα1 domains in brain swelling.


Assuntos
Edema Encefálico/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Malária Cerebral/metabolismo , Proteínas de Neoplasias/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Receptores de Superfície Celular/metabolismo , Encéfalo/parasitologia , Edema Encefálico/parasitologia , Adesão Celular , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Malária Cerebral/parasitologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/fisiopatologia , Malaui , Masculino , Ligação Proteica , Domínios Proteicos , Proteínas de Protozoários/metabolismo
11.
Nat Commun ; 7: 11187, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27041489

RESUMO

Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPß and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways.


Assuntos
Malária/prevenção & controle , Ácido N-Acetilneuramínico/genética , Plasmodium knowlesi/patogenicidade , Zoonoses/parasitologia , Animais , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Genoma de Protozoário , Células HEK293 , Humanos , Oxigenases de Função Mista/genética , Ácido N-Acetilneuramínico/biossíntese , Ácido N-Acetilneuramínico/química , Ácidos Neuramínicos/química , Ácidos Neuramínicos/metabolismo , Plasmodium knowlesi/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Zoonoses/prevenção & controle , Zoonoses/transmissão
13.
Cell Host Microbe ; 16(1): 81-93, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25011110

RESUMO

Variant surface antigens play an important role in Plasmodium falciparum malaria pathogenesis and in immune evasion by the parasite. Although most work to date has focused on P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1), two other multigene families encoding STEVOR and RIFIN are expressed in invasive merozoites and on the infected erythrocyte surface. However, their role during parasite infection remains to be clarified. Here we report that STEVOR functions as an erythrocyte-binding protein that recognizes Glycophorin C (GPC) on the red blood cell (RBC) surface and that its binding correlates with the level of GPC on the RBC surface. STEVOR expression on the RBC leads to PfEMP1-independent binding of infected RBCs to uninfected RBCs (rosette formation), while antibodies targeting STEVOR in the merozoite can effectively inhibit invasion. Our results suggest a PfEMP1-independent role for STEVOR in enabling infected erythrocytes at the schizont stage to form rosettes and in promoting merozoite invasion.


Assuntos
Antígenos de Protozoários/metabolismo , Eritrócitos/parasitologia , Glicoforinas/metabolismo , Interações Hospedeiro-Patógeno , Merozoítos/fisiologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Células COS , Chlorocebus aethiops , Humanos , Fatores de Virulência/metabolismo
14.
Sci Transl Med ; 6(244): 244re5, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25009232

RESUMO

Transmission of Plasmodium falciparum malaria parasites requires formation and development of gametocytes, yet all but the most mature of these sexual parasite forms are absent from the blood circulation. We performed a systematic organ survey in pediatric cases of fatal malaria to characterize the spatial dynamics of gametocyte development in the human host. Histological studies revealed a niche in the extravascular space of the human bone marrow where gametocytes formed in erythroid precursor cells and underwent development before reentering the circulation. Accumulation of gametocytes in the hematopoietic system of human bone marrow did not rely on cytoadherence to the vasculature as does sequestration of asexual-stage parasites. This suggests a different mechanism for the sequestration of gametocytes that could potentially be exploited to block malaria transmission.


Assuntos
Medula Óssea/parasitologia , Estágios do Ciclo de Vida , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Plasmodium falciparum/crescimento & desenvolvimento , Medula Óssea/patologia , Criança , Sistema Hematopoético/parasitologia , Sistema Hematopoético/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa