Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Microsc ; 270(3): 326-334, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29393521

RESUMO

Structured illumination microscopy (SIM) for the imaging of alpha particle tracks in fluorescent nuclear track detectors (FNTD) was evaluated and compared to confocal laser scanning microscopy (CLSM). FNTDs were irradiated with an external alpha source and imaged using both methodologies. SIM imaging resulted in improved resolution, without increase in scan time. Alpha particle energy estimation based on the track length, direction and intensity produced results in good agreement with the expected alpha particle energy distribution. A pronounced difference was seen in the spatial scattering of alpha particles in the detectors, where SIM showed an almost 50% reduction compared to CLSM. The improved resolution of SIM allows for more detailed studies of the tracks induced by ionising particles. The combination of SIM and FNTDs for alpha radiation paves the way for affordable and fast alpha spectroscopy and dosimetry.

2.
Appl Radiat Isot ; 160: 109135, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32351227

RESUMO

Cu is an important trace metal which plays a role in many biological processes. The radioisotope 64Cu is often used to study such processes. Furthermore, 64Cu finds applications in cancer diagnostics as well as therapy. For all of these applications 64Cu having high specific activity is needed. 64Cu can be produced in cyclotrons or in nuclear reactors. In this paper we study the effect of gamma dose on the production of 64Cu according to the Szilard-Chalmers reaction using Cu(II)-phthalocyanine as a target. For this purpose, irradiations were performed in the nuclear reactor of the Delft University of Technology using a novel irradiation facility helping to limit the dose produced by gammas present in the reactor pool. The obtained 64Cu activity yield was in general above 60% in accordance to the theoretical expected value. An increase in gamma dose has no significant influence on the obtained activity yield but increases the loss of Cu from Cu(II)-phthalocyanine up to 0.9% and hence decreases the specific activity that can be obtained. However, without optimisation, when reducing the gamma dose specific activities in the order of 30 TBq/g can be achieved.

3.
Mater Sci Eng C Mater Biol Appl ; 106: 110244, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31753348

RESUMO

Microspheres with high specific activities of radionuclides are very interesting for internal radiotherapy treatments. This work focuses on the formulation and characterization of inorganic microspheres with a high content of holmium and therefore a high specific radioactivity of holmium-166. Two novel formulations of inorganic microspheres were obtained by dispersing solid holmium acetylacetonate microspheres (Ho2(AcAc)3-ms) in NaH2PO4 or NaOH solutions followed by 2 h incubation at room temperature. By exchange of acetylacetonate with phosphate or hydroxyl ions, holmium phosphate microspheres (HoPO4-ms) and holmium hydroxide microspheres (Ho(OH)3-ms) were formed respectively. The inorganic microspheres had a significantly smaller diameter (28.5 ±â€¯4.4 µm (HoPO4-ms) and 25.1 ±â€¯3.5 µm (Ho(OH)3-ms)) than those of Ho2(AcAc)3-ms (32.6 ±â€¯5.2 µm). The weight percentage of holmium-165 in the microspheres increased significantly from 47% (Ho2(AcAc)3-ms) to 55% (HoPO4-ms) and 73% (Ho(OH)3-ms). After preparation of both HoPO4-ms and Ho(OH)3-ms, the stable holmium-165 isotope was partly converted by neutron activation into radioactive holmium-166 to yield radioactive microspheres. High specific activities were achieved ranging from 21.7 to 59.9 MBq/mg (166HoPO4-ms) and from 28.8 to 79.9 MBq/mg (166Ho(OH)3-ms) depending on the neutron activation time. The structure of both microspheres was preserved up to neutron activations of 6 h in a thermal neutron flux of 4.72 × 1016 n m-2 s-1. After activation, both microspheres revealed excellent stability in administration fluids (saline and phosphate buffer) having less than 0.05% of holmium released after 72 h incubation. Finally, the hemocompatibility of these inorganic microspheres was evaluated and it was shown that the microspheres did cause neither hemolysis nor depletion or inhibition of the coagulation factors of the intrinsic blood coagulation pathway meaning that the microspheres have a good hemocompatibility. Overall, this work shows that radioactive inorganic microspheres with high specific activities of holmium-166 can be prepared which potentially can be used for internal radionuclide therapy.


Assuntos
Antibacterianos/química , Durapatita/química , Hólmio/química , Microesferas , Nitroimidazóis/química , Radioisótopos/química , Linhagem Celular Tumoral , Eritrócitos/efeitos dos fármacos , Citometria de Fluxo , Humanos , Análise Espectral Raman
4.
Appl Radiat Isot ; 164: 109266, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32819505

RESUMO

New production routes for 99Mo are steadily gaining importance. However, the obtained specific activity is much lower than currently produced by the fission of U-235. To be able to supply hospitals with 99Mo/99mTc generators with the desired activity, the adsorption capacity of the column material should be increased. In this paper we have investigated whether the gas phase coating technique Atomic Layer Deposition (ALD), which can deposit ultra-thin layers on high surface area materials, can be used to attain materials with high adsorption capacity for 99Mo. For this purpose, ALD was applied on a silica-core sorbent material to coat it with a thin layer of alumina. This sorbent material shows to have a maximum adsorption capacity of 120 mg/g and has a99mTc elution efficiency of 55 ± 2% based on 3 executive elutions.

5.
J Phys Chem B ; 113(4): 989-96, 2009 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19123834

RESUMO

The kinetics of the sphere-to-rod transition of micelles composed of triblock copolymers of ethylene oxide and propylene oxide (EO(20)PO(70)EO(20)) have been investigated using dynamic light scattering (DLS) and cryogenic electron transmission microscopy (Cryo-EM). Sphere-to-rod transition is induced by a solvent jump, initiated by adding KCl and ethanol to an aqueous micellar solution. The growth process of the wormlike micelles depends on the experimental conditions and has two distinct regions that can be described as initiation period and actual growth to equilibrium. All growth curves exhibit a single relaxation time that represents the lifetime of the micelles. The growth curves collapse into a master curve, when shifted by the relaxation time, indicating that the actual growth process of the micelles in all samples occurs through the same mechanism. The relaxation time decreases with increasing surfactant concentration. Additionally, some of the formed micelles exhibit a caterpillarlike shape in which some of the original spherical species can still be detected. These facts suggest that the micelles grow longer predominantly by random coagulation/fragmentation reactions involving micellar species of different sizes. However, the appearance of a unimer peak is detected with DLS during the growth stage. This implies that unimer exchange may also contribute to the elongation of the micelles.

6.
Sci Rep ; 9(1): 11671, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406320

RESUMO

Increasing attention is given to personalized tumour therapy, where α-emitters can potentially play an important role. Alpha particles are ideal for localized cell killing because of their high linear energy transfer and short ranges. However, upon the emission of an α particle the daughter nuclide experiences a recoil energy large enough to ensure decoupling from any chemical bond. These 'free' daughter nuclides are no longer targeted to the tumour and can accumulate in normal tissue. In this paper, we used polymersomes as model carrier to evaluate the retention of recoiling daughters of 225Ac in vivo, and assessed their suitability as therapeutic agents. Vesicles containing 225Ac were injected intravenously in healthy mice, and intratumourally in tumour-bearing mice, and the relocation of free 213Bi was assessed in different organs upon the injection [225Ac]Ac-polymersomes. The therapeutic effect of 225Ac-containing vesicles was studied upon intratumoural injection, where treatment groups experienced no tumour-related deaths over a 115 day period. While polymersomes containing 225Ac could be suitable agents for long-term irradiation of tumours without causing significant renal toxicity, there is still a significant re-distribution of daughter nuclides throughout the body, signifying the importance of careful evaluation of the effect of daughter nuclides in targeted alpha therapy.


Assuntos
Actínio/farmacocinética , Partículas alfa/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos , Compostos Heterocíclicos com 1 Anel/farmacocinética , Actínio/farmacologia , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quelantes/síntese química , Quelantes/farmacocinética , Quelantes/farmacologia , Feminino , Compostos Heterocíclicos com 1 Anel/síntese química , Compostos Heterocíclicos com 1 Anel/farmacologia , Humanos , Injeções Intralesionais , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos BALB C , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/farmacologia , Análise de Sobrevida , Carga Tumoral/efeitos dos fármacos
7.
J Phys Chem B ; 112(3): 793-801, 2008 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-18166031

RESUMO

The morphological changes of micelles composed of triblock copolymer of ethylene oxide and propylene oxide (EO20PO70EO20) in the presence of different inorganic salts and ethanol have been investigated using dynamic light scattering (DLS), rheometry, and cryogenic transmission electron microscopy (cryo-EM). The following salts were studied: KF, KCl, KI, LiCl, and CsCl. In the presence of KF, KCl, and CsCl, spherical and wormlike micelles coexist. LiCl and KI have little influence on the morphology of the micelles, whereas KF has the most pronounced effect. In agreement with the well-known Hoffmeister anion salt series, F- has the strongest effect of the three anions studied (F-, Cl-, I-). In contrast, the effectiveness of the cation type does not follow the original Hoffmeister cation series. The addition of ethanol to the KCl micellar solutions leads to the formation of more or longer wormlike micelles, which start to interact at certain copolymer concentrations depending on the volume fraction of ethanol added. Both the dilute and the semidilute regimes of the wormlike micelles were studied. The length of the micelles reaches a maximum value at around 8-10 vol % ethanol, after which it decreases again. At higher ethanol concentrations (18 vol %), spherical micelles are formed. Conclusions from this study enhance our understanding of the role played by ethanol and salts in the formation of micelle-templated mesoporous materials, such as SBA-15.

8.
Int J Pharm ; 548(1): 73-81, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-29913219

RESUMO

The aim of this study was the development of radioactive holmium phosphate microspheres (HoPO4-MS) with a high holmium content and that are stable in human serum for selective internal radiation therapy (SIRT) of liver cancer. To this end, holmium acetylacetonate microspheres (HoAcAc-MS) were prepared (34.2 ±â€¯1.0 µm in diameter, holmium content of 46.2 ±â€¯0.8 and density of 1.7 g/cm3) via an emulsification and solvent evaporation method. The concentration of HoAcAc in the organic solvent, the temperature of emulsification and the stirring speed were varied for the preparation of the HoAcAc-MS to obtain microspheres with different diameters ranging from 11 to 35 µm. Subsequently, the AcAc ligands of the HoAcAc-MS were replaced by phosphate ions by simply incubating neutron irradiated HoAcAc-MS in a phosphate buffer solution (0.116 M, pH 4.2) to yield radioactive HoPO4-MS. The obtained microspheres were analyzed using different techniques such as SEM-EDS, ICP-OES and HPLC. The prepared HoPO4-MS (29.5 ±â€¯1.2 µm in diameter and a density of 3.1 g/cm3) present an even higher holmium content (52 wt%) than the HoAcAc-MS precursor (46 wt%). Finally, the stability of the HoPO4-MS was tested by incubation in human serum at 37 °C which showed no visible changes of the microspheres morphology and only 0.1% of holmium release was observed during the 2 weeks period of incubation. In conclusion, this study shows that stable radioactive HoPO4-MS can be prepared with suitable properties to be used for cancer therapy.


Assuntos
Hólmio/química , Microesferas , Fosfatos/química , Braquiterapia , Humanos , Hidroxibutiratos/química , Nêutrons , Pentanonas/química , Soro/química
9.
Radiat Oncol ; 13(1): 107, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880059

RESUMO

BACKGROUND: While alpha microdosimetry dates back a couple of decades, the effects of localized energy deposition of alpha particles are often still unclear since few comparative studies have been performed. Most modern alpha microdosimetry studies rely for large parts on simulations, which negatively impacts both the simplicity of the calculations and the reliability of the results. A novel microdosimetry method based on the Fluorescent Nuclear Track Detector, a versatile tool that can measure individual alpha particles at sub-micron resolution, yielding accurate energy, fluence and dose rate measurements, was introduced to address these issues. METHODS: Both the detectors and U87 glioblastoma cell cultures were irradiated using an external Am241 alpha source. The alpha particle tracks measured with a Fluorescent Nuclear Track Detector were used together with high resolution 3D cell geometries images to calculate the nucleus dose distribution in the U87 glioblastoma cells. The experimentally obtained microdosimetry parameters were thereafter applied to simulations of 3D U87 cells cultures (spheroids) with various spatial distributions of isotopes to evaluate the effect of the nucleus dose distribution on the expected cell survival. RESULTS: The new experimental method showed good agreement with the analytically derived nucleus dose distributions. Small differences (< 5%) in the relative effectiveness were found for isotopes in the cytoplasm and on the cell membrane versus external irradiation, while isotopes located in the nucleus or on the nuclear membrane showed a substantial increase in relative effectiveness (33 - 51%). CONCLUSIONS: The ease-of-use, good accuracy and use of experimentally derived characteristics of the radiation field make this method superior to conventional simulation-based microdosimetry studies. Considering the uncertainties found in alpha radionuclide carriers in-vivo and in-vitro, together with the large contributions from the relative biological effectiveness and the oxygen enhancement ratio, it is expected that only carriers penetrating or surrounding the cell nucleus will substantially benefit from microdosimetry.


Assuntos
Partículas alfa , Radiometria/instrumentação , Radiometria/métodos , Linhagem Celular Tumoral , Núcleo Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Citoplasma/efeitos da radiação , Humanos , Imageamento Tridimensional , Eficiência Biológica Relativa , Reprodutibilidade dos Testes , Esferoides Celulares/citologia , Esferoides Celulares/efeitos da radiação
10.
Eur J Pharm Biopharm ; 127: 85-91, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29428791

RESUMO

Alpha emitters have great potential in targeted tumour therapy, especially in destroying micrometastases, due to their high linear energy transfer (LET). To prevent toxicity caused by recoiled daughter atoms in healthy tissue, alpha emitters like 225Ac can be encapsulated in polymeric nanocarriers (polymersomes), which are capable of retaining the daughter atoms to a large degree. In the translation to a (pre-)clinical setting, it is essential to evaluate their therapeutic potential. As multicellular tumour spheroids mimic a tumour microenvironment more closely than a two-dimensional cellular monolayer, this study has focussed on the interaction of the polymersomes with U87 human glioma spheroids. We have found that polymersomes distribute themselves throughout the spheroid after 4 days which, considering the long half-life of 225Ac (9.9 d) (Vaidyanathan and Zalutsky, 1996), allows for irradiation of the entire spheroid. A decrease in spheroidal growth has been observed upon the addition of only 0.1 kBq 225Ac, an effect which was more pronounced for the 225Ac in polymersomes than when only coupled to DTPA. At higher activities (5 kBq), the spheroids have been found to be destroyed completely after two days. We have thus demonstrated that 225Ac containing polymersomes effectively inhibit tumour spheroid growth, making them very promising candidates for future in vivo testing.


Assuntos
Actínio/administração & dosagem , Actínio/química , Glioma/tratamento farmacológico , Polímeros/administração & dosagem , Polímeros/química , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Humanos , Esferoides Celulares/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
11.
Appl Radiat Isot ; 128: 183-189, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28734193

RESUMO

Alpha-emitting radionuclides like actinium-225 (225Ac) are ideal candidates for the treatment of small metastasised tumours, where the long half-life of 225Ac enables it to also reach less accessible tumours. The main challenge lies in retaining the recoiled alpha-emitting daughter nuclides, which are decoupled from targeting agents upon emission of an alpha particle and can subsequently cause unwanted toxicity to healthy tissue. Polymersomes, vesicles composed of amphiphilic block copolymers, are capable of transporting (radio)pharmaceuticals to tumours, and are ideal candidates for the retention of these daughter nuclides. In this study, the Geant4 Monte Carlo simulation package was used to simulate ideal vesicle designs. Vesicles containing an InPO4 nanoparticle in the core were found to have the highest recoil retention, and were subsequently synthesized in the lab. The recoil retention of two of the daughter nuclides, namely francium-221 (221Fr) and bismuth-213 (213Bi) was determined at different vesicle sizes. Recoil retention was found to have improved significantly, from 37 ± 4% and 22 ± 1% to 57 ± 5% and 40 ± 2% for 221Fr and 213Bi respectively for 100nm polymersomes, as compared to earlier published results by Wang et al. where 225Ac was encapsulated using a hydrophilic chelate (Wang et al. 2014). To better understand the different parameters influencing daughter retention, simulation data was expanded to include vesicle polydispersity and nanoparticle position within the polymersome. The high retention of the recoiling daughters and the 225Ac itself makes this vesicle design very suitable for future in vivo verification.

12.
Sci Rep ; 7: 44242, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28287131

RESUMO

177Lu has sprung as a promising radionuclide for targeted therapy. The low soft tissue penetration of its ß- emission results in very efficient energy deposition in small-size tumours. Because of this, 177Lu is used in the treatment of neuroendocrine tumours and is also clinically approved for prostate cancer therapy. In this work, we report a separation method that achieves the challenging separation of the physically and chemically identical nuclear isomers, 177mLu and 177Lu. The separation method combines the nuclear after-effects of the nuclear decay, the use of a very stable chemical complex and a chromatographic separation. Based on this separation concept, a new type of radionuclide generator has been devised, in which the parent and the daughter radionuclides are the same elements. The 177mLu/177Lu radionuclide generator provides a new production route for the therapeutic radionuclide 177Lu and can bring significant growth in the research and development of 177Lu based pharmaceuticals.


Assuntos
Lutécio/química , Neoplasias/radioterapia , Radioisótopos/química , Compostos Radiofarmacêuticos/química , Animais , Humanos , Lutécio/uso terapêutico , Radioatividade , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico
13.
J Biomed Nanotechnol ; 12(2): 320-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27305765

RESUMO

Vesicles composed of block copolymers (i.e., polymersomes) are one of the most versatile nano-carriers for medical purposes due to their tuneable physicochemical properties and the possibility to encapsulate simultaneously hydrophobic and hydrophilic substances, allowing, for instance, the combination of therapy and imaging. In cancer treatment, these vesicles need to remain long enough in the blood stream to be sufficiently taken up by tumors. Here, we have investigated the biodistribution and the pharmacokinetics of polymersomes, composed of poly(butadiene-b-ethylene oxide) having dimensions around 80 nm. The polymersomes have been radiolabeled with ¹¹¹In via the so-called active loading method achieving a loading efficiency of 92.9 ± 0.9% with radionuclide retention in mouse serum of more than 95% at 24 h. The optimized ¹¹¹In containing polymersomes have been intravenously administered in healthy and tumor bearing mice for pharmacokinetic determination using microSPECT (Single Photon Emission Computed Tomography). In healthy mice these polymersomes have been found to exhibit relatively long blood circulation (> 6 h), low liver uptake (6 ± 1.5%ID/g, 48 h p.i.) and elevated spleen uptake (188 ± 30%ID/g). The blood circulation in tumor bearing mice is dramatically reduced (< 1.5 h) most likely due to elevated splenic filtration, clearly indicating the importance of in vivo studies in diseased mice. Finally, the polymersomes have been injected subcutaneously in tumor bearing mice revealing retention of 77% in the mice, primarily accumulated at the site of injection, up to 48 hours after administration.


Assuntos
Butadienos/farmacocinética , Neoplasias/patologia , Polietileno/farmacocinética , Polímeros/farmacocinética , Animais , Butadienos/química , Microscopia Crioeletrônica , Difusão Dinâmica da Luz , Feminino , Hidrodinâmica , Radioisótopos de Índio/sangue , Injeções Intravenosas , Injeções Subcutâneas , Camundongos , Camundongos Nus , Neoplasias/diagnóstico por imagem , Polietileno/química , Polímeros/química , Distribuição Tecidual/efeitos dos fármacos , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X
14.
Biomater Sci ; 4(8): 1202-11, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27286085

RESUMO

Understanding how nanoparticle properties such as size, morphology and rigidity influence their circulation time and biodistribution is essential for the development of nanomedicine therapies. Herein we assess the influence of morphology on cellular internalization, in vivo biodistribution and circulation time of nanocarriers using polystyrene-b-poly(ethylene oxide) micelles of spherical or elongated morphology. The glassy nature of polystyrene guarantees the morphological stability of the carriers in vivo and by encapsulating Indium-111 in their core, an assessment of the longitudinal in vivo biodistribution of the particles in healthy mice is performed with single photon emission computed tomography imaging. Our results show prolonged blood circulation, longer than 24 hours, for all micelle morphologies studied. Dynamics of micelle accumulation in the liver and other organs of the reticuloendothelial system show a size-dependent nature and late stage liver clearance is observed for the elongated morphology. Apparent contradictions between recent similar studies can be resolved by considering the effects of flexibility and degradation of the elongated micelles on their circulation time and biodistribution.


Assuntos
Micelas , Polietilenoglicóis/metabolismo , Poliestirenos/metabolismo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Animais , Circulação Sanguínea , Portadores de Fármacos/metabolismo , Estabilidade de Medicamentos , Células HeLa , Humanos , Radioisótopos de Índio , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanomedicina , Nanopartículas/metabolismo , Propriedades de Superfície , Distribuição Tecidual
15.
Appl Radiat Isot ; 85: 45-53, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24374072

RESUMO

Alpha radionuclide therapy is steadily gaining importance and a large number of pre-clinical and clinical studies have been carried out. However, due to the recoil effects the daughter recoil atoms, most of which are alpha emitters as well, receive energies that are much higher than the energies of chemical bonds resulting in decoupling of the radionuclide from common targeting agents. Here, we demonstrate that polymer vesicles (i.e. polymersomes) can retain recoiling daughter nuclei based on an experimental study examining the retention of (221)Fr and (213)Bi when encapsulating (225)Ac.


Assuntos
Actínio/administração & dosagem , Actínio/química , Actínio/farmacocinética , Partículas alfa/uso terapêutico , Transporte Biológico Ativo , Bismuto/administração & dosagem , Bismuto/química , Bismuto/farmacocinética , Butadienos/química , Composição de Medicamentos , Frâncio/química , Células HeLa , Humanos , Radioisótopos de Chumbo/química , Método de Monte Carlo , Tamanho da Partícula , Polietileno/química , Radioisótopos/química , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa