Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cancer Control ; 27(2): 1073274820936991, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32597194

RESUMO

Long noncoding RNA (lncRNA) plays crucial roles in various biological processes of different cancers, especially acting as a competing endogenous RNA (ceRNA). However, the role of lncRNA-mediated ceRNA in Wilms tumor (WT), which is the most common malignant kidney cancer in children, remains unknown. In present study, RNA sequence profiles and clinical data of 125 patients with WT consisting of 119 tumor and 6 normal tissues from Therapeutically Applicable Research To Generate Effective Treatments database were analyzed. A total of 1833 lncRNAs, 156 microRNAs (miRNAs), and 3443 messenger RNAs (mRNAs) were identified as differentially expressed (DE) using "DESeq2" package. The lncRNA-miRNA-mRNA ceRNA regulatory network involving 748 DElncRNAs, 33 DEmiRNAs, and 189 DEmRNAs was constructed based on miRcode, Targetscan, miRTarBase, and miRDB database. Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that DEmRNAs were mainly enriched in cell proliferation-related processes and tumor-related pathways, respectively, and 13 hub genes were identified by a protein-protein interaction network. Survival analysis detected 48 lncRNAs, 7 miRNAs, and 16 mRNAs to have significant impact on the overall survival of patients with WT. Additionally, we found that 6 DElncRNAs with potential prognostic value were correlated with tumor stage (DENND5B-AS1) and histologic classification (TMPO-AS1, RP3-523K23.2, RP11-598F7.3, LAMP5-AS1, and AC013275.2) of patients with WT. Our research provides a great insight into understanding the molecular mechanism underlying occurrence and progression of WT, as well as the potential to develop targeted therapies and prognostic biomarkers.


Assuntos
Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Tumor de Wilms/genética , Pré-Escolar , Biologia Computacional/métodos , Bases de Dados Genéticas , Feminino , Ontologia Genética , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , Prognóstico , RNA Mensageiro/metabolismo , Taxa de Sobrevida , Tumor de Wilms/metabolismo , Tumor de Wilms/patologia
2.
J Hepatol ; 71(1): 52-61, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30880226

RESUMO

BACKGROUND & AIMS: Assembly of infectious hepatitis C virus (HCV) particles is known to involve host lipoproteins, giving rise to unique lipo-viro-particles (LVPs), but proteome studies now suggest that additional cellular proteins are associated with HCV virions or other particles containing the viral envelope glycoprotein E2. Many of these host cell proteins are common markers of exosomes, most notably the intracellular adaptor protein syntenin, which is required for exosome biogenesis. We aimed to elucidate the role of syntenin/E2 in HCV infection. METHODS: Using cell culture-derived HCV, we studied the biogenesis and function of E2-coated exosomes in both hepatoma cells and primary human hepatocytes (PHHs). RESULTS: Knockout of syntenin had a negligible impact on HCV replication and virus production, whereas ectopic expression of syntenin at physiological levels reduced intracellular E2 abundance, while concomitantly increasing the secretion of E2-coated exosomes. Importantly, cells expressing syntenin and HCV structural proteins efficiently released exosomes containing E2 but lacking the core protein. Furthermore, infectivity of HCV released from syntenin-expressing hepatoma cells and PHHs was more resistant to neutralization by E2-specific antibodies and chronic-phase patient serum. We also found that high E2/syntenin levels in sera correlate with lower serum neutralization capability. CONCLUSIONS: E2- and syntenin-containing exosomes are a major type of particle released from cells expressing high levels of syntenin. Efficient production of E2-coated exosomes renders HCV infectivity less susceptible to antibody neutralization in hepatoma cells and PHHs. LAY SUMMARY: This study identifies a key role for syntenin in the regulation of E2 secretion via exosomes. Efficient production of E2-coated exosomes was shown to make hepatitis C virus less sensitive to antibody neutralization. These results may have implications for the development of a hepatitis C virus vaccine.


Assuntos
Anticorpos Neutralizantes/imunologia , Exossomos/metabolismo , Hepacivirus/fisiologia , Hepatite C , Sinteninas/metabolismo , Proteínas do Envelope Viral/biossíntese , Células Cultivadas , Hepatite C/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Vírion/fisiologia
3.
Acta Pharmacol Sin ; 40(6): 814-822, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30446732

RESUMO

Cancer cells always require more nutrients, energy, and biosynthetic activity to sustain their rapid proliferation than normal cells. Previous studies have shown the impact of THZ1, a covalent inhibitor of cyclin-dependent kinase 7 (CDK7), on transcription regulation and cell-cycle arrest in numerous cancers, but its effects on cellular metabolism in cancer cells remain unknown. In this study we elucidated the anticancer mechanism of THZ1 in human non-small-cell lung cancer (NSCLC) cells. We showed that treatment with THZ1 (10-1000 nM) dose-dependently suppressed the proliferation of human NSCLC cell lines H1299, A549, H292, and H23, and markedly inhibited the migration of these NSCLC cells. Furthermore, treatment with THZ1 (50 nM) arrested cell cycle at G2/M phase and induced apoptosis in these NSCLC cell lines. More importantly, we revealed that treatment with THZ1 (50 nM) blocked the glycolysis pathway but had no effect on glutamine metabolism. We further demonstrated that THZ1 treatment altered the expression pattern of glutaminase 1 (GLS1) isoforms through promoting the ubiquitination and degradation of NUDT21. Combined treatment of THZ1 with a glutaminase inhibitor CB-839 (500 nM) exerted a more potent anti-proliferative effect in these NSCLC cell lines than treatment with THZ1 or CB-839 alone. Our results demonstrate that the inhibitory effect of THZ1 on the growth of human NSCLC cells is partially attributed to interfering with cancer metabolism. Thus, we provide a new potential therapeutic strategy for NSCLC treatment by combining THZ1 with the inhibitors of glutamine metabolism.


Assuntos
Antineoplásicos/farmacologia , Fenilenodiaminas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Apoptose/efeitos dos fármacos , Benzenoacetamidas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Sinergismo Farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Glutaminase/antagonistas & inibidores , Glicólise/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Tiadiazóis/farmacologia , Quinase Ativadora de Quinase Dependente de Ciclina
4.
Cell Physiol Biochem ; 48(6): 2350-2363, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30114710

RESUMO

BACKGROUND/AIMS: Previous studies showed that CD38 deficiency protected heart from ischemia/reperfusion injury and high fat diet (HFD)-induced obesity in mice. However, the role of CD38 in HFD-induced heart injury remains unclear. In the present study, we have investigated the effects and mechanisms of CD38 deficiency on HFD-induced heart injury. METHODS: The metabolites in heart from wild type (WT) and CD38 knockout (CD38-/-) mice were examined using metabolomics analysis. Cell viability, lactate hydrogenase (LDH) release, super oxide dismutase (SOD) activity, reactive oxygen species (ROS) production, triglyceride concentration and gene expression were examined by biochemical analysis and QPCR. RESULTS: Our results revealed that CD38 deficiency significantly elevated the intracellular glutathione (GSH) concentration and GSH/GSSG ratio, decreased the contents of free fatty acids and increased intracellular NAD+ level in heart from CD38-/- mice fed with HFD. In addition, in vitro knockdown of CD38 significantly attenuated OA-induced cellular injury, ROS production and lipid synthesis. Furthermore, the expression of mitochondrial deacetylase Sirt3 as well as its target genes FOXO3 and SOD2 were markedly upregulated in the H9C2 cell lines after OA stimulation. In contrast, the expressions of NOX2 and NOX4 were significantly decreased in the cells after OA stimulation. CONCLUSION: Our results demonstrated that CD38 deficiency protected heart from HFD-induced oxidative stress via activating Sirt3/FOXO3-mediated anti-oxidative stress pathway.


Assuntos
ADP-Ribosil Ciclase 1/genética , Dieta Hiperlipídica , Proteína Forkhead Box O3/metabolismo , Glicoproteínas de Membrana/genética , Estresse Oxidativo , Sirtuína 3/metabolismo , ADP-Ribosil Ciclase 1/antagonistas & inibidores , ADP-Ribosil Ciclase 1/metabolismo , Animais , Linhagem Celular , Glutationa/metabolismo , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Superóxido Dismutase/metabolismo
5.
J Virol ; 91(2)2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27852847

RESUMO

Hepatitis C virus (HCV) infects 2 to 3% of the world population and is a leading cause of liver diseases such as fibrosis, cirrhosis, and hepatocellular carcinoma. Many aspects of HCV study, ranging from molecular virology and antiviral drug development to drug resistance profiling, were supported by straightforward assays of HCV replication and infection. Among these assays, the HCV-dependent fluorescence relocalization (HDFR) system allowed live-cell visualization of infection without modifying the viral genome, but this strategy required careful recognition of the fluorescence relocalization pattern for its high fluorescence background in the cytoplasm. In this study, to achieve background-free visualization of HCV infection, a viral infection-activated split-intein-mediated reporter system (VISI) was devised. Uninfected Huh7.5.1-VISI cells show no background signal, while HCV infection specifically illuminates the nuclei of infected Huh7.5.1-VISI cells with either green fluorescent protein (GFP) or mCherry. Combining VISI-GFP and VISI-mCherry systems, we revisited HCV cell-to-cell transmission with clear-cut distinction of donor and recipient cells in a live-cell manner. Independently of virion assembly, exosomes have been reported to transfer HCV subgenomic RNA to initiate replication in uninfected cells, which suggested an assembly-free pathway. However, our data demonstrated that HCV structural genes and the p7 gene were essential for not only cell-free infectivity but also cell-to-cell transmission. Additionally, depletion of apolipoprotein E (ApoE) from donor cells but not from recipient cells significantly reduced HCV cell-to-cell transmission efficiency. In summary, we developed a background-free cell-based reporter system for convenient live-cell visualization of HCV infection, and our data indicate that complete HCV virion assembly machinery is essential for both cell-free and cell-to-cell transmission. IMPORTANCE: Hepatitis C virus (HCV) infects hepatocytes via two pathways: cell-free infection and cell-to-cell transmission. Structural modules of the HCV genome are required for production of infectious cell-free virions; however, the role of specific genes within the structural module in cell-to-cell transmission is not clearly defined. Our data demonstrate that deletion of core, E1E2, and p7 genes individually results in no HCV cell-to-cell transmission and that ApoE knockdown from donor cells causes less-efficient cell-to-cell transmission. Thus, this work indicates that the complete HCV assembly machinery is required for HCV cell-to-cell transmission. At last, this work presents an optimized viral infection-activated split-intein-mediated reporter system for easy live-cell monitoring of HCV infection.


Assuntos
Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatite C/virologia , Inteínas , Receptores Virais , Montagem de Vírus , Replicação Viral , Antivirais/farmacologia , Apolipoproteínas E/metabolismo , Linhagem Celular , Células Cultivadas , Expressão Gênica , Ordem dos Genes , Genes Reporter , Vetores Genéticos/genética , Hepacivirus/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion
6.
BMC Bioinformatics ; 18(1): 494, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29145823

RESUMO

BACKGROUND: Autism spectrum disorders (ASD) are hereditary, heterogeneous and biologically complex neurodevelopmental disorders. Individual studies on gene expression in ASD cannot provide clear consensus conclusions. Therefore, a systematic review to synthesize the current findings from brain tissues and a search tool to share the meta-analysis results are urgently needed. METHODS: Here, we conducted a meta-analysis of brain gene expression profiles in the current reported human ASD expression datasets (with 84 frozen male cortex samples, 17 female cortex samples, 32 cerebellum samples and 4 formalin fixed samples) and knock-out mouse ASD model expression datasets (with 80 collective brain samples). Then, we applied R language software and developed an interactive shared and updated database (dbMDEGA) displaying the results of meta-analysis of data from ASD studies regarding differentially expressed genes (DEGs) in the brain. RESULTS: This database, dbMDEGA ( https://dbmdega.shinyapps.io/dbMDEGA/ ), is a publicly available web-portal for manual annotation and visualization of DEGs in the brain from data from ASD studies. This database uniquely presents meta-analysis values and homologous forest plots of DEGs in brain tissues. Gene entries are annotated with meta-values, statistical values and forest plots of DEGs in brain samples. This database aims to provide searchable meta-analysis results based on the current reported brain gene expression datasets of ASD to help detect candidate genes underlying this disorder. CONCLUSION: This new analytical tool may provide valuable assistance in the discovery of DEGs and the elucidation of the molecular pathogenicity of ASD. This database model may be replicated to study other disorders.


Assuntos
Transtorno do Espectro Autista/genética , Bases de Dados Genéticas , Transcriptoma , Animais , Cerebelo , Córtex Cerebral/metabolismo , Feminino , Humanos , Masculino , Camundongos
7.
J Cell Mol Med ; 21(8): 1492-1502, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28296029

RESUMO

Cardiac hypertrophy is an early hallmark during the clinical course of heart failure and regulated by various signalling pathways. Recently, we observed that mouse embryonic fibroblasts from CD38 knockout mice were significantly resistant to oxidative stress such as H2 O2 -induced injury and hypoxia/reoxygenation-induced injury. In addition, we also found that CD38 knockout mice protected heart from ischaemia reperfusion injury through activating SIRT1/FOXOs-mediated antioxidative stress pathway. However, the role of CD38 in cardiac hypertrophy is not explored. Here, we investigated the roles and mechanisms of CD38 in angiotensin II (Ang-II)-induced cardiac hypertrophy. Following 14 days of Ang-II infusion with osmotic mini-pumps, a comparable hypertension was generated in both of CD38 knockout and wild-type mice. However, the cardiac hypertrophy and fibrosis were much more severe in wild-type mice compared with CD38 knockout mice. Consistently, RNAi-induced knockdown of CD38 decreased the gene expressions of atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) and reactive oxygen species generation in Ang-II-stimulated H9c2 cells. In addition, the expression of SIRT3 was elevated in CD38 knockdown H9c2 cells, in which SIRT3 may further activate the FOXO3 antioxidant pathway. The intracellular Ca2+ release induced by Ang-II markedly decreased in CD38 knockdown H9c2 cells, which might be associated with the decrease of nuclear translocation of NFATc4 and inhibition of ERK/AKT phosphorylation. We concluded that CD38 plays an essential role in cardiac hypertrophy probably via inhibition of SIRT3 expression and activation of Ca2+ -NFAT signalling pathway. Thus, CD38 may be a novel target for treating cardiac hypertrophy.


Assuntos
ADP-Ribosil Ciclase 1/genética , Angiotensina II/farmacologia , Cardiomegalia/genética , Glicoproteínas de Membrana/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , ADP-Ribosil Ciclase 1/antagonistas & inibidores , ADP-Ribosil Ciclase 1/deficiência , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Cálcio/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Linhagem Celular , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Regulação da Expressão Gênica , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sirtuínas/genética , Sirtuínas/metabolismo
8.
Indian J Med Res ; 140(6): 744-55, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25758573

RESUMO

BACKGROUND & OBJECTIVES: Type 2 diabetes (T2D) is characterized as hyperglycaemia caused by defects in insulin secretion, and it affects target tissues, such as skeletal muscle, liver and adipose tissue. Therefore, analyzing the changes of gene expression profiles in these tissues is important to elucidate the pathogenesis of T2D. We, therefore, measured the gene transcript alterations in liver and skeletal muscle of rat with induced T2D, to detect differentially expressed genes in liver and skeletal muscle and perform gene-annotation enrichment analysis. METHODS: In the present study, skeletal muscle and liver tissue from 10 streptozotocin-induced diabetic rats and 10 control rats were analyzed using gene expression microarrays. KEGG pathways enriched by differentially expressed genes (DEGs) were identified by WebGestalt Expander and GATHER software. DEGs were validated by the method of real-time PCR and western blot. RESULTS: From the 9,929 expressed genes across the genome, 1,305 and 997 differentially expressed genes (DEGs, P<0.01) were identified in comparisons of skeletal muscle and liver, respectively. Large numbers of DEGs (200) were common in both comparisons, which was clearly more than the predicted number (131 genes, P<0.001). For further interpretation of the gene expression data, three over-representation analysis softwares (WebGestalt, Expander and GATHER) were used. All the tools detected one KEGG pathway (MAPK signaling) and two GO (gene ontology) biological processes (response to stress and cell death), with enrichment of DEGs in both tissues. In addition, PPI (protein-protein interaction) networks constructed using human homologues not only revealed the tendency of DEGs to form a highly connected module, but also suggested a "hub" role of p38-MAPK-related genes (such as MAPK14) in the pathogenesis of T2D. INTERPRETATION & CONCLUSIONS: Our results indicated the considerably aberrant MAPK signaling in both insulin-sensitive tissues of T2D rat, and that the p38 may play a role as a common "hub" in the gene module response to hyperglycaemia. Furthermore, our research pinpoints the role of several new T2D-associated genes (such as Srebf1 and Ppargc1) in the human population.


Assuntos
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/genética , Hiperglicemia/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/biossíntese , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Perfilação da Expressão Gênica , Humanos , Hiperglicemia/patologia , Insulina/metabolismo , Resistência à Insulina/genética , Fígado/metabolismo , Fígado/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Ratos , Transdução de Sinais
9.
Yi Chuan ; 36(9): 857-63, 2014 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-25252302

RESUMO

Cardiovascular disease (CVD) has become an increased risk to human health, and the abnormal cholesterol metabolism will increase the risk of developing CVD. Along with the development of high-throughput sequencing technology and population genomics, the scanning for genes or mutations related to complex traits (or diseases) has been greatly promoted. Also, it becomes possible to explore the genetic mechanism of cholesterol metabolism. In this review, we summarize the progress of molecular genetic studies of cholesterol metabolism, based on the results of traditional genetic method and GWAS screening. Finally, the functional background of abnormal cholesterol metabolism was explored by pathway enrichment analysis. All these analyses will contribute to a better understanding of cholesterol molecular mechanism, and will also provide clues for prevention and treatment of cholesterol metabolism disorders.


Assuntos
Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Colesterol/metabolismo , Animais , Doenças Cardiovasculares/epidemiologia , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , Fatores de Risco
10.
Transl Oncol ; 40: 101855, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185058

RESUMO

BACKGROUND: Chemotherapy resistance is the main cause of ovarian cancer progression and even death. However, there are no clear indicators for predicting the risk of drug resistance in patients. Intra-tumor heterogeneity (ITH) is one of the characteristics of malignant tumors, which is associated with the treatment and prognosis of tumors. Accordingly, our study aims to investigate the correlation between the image features of intra-tumor heterogeneity and drug resistance of ovarian cancer based on artificial intelligence. METHODS: We obtained hematoxylin and eosin staining frozen histopathological images of ovarian cancer and paracarcinoma tissues from the Cancer Genome Atlas. We extracted quantitative image features of whole-slide images based on the automatic image nuclear segmentation processing technology. After that, we used bioinformatics analysis to find the relationship between image features of intra-tumor heterogeneity and drug resistance. RESULTS: Our results show that our automatic image processing process based on computer artificial intelligence can extract image features effectively, and the key image features extracted are closely related to ITH. Among them, the Perimeter.sd image feature with the most prominent ITH feature can accurately predict the risk of platinum-based chemotherapy drug resistance in ovarian cancer patients. CONCLUSION: Automatic image processing and feature extraction based on artificial intelligence have excellent results. Perimeter.sd can be used as a useful image feature indicator for evaluating ITH. ITH is associated with drug resistance of ovarian cancer, so ITH characteristics can be used as an effective indicator to evaluate drug resistance in patients with ovarian cancer.

11.
Heliyon ; 10(7): e28490, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38590858

RESUMO

Background: High-grade serous ovarian carcinoma (HGSOC) is the most prevalent and aggressive histological subtype of epithelial ovarian cancer. Around 80% of individuals will experience a recurrence within five years because of resistance to chemotherapy, despite initially responding well to platinum-based treatment. Biomarkers associated with chemoresistance are desperately needed in clinical practice. Methods: We jointly analyzed the transcriptomic profiles of single-cell and bulk datasets of HGSOC to identify cell types associated with chemoresistance. Copy number variation (CNV) inference was performed to identify malignant cells. We subsequently analyzed the expression of candidate biomarkers and their relationship with patients' prognosis. The enrichment analysis and potential biological function of candidate biomarkers were explored. Then, we validated the candidate biomarker using in vitro experiments. Results: We identified 8871 malignant epithelial cells in a single-cell RNA sequencing dataset, of which 861 cells were associated with chemoresistance. Among these malignant epithelial cells, FBXO2 (F-box protein 2) is highly expressed in cells related to chemoresistance. Moreover, FBXO2 expression was found to be higher in epithelial cells from chemoresistance samples compared to those from chemosensitivity samples in a separate single-cell RNA sequencing dataset. Patients exhibiting elevated levels of FBXO2 experienced poorer outcomes in terms of both overall survival (OS) and progression-free survival (PFS). FBXO2 could impact chemoresistance by influencing the PI3K-Akt signaling pathway, focal adhesion, and ECM-receptor interactions and regulating tumorigenesis. The 50% maximum inhibitory concentration (IC50) of cisplatin decreased in A2780 and SKOV3 ovarian carcinoma cell lines with silenced FBXO2 during an in vitro experiment. Conclusions: We determined that FBXO2 is a potential biomarker linked to chemoresistance in HGSOC by combining single-cell RNA-seq and bulk RNA-seq dataset. Our results suggest that FBXO2 could serve as a valuable prognostic marker and potential target for drug development in HGSOC.

12.
Oral Radiol ; 40(3): 357-366, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38393548

RESUMO

OBJECTIVES: We aim to develop a deep learning model based on a convolutional neural network (CNN) combined with a classification algorithm (CA) to assist dentists in quickly and accurately diagnosing the stage of periodontitis. MATERIALS AND METHODS: Periapical radiographs (PERs) and clinical data were collected. The CNNs including Alexnet, VGG16, and ResNet18 were trained on PER to establish the PER-CNN models for no periodontal bone loss (PBL) and PBL. The CAs including random forest (RF), support vector machine (SVM), naive Bayes (NB), logistic regression (LR), and k-nearest neighbor (KNN) were added to the PER-CNN model for control, stage I, stage II and stage III/IV periodontitis. Heat map was produced using a gradient-weighted class activation mapping method to visualize the regions of interest of the PER-Alexnet model. Clustering analysis was performed based on the ten PER-CNN scores and the clinical characteristics. RESULTS: The accuracy of the PER-Alexnet and PER-VGG16 models with the higher performance was 0.872 and 0.853, respectively. The accuracy of the PER-Alexnet + RF model with the highest performance for control, stage I, stage II and stage III/IV was 0.968, 0.960, 0.835 and 0.842, respectively. Heat map showed that the regions of interest predicted by the model were periodontitis bone lesions. We found that age and smoking were significantly related to periodontitis based on the PER-Alexnet scores. CONCLUSION: The PER-Alexnet + RF model has reached high performance for whole-case periodontal diagnosis. The CNN models combined with CA can assist dentists in quickly and accurately diagnosing the stage of periodontitis.


Assuntos
Algoritmos , Redes Neurais de Computação , Periodontite , Humanos , Periodontite/diagnóstico por imagem , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Radiografia Dentária , Aprendizado Profundo , Teorema de Bayes
13.
Int Immunopharmacol ; 128: 111494, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218012

RESUMO

BACKGROUND & AIMS: Tumor-associated macrophages (TAMs) are main components of immune cells in tumor microenvironment (TME), and play a crucial role in tumor progression. Tripartite motif-containing protein 65 (TRIM65) has been associated with tumor progression. However, whether TRIM65 regulate the interaction of tumor cell and TAMs in HCC and the underlying mechanisms remain unknown. In this study, we investigated the role of TRIM65 in TME of HCC and explored its underlying mechanisms. METHODS: The relation of TRIM65 expression level with tumor grades, TNM stages, and worse prognosis of HCC patients was evaluated by bioinformatics analysis, as well as immune infiltration level of macrophages. TRIM65 shRNA was transfected into HepG2 cells, and TRIM65 overexpression plasmid was transfected into Huh7 cells, and the effect of TRIM65 on cell growth was examined by EdU assay. The mouse subcutaneous Hep1-6 tumor-bearing model with WT and TRIM65-/- mice was established to study the role of TRIM65 in HCC. Immunohistochemistry staining, Immunofluorescence staining, qRT-PCR and western blot were performed to evaluate the effect of TRIM65 on TAM infiltration, TAM polarization and JAK1/STAT1 signaling pathway. RESULTS: Bioinformatics analysis revealed that TRIM65 was upregulated in 16 types of cancer especially in HCC, and high level of TRIM65 was strongly correlated with higher tumor grades, TNM stages, and worse prognosis of patients with HCC as well as immune infiltration level of macrophages (M0, M1, and M2). Moreover, we observed that TRIM65 shRNA-mediated TRIM65 knockdown significantly inhibited the HepG2 cells growth while TRIM65 overexpression highly increased the Huh7 cells growth in vitro. TRIM65 knockout significantly inhibited the tumor growth as well as macrophages polarization towards M2 but promoted macrophages polarization towards M1 in vivo. Mechanistically, the results demonstrate that TRIM65 knockout promoted macrophage M1 polarization in conditioned medium-stimulated peritoneal macrophages and in tumor tissues by activating JAK1/STAT1 signaling pathway. CONCLUSIONS: Taken together, our study suggests that tumor cells utilize TRIM65-JAK1/STAT1 axis to inhibit macrophage M1 polarization and promote tumor growth, reveals the role of TRIM65 in TAM-targeting tumor immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Janus Quinase 1/metabolismo , Neoplasias Hepáticas/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fator de Transcrição STAT1/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Microambiente Tumoral , Macrófagos Associados a Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
14.
Proc Natl Acad Sci U S A ; 107(25): 11459-64, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20534544

RESUMO

By impairing both function and survival, the severe reduction in oxygen availability associated with high-altitude environments is likely to act as an agent of natural selection. We used genomic and candidate gene approaches to search for evidence of such genetic selection. First, a genome-wide allelic differentiation scan (GWADS) comparing indigenous highlanders of the Tibetan Plateau (3,200-3,500 m) with closely related lowland Han revealed a genome-wide significant divergence across eight SNPs located near EPAS1. This gene encodes the transcription factor HIF2alpha, which stimulates production of red blood cells and thus increases the concentration of hemoglobin in blood. Second, in a separate cohort of Tibetans residing at 4,200 m, we identified 31 EPAS1 SNPs in high linkage disequilibrium that correlated significantly with hemoglobin concentration. The sex-adjusted hemoglobin concentration was, on average, 0.8 g/dL lower in the major allele homozygotes compared with the heterozygotes. These findings were replicated in a third cohort of Tibetans residing at 4,300 m. The alleles associating with lower hemoglobin concentrations were correlated with the signal from the GWADS study and were observed at greatly elevated frequencies in the Tibetan cohorts compared with the Han. High hemoglobin concentrations are a cardinal feature of chronic mountain sickness offering one plausible mechanism for selection. Alternatively, as EPAS1 is pleiotropic in its effects, selection may have operated on some other aspect of the phenotype. Whichever of these explanations is correct, the evidence for genetic selection at the EPAS1 locus from the GWADS study is supported by the replicated studies associating function with the allelic variants.


Assuntos
Alelos , Doença da Altitude/genética , Altitude , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Hemoglobinas/metabolismo , Seleção Genética , Variação Genética , Genoma Humano , Homozigoto , Humanos , Hipóxia , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Tibet
15.
Yi Chuan ; 35(5): 607-15, 2013 May.
Artigo em Chinês | MEDLINE | ID: mdl-23732667

RESUMO

Sterol regulatory element binding protein 1 (SREBP-1) is one of the important nuclear transcription factors. SREBP-1 can maintain lipids dynamic equilibrium by regulating the expression of enzymes required for synthesis of endogenous cholesterol, fatty acids, triglycerides and phospholipids. Anomalies of SREBP-1 and its target genes can cause a series of metabolic diseases such as insulin resistance, type Ⅱ diabetes, heart dysfunction, vascular complications and hepatic steatosis. In these years, the development of high-throughput technologies has greatly expanded our knowledge about SREBP-1 target genes and the pattern of transcriptional regulation. Here we reviewed recent research progress of SREBP-1, with a focus on the protein structure, activation process, DNA binding sites and target genes. Most importantly, we showed the transcriptional regulatory networks based on omics datasets, which will contribute to a better understanding of the role of SREBP-1 in lipid metabolism and provide new clues for the treatment of lipid metabolism disorders.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Humanos , Metabolismo dos Lipídeos , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
16.
J Clin Transl Hepatol ; 11(2): 273-283, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-36643029

RESUMO

Background and Aims: Osteopontin (OPN) is reported to be associated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, the function of OPN in NAFLD is still inconclusive. Therefore, our aim in this study was to evaluate the role of OPN in NAFLD and clarify the involved mechanisms. Methods: We analyzed the expression change of OPN in NAFLD by bioinformatic analysis, qRT-PCR, western blotting and immunofluorescence staining. To clarify the role of OPN in NAFLD, the effect of OPN from HepG2 cells on macrophage polarization and the involved mechanisms were examined by FACS and western blotting. Results: OPN was significantly upregulated in NAFLD patients compared with normal volunteers by microarray data, and the high expression of OPN was related with disease stage and progression. OPN level was also significantly increased in liver tissue samples of NAFLD from human and mouse, and in HepG2 cells treated with oleic acid (OA). Furthermore, the supernatants of OPN-treated HepG2 cells promoted the macrophage M1 polarization. Mechanistically, OPN activated the janus kinase 1(JAK1)/signal transducers and activators of transcription 1 (STAT1) signaling pathway in HepG2 cells, and consequently HepG2 cells secreted more high-mobility group box 1 (HMGB1), thereby promoting macrophage M1 polarization. Conclusions: OPN promoted macrophage M1 polarization by increasing JAK1/STAT1-induced HMGB1 secretion in hepatocytes.

17.
Neuro Oncol ; 25(5): 871-885, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36322624

RESUMO

BACKGROUND: Tumor angiogenesis is essential for solid tumor progression, invasion and metastasis. The aim of this study was to identify potential signaling pathways involved in tumor angiogenesis. METHODS: Genetically engineered mouse models were used to investigate the effects of endothelial ARL13B(ADP-ribosylation factor-like GTPase 13B) over-expression and deficiency on retinal and cerebral vasculature. An intracranially transplanted glioma model and a subcutaneously implanted melanoma model were employed to examine the effects of ARL13B on tumor growth and angiogenesis. Immunohistochemistry was used to measure ARL13B in glioma tissues, and scRNA-seq was used to analyze glioma and endothelial ARL13B expression. GST-fusion protein-protein interaction and co-immunoprecipitation assays were used to determine the ARL13B-VEGFR2 interaction. Immunobloting, qPCR, dual-luciferase reporter assay and functional experiments were performed to evaluate the effects of ARL13B on VEGFR2 activation. RESULTS: Endothelial ARL13B regulated vascular development of both the retina and brain in mice. Also, ARL13B in endothelial cells regulated the growth of intracranially transplanted glioma cells and subcutaneously implanted melanoma cells by controlling tumor angiogenesis. Interestingly, this effect was attributed to ARL13B interaction with VEGFR2, through which ARL13B regulated the membrane and ciliary localization of VEGFR2 and consequently activated its downstream signaling in endothelial cells. Consistent with its oncogenic role, ARL13B was highly expressed in human gliomas, which was well correlated with the poor prognosis of glioma patients. Remarkably, ARL13B, transcriptionally regulated by ZEB1, enhanced the expression of VEGFA by activating Hedgehog signaling in glioma cells. CONCLUSIONS: ARL13B promotes angiogenesis and tumor growth by activating VEGFA-VEGFR2 signaling. Thus, targeting ARL13B might serve as a potential approach for developing an anti-glioma or anti-melanoma therapy.


Assuntos
Células Endoteliais , Glioma , Humanos , Camundongos , Animais , Células Endoteliais/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Glioma/patologia , Neovascularização Patológica/metabolismo , Proliferação de Células , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/farmacologia
18.
BMC Microbiol ; 12: 307, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23272650

RESUMO

BACKGROUND: Hepatitis B virus (HBV), because of its error-prone viral polymerase, has a high mutation rate leading to widespread substitutions, deletions, and insertions in the HBV genome. Deletions may significantly change viral biological features complicating the progression of liver diseases. However, the clinical conditions correlating to the accumulation of deleted mutants remain unclear. In this study, we explored HBV deletion patterns and their association with disease status and antiviral treatment by performing whole genome sequencing on samples from 51 hepatitis B patients and by monitoring changes in deletion variants during treatment. Clone sequencing was used to analyze preS regions in another cohort of 52 patients. RESULTS: Among the core, preS, and basic core promoter (BCP) deletion hotspots, we identified preS to have the highest frequency and the most complex deletion pattern using whole genome sequencing. Further clone sequencing analysis on preS identified 70 deletions which were classified into 4 types, the most common being preS2. Also, in contrast to the core and BCP regions, most preS deletions were in-frame. Most deletions interrupted viral surface epitopes, and are possibly involved in evading immuno-surveillance. Among various clinical factors examined, logistic regression showed that antiviral medication affected the accumulation of deletion mutants (OR = 6.81, 95% CI = 1.296 ~ 35.817, P = 0.023). In chronic carriers of the virus, and individuals with chronic hepatitis, the deletion rate was significantly higher in the antiviral treatment group (Fisher exact test, P = 0.007). Particularly, preS2 deletions were associated with the usage of nucleos(t)ide analog therapy (Fisher exact test, P = 0.023). Dynamic increases in preS1 or preS2 deletions were also observed in quasispecies from samples taken from patients before and after three months of ADV therapy. In vitro experiments demonstrated that preS2 deletions alone were not responsible for antiviral resistance, implying the coordination between wild type and mutant strains during viral survival and disease development. CONCLUSIONS: We present the HBV deletion distribution patterns and preS deletion substructures in viral genomes that are prevalent in northern China. The accumulation of preS deletion mutants during nucleos(t)ide analog therapy may be due to viral escape from host immuno-surveillance.


Assuntos
Antivirais/uso terapêutico , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/patologia , Precursores de Proteínas/genética , Deleção de Sequência , Adulto , China , Feminino , Genoma Viral , Vírus da Hepatite B/química , Vírus da Hepatite B/isolamento & purificação , Hepatite B Crônica/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Taxa de Mutação , Análise de Sequência de DNA , Adulto Jovem
19.
Yi Chuan ; 34(2): 198-207, 2012 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-22382061

RESUMO

Diabetic neuropathy (DN) is defined as the presence of symptoms and/or signs of peripheral nerve dysfunction in people with diabetes. The aim of this study is to screen differentially expressed genes in peripheral ganglia in early stage type Ⅱ experimental diabetic rats. We compared gene expression profiles of peripheral ganglia in type Ⅱ diabetic and nondiabetic rats based on Illumina® Sentrix® BeadChip arrays. The results showed that 158 out of a total of 12 604 known genes were significantly differentially expressed, including 87 up-regulated and 71 down-regulated genes, in diabetic rats compared with those in the nondiabetic rats. It is noted that some up-regulated genes are involved in the biological processes of neuronal cytoskeleton and motor proteins. In contrast, the down-regulated genes are associated with the response to virus\biotic stimulus\ other organism in diabetic rats. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the most significant pathway enriched in the changed gene set is metabolism (P < 0.001). These results indicated that metabolic changes in peripheral ganglia of diabetic rats could be induced by hyperglycemia. Hyperglycemia could change the expression of genes involved in neuronal cytoskeleton and motor proteins through immune inflammatory response, and then impair the structure and function of the peripheral ganglia.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Neuropatias Diabéticas/metabolismo , Gânglios/metabolismo , Perfilação da Expressão Gênica , Animais , Masculino , Ratos , Ratos Sprague-Dawley
20.
Brain Behav ; 12(5): e2575, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35429411

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. For patients with GBM, the median overall survival (OS) is 14.6 months and the 5-year survival rate is 7.2%. It is imperative to develop a reliable model to predict the survival probability in new GBM patients. To date, most prognostic models for predicting survival in GBM were constructed based on bulk RNA-seq dataset, which failed to accurately reflect the difference between tumor cores and peripheral regions, and thus show low predictive capability. An effective prognostic model is desperately needed in clinical practice. METHODS: We studied single-cell RNA-seq dataset and The Cancer Genome Atlas-glioblastoma multiforme (TCGA-GBM) dataset to identify differentially expressed genes (DEGs) that impact the OS of GBM patients. We then applied the least absolute shrinkage and selection operator (LASSO) Cox penalized regression analysis to determine the optimal genes to be included in our risk score prognostic model. Then, we used another dataset to test the accuracy of our risk score prognostic model. RESULTS: We identified 2128 DEGs from the single-cell RNA-seq dataset and 6461 DEGs from the bulk RNA-seq dataset. In addition, 896 DEGs associated with the OS of GBM patients were obtained. Five of these genes (LITAF, MTHFD2, NRXN3, OSMR, and RUFY2) were selected to generate a risk score prognostic model. Using training and validation datasets, we found that patients in the low-risk group showed better OS than those in the high-risk group. We validated our risk score model with the training and validating datasets and demonstrated that it can effectively predict the OS of GBM patients. CONCLUSION: We constructed a novel prognostic model to predict survival in GBM patients by integrating a scRNA-seq dataset and a bulk RNA-seq dataset. Our findings may advance the development of new therapeutic targets and improve clinical outcomes for GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Prognóstico , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa