Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 39(9)2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37688565

RESUMO

SUMMARY: The chem16S package combines taxonomic classifications of 16S rRNA gene sequences with amino acid compositions of prokaryotic reference proteomes to generate community reference proteomes. Taxonomic classifications from the RDP Classifier or data objects created by the phyloseq R package are supported. Users can calculate and visualize a variety of chemical metrics in order to explore the effects of redox, salinity, and other physicochemical variables on the genomic adaptation of protein sequences at the community level. AVAILABILITY AND IMPLEMENTATION: Development of chem16S is hosted at https://github.com/jedick/chem16S. Version 1.0.0 is freely available from the Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/package=chem16S.


Assuntos
Benchmarking , Proteoma , RNA Ribossômico 16S , Genômica , Sequência de Aminoácidos
2.
Microb Ecol ; 85(4): 1338-1355, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35503575

RESUMO

Environmental influences on community structure are often assessed through multivariate analyses in order to relate microbial abundances to separately measured physicochemical variables. However, genes and proteins are themselves chemical entities; in combination with genome databases, differences in microbial abundances directly encode for chemical variability. We predicted that the carbon oxidation state of estimated community proteomes, obtained by combining taxonomic abundances from published 16S rRNA gene sequencing datasets with reference microbial proteomes from the NCBI Reference Sequence (RefSeq) database, would reflect environmental oxidation-reduction conditions. Analysis of multiple datasets confirms the geobiochemical predictions for environmental redox gradients in hydrothermal systems, stratified lakes and marine environments, and shale gas wells. The geobiochemical signal is largest for the steep redox gradients associated with hydrothermal systems and between injected water and produced fluids from shale gas wells, demonstrating that microbial community composition can be a chemical proxy for environmental redox gradients. Although estimates of oxidation state from 16S amplicon and metagenomic sequences are correlated, the 16S-based estimates show stronger associations with redox gradients in some environments.


Assuntos
Microbiota , Proteoma , RNA Ribossômico 16S/genética , Microbiota/genética , Metagenoma , Oxirredução , Filogenia
3.
J Mol Evol ; 90(2): 182-199, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35279735

RESUMO

Reactions involving water and oxygen are basic features of geological and biological processes. To understand how life interacts with its environment requires monitoring interactions with [Formula: see text] and [Formula: see text] not only at timescales relevant to organismal growth but also over billions of years of geobiological evolution. Chemical transformations intrinsic to evolution and development were characterized by analyzing data from recent phylostratigraphic and proteomic studies. This two-stage analysis involves obtaining chemical metrics (carbon oxidation state and stoichiometric hydration state) from the elemental compositions of proteins followed by modeling the relative stabilities of target proteins against a proteomic background to infer thermodynamic parameters [oxygen fugacity, water activity, and virtual redox potential (Eh)]. The main results of this study are a rise in carbon oxidation state of proteins spanning the time of the Great Oxidation Event, a rise in virtual redox potential that coincides with the likely emergence of aerobic metabolism, and a rise in carbon oxidation state of proteins inferred from the transcriptome in late stages of Bacillus subtilis biofilm growth. Furthermore, stoichiometric hydration state of expressed proteins decreases through stages of biofilm development, drops at the same time as a drop in organismal water content during fruit fly development, and is lower for proteins with more recent gene ages, all of which support the inference of higher hydration potentials at earlier time points. These results show how the evolutionary and developmental dynamics of major chemical variables can be deciphered through thermodynamic analysis of proteins as chemical entities.


Assuntos
Proteômica , Água , Oxirredução , Proteínas/metabolismo , Termodinâmica , Água/química
4.
mSystems ; 8(3): e0001423, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37289197

RESUMO

Despite deep interest in how environments shape microbial communities, whether redox conditions influence the sequence composition of genomes is not well known. We predicted that the carbon oxidation state (ZC) of protein sequences would be positively correlated with redox potential (Eh). To test this prediction, we used taxonomic classifications for 68 publicly available 16S rRNA gene sequence data sets to estimate the abundances of archaeal and bacterial genomes in river & seawater, lake & pond, geothermal, hyperalkaline, groundwater, sediment, and soil environments. Locally, ZC of community reference proteomes (i.e., all the protein sequences in each genome, weighted by taxonomic abundances but not by protein abundances) is positively correlated with Eh corrected to pH 7 (Eh7) for the majority of data sets for bacterial communities in each type of environment, and global-scale correlations are positive for bacterial communities in all environments. In contrast, archaeal communities show approximately equal frequencies of positive and negative correlations in individual data sets, and a positive pan-environmental correlation for archaea only emerges after limiting the analysis to samples with reported oxygen concentrations. These results provide empirical evidence that geochemistry modulates genome evolution and may have distinct effects on bacteria and archaea. IMPORTANCE The identification of environmental factors that influence the elemental composition of proteins has implications for understanding microbial evolution and biogeography. Millions of years of genome evolution may provide a route for protein sequences to attain incomplete equilibrium with their chemical environment. We developed new tests of this chemical adaptation hypothesis by analyzing trends of the carbon oxidation state of community reference proteomes for microbial communities in local- and global-scale redox gradients. The results provide evidence for widespread environmental shaping of the elemental composition of protein sequences at the community level and establish a rationale for using thermodynamic models as a window into geochemical effects on microbial community assembly and evolution.


Assuntos
Proteínas de Bactérias , Proteoma , Proteínas de Bactérias/genética , RNA Ribossômico 16S/genética , Proteoma/genética , Sedimentos Geológicos/química , Filogenia , Archaea/genética , Bactérias/genética , Carbono/metabolismo , Oxirredução
5.
Geobiology ; 21(2): 262-273, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36376996

RESUMO

Thermodynamic characterization of the relative stabilities of chemical compounds is a pillar of conceptual models in various fields of geosciences. Analogous models applied to genomes can yield new information about the relationship between genomes and their geochemical environments. In this perspective article, we present a chemical and thermodynamic analysis of prokaryotic lineages that have been the target of previous phylogenomic studies of evolutionary adaptation to varying redox conditions. The thermodynamic model development begins by quantifying the effects of hydrogen activity (aH2 ) and temperature on the relative stabilities of organic compounds with different carbon oxidation state. When applied to proteins instead of metabolites, the same techniques can be used to identify combinations of aH2 and temperature at which reference proteomes for Class I or Class II methanogens are relatively stable. The calculated aH2 values are compatible with reported measurements for habitats of methanogens ranging from highly reducing submarine hydrothermal systems to less reducing environments including methanogenic sediments. In contrast to the transition between the two classes of methanogenic archaea, that between basal and terrestrial groups of Thaumarchaeota (denoting the origin of ammonia-oxidizing archaea) occurs at a less-reducing redox boundary. These examples reveal the consequences of energy minimization driving evolution and show how geochemical calculations involving biomolecules can be used to quantify and better understand the coevolution of the geosphere and biosphere.


Assuntos
Archaea , Euryarchaeota , Termodinâmica , Archaea/genética , Archaea/metabolismo , Temperatura , Oxirredução , Filogenia , Euryarchaeota/metabolismo
6.
Front Microbiol ; 10: 120, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804909

RESUMO

There is widespread interest in how geochemistry affects the genomic makeup of microbial communities, but the possible impacts of oxidation-reduction (redox) conditions on the chemical composition of biomacromolecules remain largely unexplored. Here we document systematic changes in the carbon oxidation state, a metric derived from the chemical formulas of biomacromolecular sequences, using published metagenomic and metatranscriptomic datasets from 18 studies representing different marine and terrestrial environments. We find that the carbon oxidation states of DNA, as well as proteins inferred from coding sequences, follow geochemical redox gradients associated with mixing and cooling of hot spring fluids in Yellowstone National Park (USA) and submarine hydrothermal fluids. Thermodynamic calculations provide independent predictions for the environmental shaping of the gene and protein composition of microbial communities in these systems. On the other hand, the carbon oxidation state of DNA is negatively correlated with oxygen concentration in marine oxygen minimum zones. In this case, a thermodynamic model is not viable, but the low carbon oxidation state of DNA near the ocean surface reflects a low GC content, which can be attributed to genome reduction in organisms adapted to low-nutrient conditions. We also present evidence for a depth-dependent increase of oxidation state at the species level, which might be associated with alteration of DNA through horizontal gene transfer and/or selective degradation of relatively reduced (AT-rich) extracellular DNA by heterotrophic bacteria. Sediments exhibit even more complex behavior, where carbon oxidation state minimizes near the sulfate-methane transition zone and rises again at depth; markedly higher oxidation states are also associated with older freshwater-dominated sediments in the Baltic Sea that are enriched in iron oxides and have low organic carbon. This geobiochemical study of carbon oxidation state reveals a new aspect of environmental information in metagenomic sequences, and provides a reference frame for future studies that may use ancient DNA sequences as a paleoredox indicator.

7.
Geochem Trans ; 9: 10, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18834534

RESUMO

BACKGROUND: Proteins of various compositions are required by organisms inhabiting different environments. The energetic demands for protein formation are a function of the compositions of proteins as well as geochemical variables including temperature, pressure, oxygen fugacity and pH. The purpose of this study was to explore the dependence of metastable equilibrium states of protein systems on changes in the geochemical variables. RESULTS: A software package called CHNOSZ implementing the revised Helgeson-Kirkham-Flowers (HKF) equations of state and group additivity for ionized unfolded aqueous proteins was developed. The program can be used to calculate standard molal Gibbs energies and other thermodynamic properties of reactions and to make chemical speciation and predominance diagrams that represent the metastable equilibrium distributions of proteins. The approach takes account of the chemical affinities of reactions in open systems characterized by the chemical potentials of basis species. The thermodynamic database included with the package permits application of the software to mineral and other inorganic systems as well as systems of proteins or other biomolecules. CONCLUSION: Metastable equilibrium activity diagrams were generated for model cell-surface proteins from archaea and bacteria adapted to growth in environments that differ in temperature and chemical conditions. The predicted metastable equilibrium distributions of the proteins can be compared with the optimal growth temperatures of the organisms and with geochemical variables. The results suggest that a thermodynamic assessment of protein metastability may be useful for integrating bio- and geochemical observations.

8.
PeerJ ; 5: e3421, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28603672

RESUMO

The changes of protein expression that are monitored in proteomic experiments are a type of biological transformation that also involves changes in chemical composition. Accompanying the myriad molecular-level interactions that underlie any proteomic transformation, there is an overall thermodynamic potential that is sensitive to microenvironmental conditions, including local oxidation and hydration potential. Here, up- and down-expressed proteins identified in 71 comparative proteomics studies were analyzed using the average oxidation state of carbon (ZC) and water demand per residue ([Formula: see text]), calculated using elemental abundances and stoichiometric reactions to form proteins from basis species. Experimental lowering of oxygen availability (hypoxia) or water activity (hyperosmotic stress) generally results in decreased ZC or [Formula: see text] of up-expressed compared to down-expressed proteins. This correspondence of chemical composition with experimental conditions provides evidence for attraction of the proteomes to a low-energy state. An opposite compositional change, toward higher average oxidation or hydration state, is found for proteomic transformations in colorectal and pancreatic cancer, and in two experiments for adipose-derived stem cells. Calculations of chemical affinity were used to estimate the thermodynamic potentials for proteomic transformations as a function of fugacity of O2 and activity of H2O, which serve as scales of oxidation and hydration potential. Diagrams summarizing the relative potential for formation of up- and down-expressed proteins have predicted equipotential lines that cluster around particular values of oxygen fugacity and water activity for similar datasets. The changes in chemical composition of proteomes are likely linked with reactions among other cellular molecules. A redox balance calculation indicates that an increase in the lipid to protein ratio in cancer cells by 20% over hypoxic cells would generate a large enough electron sink for oxidation of the cancer proteomes. The datasets and computer code used here are made available in a new R package, canprot.

9.
PeerJ ; 4: e2238, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547546

RESUMO

New integrative approaches are needed to harness the potential of rapidly growing datasets of protein expression and microbial community composition in colorectal cancer. Chemical and thermodynamic models offer theoretical tools to describe populations of biomacromolecules and their relative potential for formation in different microenvironmental conditions. The average oxidation state of carbon (Z C) can be calculated as an elemental ratio from the chemical formulas of proteins, and water demand per residue ([Formula: see text]) is computed by writing the overall formation reactions of proteins from basis species. Using results reported in proteomic studies of clinical samples, many datasets exhibit higher mean Z C or [Formula: see text] of proteins in carcinoma or adenoma compared to normal tissue. In contrast, average protein compositions in bacterial genomes often have lower Z C for bacteria enriched in fecal samples from cancer patients compared to healthy donors. In thermodynamic calculations, the potential for formation of the cancer-related proteins is energetically favored by changes in the chemical activity of H2O and fugacity of O2 that reflect the compositional differences. The compositional analysis suggests that a systematic change in chemical composition is an essential feature of cancer proteomes, and the thermodynamic descriptions show that the observed proteomic transformations in host tissue could be promoted by relatively high microenvironmental oxidation and hydration states.

10.
J R Soc Interface ; 11(100): 20131095, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25165594

RESUMO

The formal oxidation state of carbon atoms in organic molecules depends on the covalent structure. In proteins, the average oxidation state of carbon (Z(C)) can be calculated as an elemental ratio from the chemical formula. To investigate oxidation-reduction (redox) patterns, groups of proteins from different subcellular locations and phylogenetic groups were selected for comparison. Extracellular proteins of yeast have a relatively high oxidation state of carbon, corresponding with oxidizing conditions outside of the cell. However, an inverse relationship between Z(C) and redox potential occurs between the endoplasmic reticulum and cytoplasm. This trend provides support for the hypothesis that protein transport and turnover are ultimately coupled to the maintenance of different glutathione redox potentials in subcellular compartments. There are broad changes in Z(C) in whole-genome protein compositions in microbes from different environments, and in Rubisco homologues, lower Z(C) tends to occur in organisms with higher optimal growth temperature. Energetic costs calculated from thermodynamic models are consistent with the notion that thermophilic organisms exhibit molecular adaptation to not only high temperature but also the reducing nature of many hydrothermal fluids. Further characterization of the material requirements of protein metabolism in terms of the chemical conditions of cells and environments may help to reveal other linkages among biochemical processes with implications for changes on evolutionary time scales.


Assuntos
Bactérias/química , Proteínas de Bactérias/química , Carbono/química , Oxirredução
11.
PLoS One ; 8(9): e72395, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023738

RESUMO

Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient in the outflow channel of the hot spring known as "Bison Pool" in Yellowstone National Park. The relative abundances of major phyla in individual communities sampled along the outflow channel are modeled by computing metastable equilibrium among model proteins with amino acid compositions derived from metagenomic sequences. Geochemical conditions are represented by temperature and activities of basis species, including pH and oxidation-reduction potential quantified as the activity of dissolved hydrogen. By adjusting the activity of hydrogen, the model can be tuned to closely approximate the relative abundances of the phyla observed in the community profiles generated from BLAST assignments. The findings reveal an inverse relationship between the energy demand to form the proteins at equal thermodynamic activities and the abundance of phyla in the community. The distance from metastable equilibrium of the communities, assessed using an equation derived from energetic considerations that is also consistent with the information-theoretic entropy change, decreases along the outflow channel. Specific divergences from metastable equilibrium, such as an underprediction of the relative abundances of phototrophic organisms at lower temperatures, can be explained by considering additional sources of energy and/or differences in growth efficiency. Although the metabolisms used by many members of these communities are driven by chemical disequilibria, the results support the possibility that higher-level patterns of chemotrophic microbial ecosystems are shaped by metastable equilibrium states that depend on both the composition of biomass and the environmental conditions.


Assuntos
Fontes Termais/microbiologia , Temperatura , Microbiologia da Água
12.
PLoS One ; 6(8): e22782, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21853048

RESUMO

Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked, through energetics of overall chemical reactions representing the formation of the proteins, to the environmental conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications of the thermodynamic calculations are possible for other natural microbial ecosystems.


Assuntos
Fontes Termais/química , Estabilidade Proteica , Proteínas/química , Proteínas/metabolismo , Temperatura , Sequência de Aminoácidos , Aminoácidos/metabolismo , Carbono/metabolismo , Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Metagenômica , Modelos Biológicos , Anotação de Sequência Molecular , Oxirredução , Padrões de Referência , Wyoming
13.
BMC Syst Biol ; 3: 75, 2009 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-19615086

RESUMO

BACKGROUND: Protein subcellular localization and differences in oxidation state between subcellular compartments are two well-studied features of the the cellular organization of S. cerevisiae (yeast). Theories about the origin of subcellular organization are assisted by computational models that can integrate data from observations of compositional and chemical properties of the system. PRESENTATION AND IMPLICATIONS OF THE HYPOTHESIS: I adopt the hypothesis that the state of yeast subcellular organization is in a local energy minimum. This hypothesis implies that equilibrium thermodynamic models can yield predictions about the interdependence between populations of proteins and their subcellular chemical environments. TESTING THE HYPOTHESIS: Three types of tests are proposed. First, there should be correlations between modeled and observed oxidation states for different compartments. Second, there should be a correspondence between the energy requirements of protein formation and the order the appearance of organelles during cellular development. Third, there should be correlations between the predicted and observed relative abundances of interacting proteins within compartments. RESULTS: The relative metastability fields of subcellular homologs of glutaredoxin and thioredoxin indicate a trend from less to more oxidizing as mitochondrion - cytoplasm - nucleus. Representing the overall amino acid compositions of proteins in 23 different compartments each with a single reference model protein suggests that the formation reactions for proteins in the vacuole (in relatively oxidizing conditions), ER and early Golgi (in relatively reducing conditions) are relatively highly favored, while that for the microtubule is the most costly. The relative abundances of model proteins for each compartment inferred from experimental data were found in some cases to correlate with the predicted abundances, and both positive and negative correlations were found for some assemblages of proteins in known complexes. CONCLUSION: The results of these calculations and tests suggest that a tendency toward a metastable energy minimum could underlie some organizational links between the the chemical thermodynamic properties of proteins and subcellular chemical environments. Future models of this kind will benefit from consideration of additional thermodynamic variables together with more detailed subcellular observations.


Assuntos
Espaço Intracelular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Biologia de Sistemas , Termodinâmica , Técnicas Eletroquímicas , Oxirredução , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa