Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446813

RESUMO

(1) Background: In recent years, numerous studies have highlighted the beneficial effects of extra virgin olive oil (EVOO) as an active ingredient against chronic diseases. The properties of EVOO are due to its peculiar composition, mainly to its rich content of polyphenols. In fact, polyphenols may contribute to counteract oxidative stress, which often accompanies chronic diseases. In this work, the antioxidant effects of high-value polyphenol oleocanthal (OC) and its main metabolites, tyrosol (Tyr) and oleocanthalic acid (OA), respectively, have been investigated along with their impact on cell viability. (2) Methods: OC, Tyr, and OA have been evaluated regarding antiradical properties in term of scavenging capacity towards biologically relevant reactive species, including O2●-, HOCl, and ROO●, as well as their antioxidant/antiradical capacity (FRAP, DPPH●, ABTS●+). Moreover, the ability to permeate the intestinal membrane was assessed by an intestinal co-culture model composed by Caco-2 and HT29-MTX cell lines. (3) Results: The capacity of OC and Tyr as radical oxygen species (ROS) scavengers, particularly regarding HOCl and O2●-, was clearly demonstrated. Furthermore, the ability to permeate the intestinal co-culture model was plainly proved by the good permeations (>50%) achieved by all compounds. (4) Conclusions: OC, OA, and Tyr revealed promising properties against oxidative diseases.


Assuntos
Antioxidantes , Polifenóis , Humanos , Antioxidantes/farmacologia , Células CACO-2 , Polifenóis/farmacologia , Azeite de Oliva
2.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234738

RESUMO

Polyhydroxyalkanoates (PHAs) are a family of biopolyesters synthesized by various microorganisms. Due to their biocompatibility and biodegradation, PHAs have been proposed for biomedical applications, including tissue engineering scaffolds. Olive leaf extract (OLE) can be obtained from agri-food biowaste and is a source of polyphenols with remarkable antioxidant properties. This study aimed at incorporating OLE inside poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) fibers via electrospinning to obtain bioactive bio-based blends that are useful in wound healing. PHBHV/OLE electrospun fibers with a size of 1.29 ± 0.34 µm were obtained. Fourier transform infrared chemical analysis showed a uniform surface distribution of hydrophilic -OH groups, confirming the presence of OLE in the electrospun fibers. The main OLE phenols were released from the fibers within 6 days. The biodegradation of the scaffolds in phosphate buffered saline was investigated, demonstrating an adequate stability in the presence of metalloproteinase 9 (MMP-9), an enzyme produced in chronic wounds. The scaffolds were preliminarily tested in vitro with HFFF2 fibroblasts and HaCaT keratinocytes, suggesting adequate cytocompatibility. PHBHV/OLE fiber meshes hold promising features for wound healing, including the treatment of ulcers, due to the long period of durability in an inflamed tissue environment and adequate cytocompatibility.


Assuntos
Poli-Hidroxialcanoatos , Antioxidantes/farmacologia , Hidroxibutiratos/farmacologia , Metaloproteinase 9 da Matriz , Olea , Ácidos Pentanoicos , Fosfatos , Extratos Vegetais , Poliésteres/química , Poli-Hidroxialcanoatos/química , Polifenóis , Estudos Prospectivos , Engenharia Tecidual , Alicerces Teciduais/química , Cicatrização
3.
Bioorg Chem ; 94: 103353, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31668465

RESUMO

Several preclinical evidence indicate that the modulation of the endocannabinoid system (ECS) represents a promising therapeutic approach for different diseases. However, only few modulators of this system have reached so far an advanced stage of clinical development, mainly due to limited efficacy and CB1 receptor-dependent side effects. Those limitations might be overcome by multi-target compounds that exert pro-cannabinoid activities through the modulation of two or more targets in the ECS. This approach can offer a safer and more effective pharmacological strategy as compared to the modulation of a single target. In this work, we report the synthesis and biological characterization of new 6-aryl-1,2-dihydro-2-oxo-pyridine-3-carboxamide derivatives. Our results identified several compounds exhibiting interesting multi-target profiles within the ECS. In particular, compound B1 showed moderate-to-high affinity for cannabinoid receptors (Ki CB1R = 304 nM, partial agonist, Ki CB2R = 3.1 nM, inverse agonist) and a potent inhibition of AEA uptake (IC50 = 62 nM) with moderate inhibition of FAAH (IC50 = 2.9 µM). The corresponding 2-alkoxypyridine analogue B14 exhibited significant inhibitor activity on both FAAH (IC50 = 69 nM) and AEA uptake (IC50 = 76 nM) without significantly binding to both cannabinoid receptor subtypes. Molecular docking analysis was carried out on the three-dimensional structures of CB1R and CB2R and of FAAH to rationalize the structure-activity relationships of this series of compounds.


Assuntos
Endocanabinoides/metabolismo , Piridinas/química , Animais , Humanos , Simulação de Acoplamento Molecular , Receptores de Canabinoides/metabolismo , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 20(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775339

RESUMO

Olive leaf extract (OLE) can be obtained as biowaste and is extensively used a food supplement and an over-the-counter drug for its beneficial effects. New studies have investigated OLE concerning the role of oxidative stress in the pathogenesis of vascular disease. This in vitro study aims to evaluate if OLE extracted from the Tuscan Olea europaea protects endothelial cells against oxidative stress generated by reactive oxygen species (ROS). METHODS: OLE total polyphenols (TPs) were characterized by the Folin-Ciocalteu method. Endothelial cells were grown in conventional cultures (i.e., two-dimensional, 2D) and on a biomaterial scaffold (i.e., three-dimensional, 3D) fabricated via electrospinning. Cell viability and ROS measurement after H2O2 insults were performed. RESULTS: OLE TP content was 23.29 mg GAE/g, and oleuropein was the principal compound. The dose-dependent viability curve highlighted the absence of significant cytotoxic effects at OLE concentrations below 250 µg/mL TPs. By using OLE preconditioning at 100 µg/mL, cell viability decrease was observed, being in 3D lower than in the 2D model. OLE was protective against ROS in both models. CONCLUSIONS: OLE represents a high-value antioxidant source obtained by biowaste that is interesting for biomedical products. Using a 3D scaffold could be the best predictive model to mimic the physiological conditions of vascular tissue reaction.


Assuntos
Antioxidantes/farmacologia , Endotélio Vascular/efeitos dos fármacos , Olea/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Substâncias Protetoras/farmacologia , Sobrevivência Celular , Endotélio Vascular/citologia , Humanos , Espécies Reativas de Oxigênio/metabolismo
5.
Molecules ; 24(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075867

RESUMO

In this work, hybrid compounds 1-4 obtained by conjugation of the non-steroidal anti-inflammatory drug diclofenac, with natural molecules endowed with antioxidant and antiproliferative activity were prepared. The antiproliferative activity of these hybrids was evaluated on immortalized human keratinocyte (HaCaT) cells stimulated with epidermal growth factor (EGF), an actinic keratosis (AK) model, and on human squamous cell carcinoma (SCC) cells (A431). Hybrid 1 presented the best activity in both cell models. Self-assembling surfactant nanomicelles have been chosen as the carrier to drive the hybrid 1 into the skin; the in vitro permeation through and penetration into pig ear skin have been evaluated. Among the nanostructured formulations tested, Nano3Hybrid20 showed a higher tendency of the hybrid 1 to be retained in the skin rather than permeating it, with a desirable topical and non-systemic action. On these bases, hybrid 1 may represent an attractive lead scaffold for the development of new treatments for AK and SCC.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Diclofenaco/uso terapêutico , Ceratose Actínica/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Carcinoma de Células Escamosas/patologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diclofenaco/síntese química , Diclofenaco/química , Diclofenaco/farmacologia , Humanos , Concentração Inibidora 50 , Ceratose Actínica/patologia , Micelas , Nanopartículas/química , Tamanho da Partícula , Neoplasias Cutâneas/patologia , Suínos
6.
Int J Mol Sci ; 19(8)2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096819

RESUMO

Neurodegenerative diseases represent a heterogeneous group of disorders that share common features like abnormal protein aggregation, perturbed Ca2+ homeostasis, excitotoxicity, impairment of mitochondrial functions, apoptosis, inflammation, and oxidative stress. Despite recent advances in the research of biomarkers, early diagnosis, and pharmacotherapy, there are no treatments that can halt the progression of these age-associated neurodegenerative diseases. Numerous epidemiological studies indicate that long-term intake of a Mediterranean diet, characterized by a high consumption of extra virgin olive oil, correlates with better cognition in aged populations. Olive oil phenolic compounds have been demonstrated to have different biological activities like antioxidant, antithrombotic, and anti-inflammatory activities. Oleocanthal, a phenolic component of extra virgin olive oil, is getting more and more scientific attention due to its interesting biological activities. The aim of this research was to characterize the neuroprotective effects of oleocanthal against H2O2-induced oxidative stress in neuron-like SH-SY5Y cells. Moreover, protein expression profiling, combined with pathways analyses, was used to investigate the molecular events related to the protective effects. Oleocanthal was demonstrated to counteract oxidative stress, increasing cell viability, reducing reactive oxygen species (ROS) production, and increasing reduced glutathione (GSH) intracellular level. Proteomic analysis revealed that oleocanthal significantly modulates 19 proteins in the presence of H2O2. In particular, oleocanthal up-regulated proteins related to the proteasome, the chaperone heat shock protein 90, the glycolytic enzyme pyruvate kinase, and the antioxidant enzyme peroxiredoxin 1. Moreover, oleocanthal protection seems to be mediated by Akt activation. These data offer new insights into the molecular mechanisms behind oleocanthal protection against oxidative stress.


Assuntos
Aldeídos/farmacologia , Inflamação/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Fenóis/farmacologia , Envelhecimento/efeitos dos fármacos , Aldeídos/química , Antioxidantes/química , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Monoterpenos Ciclopentânicos , Humanos , Peróxido de Hidrogênio/toxicidade , Inflamação/induzido quimicamente , Inflamação/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/genética , Fenóis/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Proteômica , Espécies Reativas de Oxigênio/metabolismo
7.
Bioorg Med Chem Lett ; 27(21): 4812-4816, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28993050

RESUMO

A novel series of variously substituted N-[3-(9H-carbazol-9-yl)-2-hydroxypropyl]-arylsulfonamides has been synthesized and assayed for ß-Secretase (BACE1) inhibitory activity. BACE1 is a widely recognized drug target for the prevention and treatment of Alzheimer's Disease (AD). The introduction of benzyl substituents on the nitrogen atom of the arylsulfonamide moiety has so far led to the best results, with three derivatives showing IC50 values ranging from 1.6 to 1.9 µM. Therefore, a significant improvement over the previously reported series of N-carboxamides (displaying IC50's ≥ 2.5 µM) has been achieved, thus suggesting an active role of the sulfonamido-portion in the inhibition process. Preliminary molecular modeling studies have been carried out to rationalize the observed structure-activity relationships.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Carbazóis/química , Inibidores de Proteases/química , Sulfonamidas/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Sítios de Ligação , Carbazóis/metabolismo , Carbazóis/uso terapêutico , Domínio Catalítico , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Inibidores de Proteases/metabolismo , Inibidores de Proteases/uso terapêutico , Ligação Proteica , Relação Estrutura-Atividade
8.
Bioorg Med Chem ; 25(24): 6427-6434, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29079014

RESUMO

In this work, we explored the molecular framework of the known CB1R allosteric modulator PSNCBAM-1 with the aim to generate new bioactive analogs and to deepen the structure-activity relationships of this type of compounds. In particular, the introduction of a NH group between the pyridine ring and the phenyl nucleus generated the amino-phenyl-urea derivative SN15b that behaved as a positive allosteric modulator (PAM), increasing the CB1R binding affinity of the orthosteric ligand CP55,940. The functional activity was evaluated using serum response element (SRE) assay, which assesses the CB1R-dependent activation of the MAPK/ERK signaling pathway. SN15b and the biphenyl-urea analog SC4a significantly inhibited the response produced by CP55,940 in the low µM range, thus behaving as negative allosteric modulators (NAMs). The new derivatives presented here provide further insights about the modulation of CB1R binding and functional activity by allosteric ligands.


Assuntos
Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Regulação Alostérica/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Estrutura Molecular , Compostos de Fenilureia/síntese química , Compostos de Fenilureia/química , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
9.
Molecules ; 22(7)2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28714922

RESUMO

In this work, we reported the application and validation of an improved high-performance liquid chromatography method coupled with a fluorimetric detector (HPLC-FL) to screen the activity of two heterocyclic derivatives reported as serine palmitoyl transferase (SPT) inhibitors. The analytical conditions were optimized in terms of the derivatization procedure, chromatographic condition, extraction procedure, and method validation according to EMEA guidelines. Once fully optimized, the method was applied to assess the SPT-inhibitory activity of the above-mentioned derivatives and of the reference inhibitor myriocin. The obtained results, expressed as a percentage of residual SPT activity, were compared to those obtained with the reference radio immune assay (RIA). The good correlation between the two types of assay demonstrated that the improved HPLC-FL method is suitable for a preliminary and rapid screening of potential SPT-inhibitors.


Assuntos
Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fluorometria , Serina C-Palmitoiltransferase/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida de Alta Pressão/normas , Relação Dose-Resposta a Droga , Fluorometria/métodos , Fluorometria/normas , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Reprodutibilidade dos Testes , Serina C-Palmitoiltransferase/química , Especificidade por Substrato
10.
Nutr Cancer ; 68(5): 873-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27266366

RESUMO

Oleocanthal is one of the phenolic compounds of extra virgin olive oil with important anti-inflammatory properties. Although its potential anticancer activity has been reported, only limited evidence has been provided in cutaneous malignant melanoma. The present study is aimed at investigating the selective in vitro antiproliferative activity of oleocanthal against human malignant melanoma cells. Since oleocanthal is not commercially available, it was obtained as a pure standard by direct extraction and purification from extra virgin olive oil. Cell viability experiments carried out by WST-1 assay demonstrated that oleocanthal had a remarkable and selective activity for human melanoma cells versus normal dermal fibroblasts with IC50s in the low micromolar range of concentrations. Such an effect was paralleled by a significant inhibition of ERK1/2 and AKT phosphorylation and downregulation of Bcl-2 expression. These findings may suggest that extra virgin olive oil phenolic extract enriched in oleocanthal deserves further investigation in skin cancer.


Assuntos
Aldeídos/farmacologia , Azeite de Oliva/química , Fenóis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Monoterpenos Ciclopentânicos , Regulação para Baixo , Humanos , Concentração Inibidora 50 , Sistema de Sinalização das MAP Quinases , Melanoma/tratamento farmacológico , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Melanoma Maligno Cutâneo
11.
Bioorg Med Chem Lett ; 25(12): 2532-5, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25956416

RESUMO

In the present work, we report the synthesis of new aryliodonium salts used as precursors of single-stage nucleophilic (18)F radiofluorination. The corresponding unlabelled fluorinated derivatives showed to be CB2 cannabinoid receptor specific ligands, with Ki values in the low nanomolar range and high CB2/CB1 selectivity. The radiolabelled compound [(18)F]CB91, was successfully formulated for in vivo administration, and its preliminary biodistribution was assessed with microPET/CT. This tracer presented a reasonable in vivo stability and a preferential extraction in the tissues that constitutionally express CB2 cannabinoid receptor. The results obtained indicate [(18)F]CB91 as a possible candidate marker of CB2 cannabinoid receptor distribution. This study would open the way to further validation of this tracer for assessing pathologies for which the expression of this receptor is modified.


Assuntos
Amidas/química , Meios de Contraste/síntese química , Desenho de Fármacos , Naftiridinas/síntese química , Compostos Radiofarmacêuticos/síntese química , Receptor CB2 de Canabinoide/metabolismo , Amidas/síntese química , Amidas/farmacocinética , Animais , Meios de Contraste/química , Radioisótopos de Flúor/química , Isomerismo , Masculino , Camundongos , Naftiridinas/química , Naftiridinas/farmacocinética , Tomografia por Emissão de Pósitrons , Quinolonas/química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/química , Distribuição Tecidual
12.
Bioorg Med Chem Lett ; 25(4): 807-10, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25597007

RESUMO

A novel series of tacrine derivatives were designed and synthesized by combining caffeic acid (CA), ferulic acid (FA) and lipoic acid (LA) with tacrine. The antioxidant study revealed that all the hybrids have much more antioxidant capacities compared to CA. Among these compounds, 1b possessed a good ability to inhibit the ß-amyloid protein (Aß) self-aggregation, sub-micromole acetylcholinesterase (AChE)/butyrylcholinesterase (BuChE) inhibitory, modest BACE1 inhibitory. Moreover, compound 1b also was a DPPH radical scavenger and copper chelatory as well as had potent neuroprotective effects against glutamate-induced cell death with low toxicity in HT22 cells. Our findings suggest that the compound 1b might be a promising lead multi-targeted ligand and worthy of further developing for the therapy of Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Tacrina/análogos & derivados , Tacrina/farmacologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Ácidos Cafeicos/química , Linhagem Celular , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Ácidos Cumáricos/química , Desenho de Fármacos , Humanos , Modelos Moleculares , Relação Estrutura-Atividade , Tacrina/síntese química , Ácido Tióctico/química
13.
Bioorg Med Chem ; 23(3): 422-8, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25577707

RESUMO

Although there is a significant effort in the discovery of effective therapies to contrast both the pathological endocrine and metabolic aspects of diabetes and the endothelial dysfunction associated with this disease, no hypoglycemic drug has been proven to defeat the cardiovascular complications associated with type II diabetes. The aim of this research was to design new compounds exhibiting a double profile of hypoglycemic agents/NO-donors. The synthesis of molecules obtained by the conjunction of NO-donor moieties with two oral insulin-secretagogue drugs (repaglinide and nateglinide) was reported. NO-mediated vasorelaxing effects of the synthesized compounds were evaluated by functional tests on isolated endothelium-denuded rat aortic rings. The most potent molecule (4) was tested to evaluate the hypoglycemic and the anti-ischemic cardioprotective activities. This study indicates that 4 should represent a new insulin-secretagogue/NO-donor prodrug with an enhanced cardiovascular activity, which may contrast the pathological aspects of diabetes and endowed of cardioprotective activity.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/tratamento farmacológico , Doadores de Óxido Nítrico/síntese química , Doadores de Óxido Nítrico/farmacologia , Animais , Cardiotônicos/síntese química , Cardiotônicos/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/etiologia , Diabetes Mellitus Tipo 2/complicações , Modelos Animais de Doenças , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Secreção de Insulina , Masculino , Ratos , Ratos Wistar
14.
Nutrients ; 16(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38794712

RESUMO

Extra virgin olive oil (EVOO) is a symbol of the Mediterranean diet, constituting its primary source of fat. The beneficial effect of EVOO is strictly related to the presence of fatty acids and polyphenols, bioactive compounds endowed with nutraceutical properties. Among EVOO polyphenols, lignans possess a steroid-like chemical structure and are part of the phytoestrogen family, which is renowned for its health properties. The natural lignans (+)-pinoresinol and 1-acetoxypinoresinol (1-AP) are commonly present in olives and in EVOO. Although (+)-pinoresinol is found in different edible plants, such as flaxseed, beans, whole-grain cereals, sesame seeds, and certain vegetables and fruit, 1-AP was exclusively identified in olives in 2000. So far, the scientific literature has extensively covered different aspects of (+)-pinoresinol, including its isolation and nutraceutical properties. In contrast, less is known about the olive lignan 1-AP. Therefore, this review aimed to comprehensively evaluate the more important aspects of 1-AP, collecting all the literature from 2016 to the present, exploring its distribution in different cultivars, analytical isolation and purification, and nutraceutical properties.


Assuntos
Suplementos Nutricionais , Lignanas , Olea , Azeite de Oliva , Lignanas/análise , Olea/química , Humanos , Azeite de Oliva/química , Frutas/química , Furanos
15.
Nutrients ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068824

RESUMO

Nowadays, it has been amply demonstrated how an appropriate diet and lifestyle are essential for preserving wellbeing and preventing illnesses [...].


Assuntos
Dieta , Estresse Oxidativo , Humanos , Inflamação
16.
Nutrients ; 15(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36904073

RESUMO

(1) Background: Nowadays, the health-promoting properties of extra virgin olive oil (EVOO), including the antioxidant and anti-inflammatory actions, are well recognized and mainly attributed to the different polyphenols, such as oleocanthal and oleacein. In EVOO production, olive leaves represent a high value by-product, showing a wide spectrum of beneficial effects due to the presence of polyphenols, especially oleuropein. Here we report the study of olive leaf extract (OLE)-enriched EVOO extracts, obtained by adding different percentages of OLE to EVOO in order to ameliorate their nutraceutical activities. (2) Methods: The polyphenolic content of the EVOO/OLE extracts was analyzed by HPLC and the Folin-Ciocalteau assay. For further biological testing, an 8% OLE-enriched EVOO extract was chosen. Therefore, antioxidant effects were evaluated by three different methods (DPPH, ABTS, and FRAP), and the anti-inflammatory properties were assessed in terms of cyclooxygenase activity inhibition. (3) Results: The antioxidant and anti-inflammatory profiles of the new EVOO/OLE extract are significantly improved compared to those of EVOO extract; (4) Conclusions: The combination of OLE and EVOO extract can lead to an extract enriched in terms of bioactive polyphenols and endowed with better biological properties than the singular EVOO extract. Therefore, it may represent a new complement in the nutraceutical field.


Assuntos
Anti-Inflamatórios , Suplementos Nutricionais , Azeite de Oliva , Óleos de Plantas , Extratos Vegetais , Anti-Inflamatórios/farmacologia , Polifenóis , Folhas de Planta/química , Antioxidantes/farmacologia , Óleos de Plantas/farmacologia
17.
Nutrients ; 15(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686778

RESUMO

BACKGROUND: Agrifood waste products are often considered rich sources of bioactive compounds that can be conveniently recovered. Due to these peculiar characteristics, the study of these waste products is attracting great interest in nutraceutical research. Olive mill wastewaters (OMWWs) are generated by extra virgin olive oil (EVOO) production, and they pose environmental challenges due to their disposal. This study aimed to characterize the polyphenolic profile and to evaluate the nutraceutical properties of OMWW extracts from two Tuscan olive cultivars, Leccino (CL) and Frantoio (CF), collected during different time points in EVOO production. METHOD: After a liquid-liquid extraction, the HPLC and LC-MS/MS analysis of OMWW extracts confirmed the presence of 18 polyphenolic compounds. RESULTS: The polyphenol composition varied between the cultivars and during maturation stages. Notably, oleacein was detected at remarkably high levels in CL1 and CF1 extracts (314.628 ± 19.535 and 227.273 ± 3.974 µg/mg, respectively). All samples demonstrated scavenging effects on free radicals (DPPH and ABTS assays) and an anti-inflammatory potential by inhibiting cyclooxygenase (COX) enzymes. CONCLUSIONS: This study highlights the nutraceutical potential of OMWW extracts, emphasizing their antioxidant, antiradical, and anti-inflammatory activities. The results demonstrate the influence of olive cultivar, maturation stage, and extraction process on the polyphenolic composition and the bioactivity of OMWW extracts. These findings support a more profitable reuse of OMWW as an innovative, renewable, and low-cost source of dietary polyphenols with potential applications as functional ingredients in the development of dietary supplements, as well as in the pharmaceutical and cosmetics industries.


Assuntos
Olea , Águas Residuárias , Polifenóis , Cromatografia Líquida , Espectrometria de Massas em Tandem , Suplementos Nutricionais , Resíduos , Extratos Vegetais/farmacologia
18.
Biomed Pharmacother ; 157: 114014, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36379119

RESUMO

Liver fibrosis is the result of a chronic pathological condition caused by the activation of hepatic stellate cells (HSCs), which induces the excessive deposition of extracellular matrix. Fibrogenesis is sustained by an exaggerated production of reactive oxidative species (ROS) by NADPH oxidases (NOXs), which are overactivated in hepatic inflammation. In this study, we investigated the antifibrotic properties of two phenolic compounds of natural origin, tyrosol (Tyr) and hydroxytyrosol (HTyr), known for their antioxidant and anti-inflammatory effects. We assessed Tyr and HTyr antifibrotic and antioxidant activity both in vitro, by a co-culture of LX2, HepG2 and THP1-derived Mϕ macrophages, set up to simulate the hepatic microenvironment, and in vivo, in a mouse model of liver fibrosis obtained by carbon tetrachloride treatment. We evaluated the mRNA and protein expression of profibrotic and oxidative markers (α-SMA, COL1A1, NOX1/4) by qPCR and/or immunocytochemistry or immunohistochemistry. The expression of selected miRNAs in mouse livers were measured by qPCR. Tyr and HTyr reduces fibrogenesis in vitro and in vivo, by downregulating all fibrotic markers. Notably, they also modulated oxidative stress by restoring the physiological levels of NOX1 and NOX4. In vivo, this effect was accompanied by a transcriptional regulation of inflammatory genes and of 2 miRNAs involved in the control of oxidative stress damage (miR-181-5p and miR-29b-3p). In conclusion, Tyr and HTyr exert antifibrotic and anti-inflammatory effects in preclinical in vitro and in vivo models of liver fibrosis, by modulating hepatic oxidative stress, representing promising candidates for further development.


Assuntos
MicroRNAs , NADPH Oxidases , Camundongos , Animais , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , MicroRNAs/metabolismo , Fígado/metabolismo , Células Estreladas do Fígado/metabolismo , Estresse Oxidativo , Cirrose Hepática/patologia , Antioxidantes/metabolismo , Anti-Inflamatórios/farmacologia
19.
Foods ; 11(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35564077

RESUMO

The health benefits of extra-virgin olive oil (EVOO) are strictly linked to the presence of phenolic compounds, which exhibit numerous nutraceutical properties. In EVOO, the most important class of phenolic compounds is represented by secoiridoids (oleacein and oleocanthal). EVOO is constantly subjected to degradation processes, including hydrolytic and oxidative reactions that influence its phenolic composition. In particular, the hydrolytic reactions determine the transformation of oleocanthal and oleacein into the corresponding phenyl-alcohols, tyrosol, and hydroxytyrosol. Furthermore, oleocanthal by oxidation processes can be converted to oleocanthalic acid. In this study, we evaluated the phenolic composition of three EVOO samples kept at different storage conditions for 15 months, focusing on the variation of oleocanthalic acid content. Specifically, the samples were stored at 4 °C in darkness and at 25 °C with light exposure. The results of our analyses highlighted that in EVOOs exposed to light and maintained at 25 °C, the degradation was more marked than in EVOO stored in dark and at 4 °C, due to the greater influence of external factors on storage conditions. Although chemical-physical characteristics of EVOOs are slightly different depending on provenience and treatment time, the results of this study reveal that storage conditions are fundamental to controlling phenol concentration.

20.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35890067

RESUMO

A growing body of evidence underlines the crucial role of GPR55 in physiological and pathological conditions. In fact, GPR55 has recently emerged as a therapeutic target for several diseases, including cancer and neurodegenerative and metabolic disorders. Several lines of evidence highlight GPR55's involvement in the regulation of microglia-mediated neuroinflammation, although the exact molecular mechanism has not been yet elucidated. Nevertheless, there are only a limited number of selective GPR55 ligands reported in the literature. In this work, we designed and synthesized a series of novel GPR55 ligands based on the 3-benzylquinolin-2(1H)-one scaffold, some of which showed excellent binding properties (with Ki values in the low nanomolar range) and almost complete selectivity over cannabinoid receptors. The full agonist profile of all the new derivatives was assessed using the p-ERK activation assay and a computational study was conducted to predict the key interactions with the binding site of the receptor. Our data outline a preliminary structure-activity relationship (SAR) for this class of molecules at GPR55. Some of our compounds are among the most potent GPR55 agonists developed to date and could be useful as tools to validate this receptor as a therapeutic target.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa