Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(21): 8647-8653, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36205576

RESUMO

Remote epitaxy is promising for the synthesis of lattice-mismatched materials, exfoliation of membranes, and reuse of expensive substrates. However, clear experimental evidence of a remote mechanism remains elusive. Alternative mechanisms such as pinhole-seeded epitaxy or van der Waals epitaxy can often explain the resulting films. Here, we show that growth of the Heusler compound GdPtSb on clean graphene/sapphire produces a 30° rotated (R30) superstructure that cannot be explained by pinhole epitaxy. With decreasing temperature, the fraction of this R30 domain increases, compared to the direct epitaxial R0 domain, which can be explained by a competition between remote versus pinhole epitaxy. Careful graphene/substrate annealing and consideration of the relative lattice mismatches are required to obtain epitaxy to the underlying substrate across a series of other Heusler films, including LaPtSb and GdAuGe. The R30 superstructure provides a possible experimental fingerprint of remote epitaxy, since it is inconsistent with the leading alternative mechanisms.

2.
Phys Chem Chem Phys ; 19(14): 9537-9544, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28345696

RESUMO

Aluminium (Al)-doped zinc oxide (ZnO) nanowires (NWs) with a unique core-shell structure and a Δ-doping profile at the interface were successfully grown using a combination of chemical vapor deposition re-growth and few-layer AlxOy atomic layer deposition. Unlike the conventional heavy doping which degrades the near-band-edge (NBE) luminescence and increases the electron-phonon coupling (EPC), it was found that there was an over 20-fold enhanced NBE emission and a notably-weakened EPC in this type of interfacially Al-doped ZnO NWs. Further experiments revealed a greatly suppressed nonradiative decay process and a much enhanced radiative recombination rate. By comparing the finite-difference time-domain simulation with the experimental results from intentionally designed different NWs, this enhanced radiative decay rate was attributed to the Purcell effect induced by the confined and intensified optical field within the interfacial layer. The ability to manipulate the confinement, transport and relaxation dynamics of ZnO excitons can be naturally guaranteed with this unique interfacial Δ-doping strategy, which is certainly desirable for the applications using ZnO-based nano-photonic and nano-optoelectronic devices.

3.
Nat Commun ; 13(1): 4014, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851271

RESUMO

Remote epitaxy is a promising approach for synthesizing exfoliatable crystalline membranes and enabling epitaxy of materials with large lattice mismatch. However, the atomic scale mechanisms for remote epitaxy remain unclear. Here we experimentally demonstrate that GaSb films grow on graphene-terminated GaSb (001) via a seeded lateral epitaxy mechanism, in which pinhole defects in the graphene serve as selective nucleation sites, followed by lateral epitaxy and coalescence into a continuous film. Remote interactions are not necessary in order to explain the growth. Importantly, the small size of the pinholes permits exfoliation of continuous, free-standing GaSb membranes. Due to the chemical similarity between GaSb and other III-V materials, we anticipate this mechanism to apply more generally to other materials. By combining molecular beam epitaxy with in-situ electron diffraction and photoemission, plus ex-situ atomic force microscopy and Raman spectroscopy, we track the graphene defect generation and GaSb growth evolution a few monolayers at a time. Our results show that the controlled introduction of nanoscale openings in graphene provides an alternative route towards tuning the growth and properties of 3D epitaxial films and membranes on 2D material masks.

4.
Nat Commun ; 12(1): 2494, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941781

RESUMO

Single-crystalline membranes of functional materials enable the tuning of properties via extreme strain states; however, conventional routes for producing membranes require the use of sacrificial layers and chemical etchants, which can both damage the membrane and limit the ability to make them ultrathin. Here we demonstrate the epitaxial growth of the cubic Heusler compound GdPtSb on graphene-terminated Al2O3 substrates. Despite the presence of the graphene interlayer, the Heusler films have epitaxial registry to the underlying sapphire, as revealed by x-ray diffraction, reflection high energy electron diffraction, and transmission electron microscopy. The weak Van der Waals interactions of graphene enable mechanical exfoliation to yield free-standing GdPtSb membranes, which form ripples when transferred to a flexible polymer handle. Whereas unstrained GdPtSb is antiferromagnetic, measurements on rippled membranes show a spontaneous magnetic moment at room temperature, with a saturation magnetization of 5.2 bohr magneton per Gd. First-principles calculations show that the coupling to homogeneous strain is too small to induce ferromagnetism, suggesting a dominant role for strain gradients. Our membranes provide a novel platform for tuning the magnetic properties of intermetallic compounds via strain (piezomagnetism and magnetostriction) and strain gradients (flexomagnetism).

6.
Nanoscale ; 9(44): 17610-17616, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29114687

RESUMO

We carefully prepared interfacial Al-doped (IAD) and interfacial natively-doped (IND) ZnO nanowires (NWs) by introducing atomic-layer interfacial Δ-doping between the two steps of CVD growth. Variable-temperature electron transport as well as magnetotransport behaviours of these NWs were systematically investigated. By virtue of the unique architecture and the quality-guaranteed growth technique, a series of quantum interference effects were clearly observed in the IAD ZnO NWs, including weak localization, universal conductance fluctuation and Altshuler-Aronov-Spivak oscillations. The phase-coherence length (Lφ) of electrons exceeds 100 nm in the IAD ZnO NWs, much longer than those in the IND ones and most conventionally doped ZnO NWs. This ability to efficiently manipulate a variety of quantum interference effects in ZnO NWs is very desirable for applications in nano-optoelectronics, nano- & quantum-electronics and solid-state quantum computing.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa