Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Curr Opin Cell Biol ; 6(3): 368-72, 1994 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-7917327

RESUMO

The past year has seen the genetic characterization of a human replication origin as well as the identification and characterization of some key components of replication initiation complexes in budding yeast. These results should provide important information for determining how the initial events in DNA replication are regulated during the eukaryotic cell cycle.


Assuntos
Replicação do DNA/fisiologia , DNA/genética , Células Eucarióticas/fisiologia , Animais , Divisão Celular/fisiologia , DNA/análise , DNA Fúngico/genética , Células Eucarióticas/química , Células Eucarióticas/citologia , Humanos , Saccharomyces cerevisiae/genética
2.
Nat Cell Biol ; 1(7): 415-22, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10559985

RESUMO

Cyclin-dependent kinases (CDKs) activate the firing of replication origins during the S phase of the cell cycle. They also block re-initiation of DNA replication within a single cell cycle, by preventing the assembly of prereplicative complexes at origins. We show here that, in budding yeast, CDKs exclude the essential prereplicative-complex component Mcm4 from the nucleus. Although origin firing can be triggered by the B-type cyclins only, both G1-phase and B-type cyclins cause exit of Mcm4 from the nucleus. These results suggest that G1 cyclins may diminish the cell's capacity to assemble prereplicative complexes before B-type cyclins trigger origin firing during S phase.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Fase G1/fisiologia , Fase S/fisiologia , Proteínas de Saccharomyces cerevisiae , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Replicação do DNA/genética , Replicação do DNA/fisiologia , Proteínas Fúngicas/genética , Genes Reporter/genética , Componente 4 do Complexo de Manutenção de Minicromossomo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia
3.
Nat Cell Biol ; 3(11): 958-65, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11715016

RESUMO

Cells experiencing DNA replication stress activate a response pathway that delays entry into mitosis and promotes DNA repair and completion of DNA replication. The protein kinases ScRad53 and SpCds1 (in baker's and fission yeast, respectively) are central to this pathway. We describe a conserved protein Mrc1, mediator of the replication checkpoint, required for activation of ScRad53 and SpCds1 during replication stress. mrc1 mutants are sensitive to hydroxyurea and have a checkpoint defect similar to rad53 and cds1 mutants. Mrc1 may be the replicative counterpart of Rad9 and Crb2, which are required for activating ScRad53 and Chk1 in response to DNA damage.


Assuntos
Replicação do DNA , DNA Fúngico/biossíntese , Proteínas Fúngicas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Ativação Enzimática , Proteínas Fúngicas/genética , Genes Fúngicos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Proteínas Quinases/metabolismo , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe
4.
Trends Cell Biol ; 2(10): 298-303, 1992 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14731925

RESUMO

Eukaryotic DNA replication is a tightly regulated process that occurs during a discrete period of the cell cycle known as S phase. Recent work in two different systems has identified key participants in this process and characterized many of the protein-protein interactions required for the establishment of functional replication complexes. From these results, an understanding of how the control of DNA replication is exercised during the cell cycle appears to be on the horizon.

5.
Science ; 246(4933): 1034-8, 1989 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-2511628

RESUMO

The yeast ARS binding factor 1 (ABF1)--where ARS is an autonomously replicating sequence--and repressor/activator protein 1 (RAP1) have been implicated in DNA replication, transcriptional activation, and transcriptional silencing. The ABF1 gene was cloned and sequenced and shown to be essential for viability. The predicted amino acid sequence contains a novel sequence motif related to the zinc finger, and the ABF1 protein requires zinc and unmodified cysteine residues for sequence-specific DNA binding. Interestingly, ABF1 is extensively related to its counterpart, RAP1, and both proteins share a region of similarity with SAN1, a suppressor of certain SIR4 mutations, suggesting that this region may be involved in mediating SIR function at the silent mating type loci.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição , Transcrição Gênica , Sequência de Aminoácidos , Sequência de Bases , Metaloproteínas/genética , Dados de Sequência Molecular , Mapeamento por Restrição , Homologia de Sequência do Ácido Nucleico
6.
Science ; 265(5176): 1243-6, 1994 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-8066465

RESUMO

DNA replication in the budding yeast Saccharomyces cerevisiae initiates from origins of specific DNA sequences during S phase. A screen based on two- and one-hybrid approaches demonstrates that the product of the DBF4 gene interacts with yeast replication origins in vivo. The Dbf4 protein interacts with and positively regulates the activity of the Cdc7 protein kinase, which is required for entry into S phase in the yeast mitotic cell cycle. The analysis described here suggests a model in which one function of Dbf4 may be to recruit the Cdc7 protein kinase to initiation complexes.


Assuntos
Proteínas de Ciclo Celular , Replicação do DNA , Proteínas Fúngicas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , DNA Fúngico/biossíntese , Ativação Enzimática , Proteínas Fúngicas/genética , Modelos Biológicos , Dados de Sequência Molecular , Mutação Puntual , Proteínas Quinases/genética , Replicon , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
7.
Science ; 288(5471): 1643-7, 2000 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-10834843

RESUMO

Little is known about the DNA helicases required for the elongation phase of eukaryotic chromosome replication. Minichromosome maintenance (MCM) protein complexes have DNA helicase activity but have only been functionally implicated in initiating DNA replication. Using an improved method for constructing conditional degron mutants, we show that depletion of MCMs after initiation irreversibly blocks the progression of replication forks in Saccharomyces cerevisiae. Like the Escherichia coli dnaB and SV40 T antigen helicases, therefore, the MCM complex is loaded at origins before initiation and is essential for elongation. Restricting MCM loading to the G(1) phase ensures that initiation and elongation occur just once per cell cycle.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Ligases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona , Cromossomos Fúngicos/metabolismo , DNA Fúngico/biossíntese , Proteínas Fúngicas/genética , Fase G1 , Fase G2 , Componente 4 do Complexo de Manutenção de Minicromossomo , Componente 6 do Complexo de Manutenção de Minicromossomo , Mitose , Mutação , Proteínas Recombinantes de Fusão/metabolismo , Replicon , Fase S , Saccharomyces cerevisiae/genética , Temperatura
8.
Curr Opin Genet Dev ; 6(2): 203-7, 1996 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8722177

RESUMO

Recent experiments in budding yeast and Xenopus have provided new insights into the regulation of eukaroytic DNA replication. The multi-subunit origin recognition complex plays a key role in initiation, remaining bound at origins of replication during most of the cell cycle. Early in the cell cycle, Cdc6 and the Mcm proteins 'reset' chromatin for another round of DNA replication. Cyclin-dependent kinases appear to play a dual role, both in activating replication origins and blocking the formation of new pre-replicative complexes; thus limiting replication to once per cell cycle.


Assuntos
Origem de Replicação/fisiologia , Leveduras/genética , Animais , Sequência de Bases , Proteínas de Ciclo Celular/fisiologia , Replicação do DNA/genética , Humanos , Dados de Sequência Molecular , Xenopus
9.
Curr Opin Genet Dev ; 11(1): 64-70, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11163153

RESUMO

The MCM2-7 complex is essential for both the initiation and elongation phases of eukaryotic chromosome replication. There is some evidence that MCM2-7 proteins may act as a DNA helicase; at the same time, a variety of other DNA helicases have also been implicated in the replication of eukaryotic chromosomes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , Células Eucarióticas/metabolismo , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ligação Proteica , RecQ Helicases , Leveduras/genética , Leveduras/metabolismo
10.
Curr Biol ; 8(21): R771-3, 1998 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-9799729

RESUMO

Budding yeast replication origins are activated during S phase according to a predetermined temporal programme. Two recent studies indicate that this programme is executed, at least in part, by the S-phase-promoting cyclins that act to assemble a pre-initiation complex which includes the Cdc45 protein.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA , Origem de Replicação , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Transporte/metabolismo , Ciclinas/fisiologia , Proteínas Fúngicas/metabolismo , Modelos Genéticos , Proteínas Nucleares/metabolismo , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia
11.
Curr Biol ; 11(9): R367-70, 2001 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11369250

RESUMO

A sophisticated molecular switch ensures that replication origins are activated just once in each cell cycle. Recent work reveals how the proteolysis of a key replication inhibitor, geminin, by the anaphase promoting complex/cyclosome is an important component of this switch.


Assuntos
Replicação do DNA , Animais , Quinases Ciclina-Dependentes/fisiologia , Genoma Humano , Humanos
12.
Curr Biol ; 5(11): 1257-69, 1995 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-8574583

RESUMO

BACKGROUND: DNA replication and mitosis are triggered by activation of kinase complexes, each made up of a cyclin and a cyclin-dependent kinase (Cdk). It had seemed possible that the association of Cdks with different classes of cyclins specifies whether S phase (replication) or M phase (mitosis) will occur. The recent finding that individual B-type cyclins (encoded by the genes CLB1-CLB6) can have functions in both processes in the budding yeast Saccharomyces cerevisiae casts doubt on this notion. RESULTS: S. cerevisiae strains lacking C1b1-C1b4 undergo DNA replication once but fail to enter mitosis. We have isolated mutations in two genes, SIM1 and SIM2 (SIM2 is identical to SEC72), which allow such cells to undergo an extra round of DNA replication without mitosis. The Clb5 kinase, which promotes S phase, remains active during the G2-phase arrest of cells of the parental strain, but its activity declines rapidly in sim mutants. Increased expression of the CLB5 gene prevents re-replication. Thus, a cyclin B-kinase that promotes DNA replication in G1-phase cells can prevent re-replication in G2-phase cells. Inactivation of C1b kinases by expression of the specific C1b-Cdk1 inhibitor p40SIC1 is sufficient to induce a prereplicative state at origins of replication in cells blocked in G2/M phase by nocodazole. Re-activation of C1b-Cdk1 kinases induces a second round of DNA replication. CONCLUSIONS: We propose that S-phase-promoting cyclin B--Cdk complexes prevent re-replication during S, G2 and M phases by inhibiting the transition of replication origins to a pre-replicative state. This model can explain both why origins 'fire' only once per S phase and why S phase is dependent on completion of the preceding M phase.


Assuntos
Ciclo Celular/fisiologia , Ciclina B , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Replicação do DNA/fisiologia , Origem de Replicação/fisiologia , Proteínas de Saccharomyces cerevisiae , Clonagem Molecular , Ciclinas/genética , Fase G2 , Regulação da Expressão Gênica , Mutação , Nocodazol/farmacologia , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética
13.
Curr Biol ; 10(5): 231-40, 2000 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-10712901

RESUMO

BACKGROUND: Cdc28p, the major cyclin-dependent kinase in budding yeast, prevents re-replication within each cell cycle by preventing the reassembly of Cdc6p-dependent pre-replicative complexes (pre-RCs) once origins have fired. Cdc6p is a rapidly degraded protein that must be synthesised in each cell cycle and is present only during the G1 phase. RESULTS: We found that, at different times in the cell cycle, there are distinct modes of Cdc6p proteolysis. Before Start, Cdc6p proteolysis did not require either the anaphase-promoting complex (APC/C) or the SCF complex, which mediate the major cell cycle regulated ubiquitination pathways, nor did it require Cdc28p activity or any of the potential Cdc28p phosphorylation sites in Cdc6p. In fact, the activation of B cyclin (Clb)-Cdc28p kinase inactivated this pathway of Cdc6p degradation later in the cell cycle. Activation of the G1 cyclins (Clns) caused Cdc6p degradation to become extremely rapid. This degradation required the SCF(CDC4) and Cdc28p consensus sites in Cdc6p, but did not require Clb5 and Clb6. Later in the cell cycle, SCF(CDC4)-dependent Cdc6p proteolysis remained active but became less rapid. CONCLUSIONS: Levels of Cdc6p are regulated in several ways by the Cdc28p cyclin-dependent kinase. The Cln-dependent elimination of Cdc6p, which does not require the S-phase-promoting cyclins Clb5 and Clb6, suggests that the ability to assemble pre-RCs is lost before, not concomitant with, origin firing.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/fisiologia , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomycetales/fisiologia , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Ciclina B/metabolismo , Fase G1 , Immunoblotting , Modelos Biológicos , Peptídeo Sintases/metabolismo , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Proteínas Ligases SKP Culina F-Box , Fatores de Tempo
14.
Trends Genet ; 6(12): 427-32, 1990 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-2087786

RESUMO

Eukaryotic DNA replication initiates at many sites on each chromosome during the S phase of the cell cycle. Each origin of replication lies in a unique chromosomal environment and can be regulated in different cell types both at the level of utilization and the time of initiation during S phase. In this review, we examine the control and the mechanism of eukaryotic origin function.


Assuntos
Replicação do DNA , Células Eucarióticas/metabolismo , Regulação da Expressão Gênica , Animais , Sequência de Bases , Cromossomos/ultraestrutura , Dados de Sequência Molecular , Fase S/genética
15.
Mol Cell Biol ; 6(5): 1363-73, 1986 May.
Artigo em Inglês | MEDLINE | ID: mdl-3785168

RESUMO

A rapid and quantitative nitrocellulose filter-binding assay is described for the detection of nuclear factor I, a HeLa cell sequence-specific DNA-binding protein required for the initiation of adenovirus DNA replication. In this assay, the abundant nonspecific DNA-binding activity present in unfractionated HeLa nuclear extracts was greatly reduced by preincubation of these extracts with a homopolymeric competitor DNA. Subsequently, specific DNA-binding activity was detected as the preferential retention of a labeled 48-base-pair DNA fragment containing a functional nuclear factor I binding site compared with a control DNA fragment to which nuclear factor I did not bind specifically. This specific DNA-binding activity was shown to be both quantitative and time dependent. Furthermore, the conditions of this assay allowed footprinting of nuclear factor I in unfractionated HeLa nuclear extracts and quantitative detection of the protein during purification. Using unfrozen HeLa cells and reagents known to limit endogenous proteolysis, nuclear factor I was purified to near homogeneity from HeLa nuclear extracts by a combination of standard chromatography and specific DNA affinity chromatography. Over a 400-fold purification of nuclear factor I, on the basis of the specific activity of both sequence-specific DNA binding and complementation of adenovirus DNA replication in vitro, was affected by this purification. The most highly purified fraction was greatly enriched for a polypeptide of 160 kilodaltons on silver-stained sodium dodecyl sulfate-polyacrylamide gels. Furthermore, this protein cosedimented with specific DNA-binding activity on glycerol gradients. That this fraction indeed contained nuclear factor I was demonstrated by both DNase I footprinting and its function in the initiation of adenovirus DNA replication. Finally, the stoichiometry of specific DNA binding by nuclear factor I is shown to be most consistent with 2 mol of the 160-kilodalton polypeptide binding per mol of nuclear factor I-binding site.


Assuntos
Adenovírus Humanos/genética , Replicação do DNA , Proteínas de Ligação a DNA/isolamento & purificação , Ligação Competitiva , Proteínas de Ligação a DNA/metabolismo , Células HeLa/metabolismo , Humanos , Cinética , Plasmídeos , Ultrafiltração/métodos
16.
Mol Cell Biol ; 20(1): 242-8, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10594027

RESUMO

The Dbf4p/Cdc7p protein kinase is essential for the activation of replication origins during S phase. The catalytic subunit, Cdc7p, is present at constant levels throughout the cell cycle. In contrast, we show here that the levels of the regulatory subunit, Dbf4p, oscillate during the cell cycle. Dbf4p is absent from cells during G(1) and accumulates during the S and G(2) phases. Dbf4p is rapidly degraded at the time of chromosome segregation and remains highly unstable during pre-Start G(1) phase. The rapid degradation of Dbf4p during G(1) requires a functional anaphase-promoting complex (APC). Mutation of a sequence in the N terminus of Dbf4p which resembles the cyclin destruction box eliminates this APC-dependent degradation of Dbf4p. We suggest that the coupling of Dbf4p degradation to chromosome separation may play a redundant role in ensuring that prereplicative complexes, which assemble after chromosome segregation, do not immediately refire.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Fúngicas/genética , Proteínas Serina-Treonina Quinases/genética , Fase S/genética , Proteínas de Saccharomyces cerevisiae , Anáfase/genética , Regulação Fúngica da Expressão Gênica , Fosfoproteínas/genética , Saccharomyces cerevisiae
17.
Mol Biol Cell ; 12(11): 3658-67, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11694596

RESUMO

A prereplicative complex (pre-RC) of proteins is assembled at budding yeast origins of DNA replication during the G1-phase of the cell cycle, as shown by genomic footprinting. The proteins responsible for this prereplicative footprint have yet to be identified but are likely to be involved in the earliest stages of the initiation step of chromosome replication. Here we show that MCM2-7 proteins are essential for both the formation and maintenance of the pre-RC footprint at the origin ARS305. It is likely that pre-RCs contain heteromeric complexes of MCM2-7 proteins, since degradation of Mcm2, 3, 6, or 7 during G1-phase, after pre-RC formation, causes loss of Mcm4 from the nucleus. It has been suggested that pre-RCs on unreplicated chromatin may generate a checkpoint signal that inhibits premature mitosis during S-phase. We show that, although mitosis does indeed occur in the absence of replication if MCM proteins are degraded during G1-phase, anaphase is prevented if MCMs are degraded during S-phase. Our data indicate that pre-RCs do not play a direct role in checkpoint control during chromosome replication.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Transdução de Sinais , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Proteínas Cromossômicas não Histona , Cromossomos Fúngicos , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Fase G1 , Componente 4 do Complexo de Manutenção de Minicromossomo , Componente 6 do Complexo de Manutenção de Minicromossomo , Componente 7 do Complexo de Manutenção de Minicromossomo , Mitose/fisiologia , Proteínas Nucleares/genética , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe
18.
J Mol Biol ; 308(4): 597-608, 2001 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-11350163

RESUMO

The Cdc6 protein is required to load a complex of Mcm2-7 family members (the MCM complex) into prereplicative complexes at budding yeast origins of DNA replication. Cdc6p is a member of the AAA(+) superfamily of proteins, which includes the prokaryotic and eukaryotic clamp loading proteins. These proteins share a number of conserved regions of homology and a common three-dimensional architecture. Two of the conserved sequence motifs are the Walker A and B motifs that are involved in nucleotide metabolism and are essential for Cdc6p function in vivo. Here, we analyse mutants in the other conserved sequence motifs. Several of these mutants are temperature-sensitive for growth and are unable to recruit the MCM complex to chromatin at the restrictive temperature. In one such temperature-sensitive mutant, a highly conserved asparagine residue in the sensor I motif was changed to alanine. Overexpression of this mutant protein is lethal. This phenotype is very similar to the phenotype previously described for a mutation in the Walker B motif, suggesting a common role for sensor I and the Walker B motif in Cdc6 function.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Sequência Conservada/genética , Mutação/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Alelos , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Proteínas de Ciclo Celular/genética , Divisão Celular , Cromatina/metabolismo , Replicação do DNA , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Citometria de Fluxo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Dominantes/genética , Genes Letais/genética , Componente 7 do Complexo de Manutenção de Minicromossomo , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Fenótipo , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Temperatura
19.
Science ; 331(6022): 1328-32, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21393545

RESUMO

DNA topoisomerase II completely removes DNA intertwining, or catenation, between sister chromatids before they are segregated during cell division. How this occurs throughout the genome is poorly understood. We demonstrate that in yeast, centromeric plasmids undergo a dramatic change in their topology as the cells pass through mitosis. This change is characterized by positive supercoiling of the DNA and requires mitotic spindles and the condensin factor Smc2. When mitotic positive supercoiling occurs on decatenated DNA, it is rapidly relaxed by topoisomerase II. However, when positive supercoiling takes place in catenated plasmid, topoisomerase II activity is directed toward decatenation of the molecules before relaxation. Thus, a topological change on DNA drives topoisomerase II to decatenate molecules during mitosis, potentially driving the full decatenation of the genome.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , DNA Catenado/química , DNA Fúngico/química , DNA Super-Helicoidal/química , Mitose , Ciclo Celular , Segregação de Cromossomos , Replicação do DNA , DNA Catenado/metabolismo , DNA Fúngico/metabolismo , DNA Super-Helicoidal/metabolismo , Dimerização , Conformação de Ácido Nucleico , Plasmídeos , Saccharomyces cerevisiae , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa