Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(19): 4981-4995.e14, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34464586

RESUMO

Poor tumor infiltration, development of exhaustion, and antigen insufficiency are common mechanisms that limit chimeric antigen receptor (CAR)-T cell efficacy. Delivery of pattern recognition receptor agonists is one strategy to improve immune function; however, targeting these agonists to immune cells is challenging, and off-target signaling in cancer cells can be detrimental. Here, we engineer CAR-T cells to deliver RN7SL1, an endogenous RNA that activates RIG-I/MDA5 signaling. RN7SL1 promotes expansion and effector-memory differentiation of CAR-T cells. Moreover, RN7SL1 is deployed in extracellular vesicles and selectively transferred to immune cells. Unlike other RNA agonists, transferred RN7SL1 restricts myeloid-derived suppressor cell (MDSC) development, decreases TGFB in myeloid cells, and fosters dendritic cell (DC) subsets with costimulatory features. Consequently, endogenous effector-memory and tumor-specific T cells also expand, allowing rejection of solid tumors with CAR antigen loss. Supported by improved endogenous immunity, CAR-T cells can now co-deploy peptide antigens with RN7SL1 to enhance efficacy, even when heterogenous CAR antigen tumors lack adequate neoantigens.


Assuntos
Fatores Imunológicos/farmacologia , RNA/farmacologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Antígenos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Proteína DEAD-box 58/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Imunidade/efeitos dos fármacos , Imunocompetência , Memória Imunológica , Imunoterapia , Interferons/metabolismo , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Peptídeos/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Linfócitos T/efeitos dos fármacos
2.
J Immunol ; 206(8): 1817-1831, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33789984

RESUMO

Plasmodium falciparum merozoite surface protein (PfMSP)2 is a target of parasite-neutralizing Abs. Inclusion of recombinant PfMSP2 (rPfMSP2) as a component of a multivalent malaria vaccine is of interest, but presents challenges. Previously, we used the highly immunogenic PfMSP8 as a carrier to enhance production and/or immunogenicity of malaria vaccine targets. In this study, we exploited the benefits of rPfMSP8 as a carrier to optimize a rPfMSP2-based subunit vaccine. rPfMSP2 and chimeric rPfMSP2/8 vaccines produced in Escherichia coli were evaluated in comparative immunogenicity studies in inbred (CB6F1/J) and outbred (CD1) mice, varying the dose and adjuvant. Immunization of mice with both rPfMSP2-based vaccines elicited high-titer anti-PfMSP2 Abs that recognized the major allelic variants of PfMSP2. Vaccine-induced T cells recognized epitopes present in both PfMSP2 and the PfMSP8 carrier. Competition assays revealed differences in Ab specificities induced by the two rPfMSP2-based vaccines, with evidence of epitope masking by rPfMSP2-associated fibrils. In contrast to aluminum hydroxide (Alum) as adjuvant, formulation of rPfMSP2 vaccines with glucopyranosyl lipid adjuvant-stable emulsion, a synthetic TLR4 agonist, elicited Th1-associated cytokines, shifting production of Abs to cytophilic IgG subclasses. The rPfMSP2/8 + glucopyranosyl lipid adjuvant-stable emulsion formulation induced significantly higher Ab titers with superior durability and capacity to opsonize P. falciparum merozoites for phagocytosis. Immunization with a trivalent vaccine including PfMSP2/8, PfMSP1/8, and the P. falciparum 25 kDa sexual stage antigen fused to PfMSP8 (Pfs25/8) induced high levels of Abs specific for epitopes in each targeted domain, with no evidence of antigenic competition. These results are highly encouraging for the addition of rPfMSP2/8 as a component of an efficacious, multivalent, multistage malaria vaccine.


Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Merozoítos/metabolismo , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Células Th1/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antiprotozoários/metabolismo , Antígenos de Protozoários/genética , Mapeamento de Epitopos , Feminino , Glucosídeos , Epitopos Imunodominantes , Imunoglobulina G/metabolismo , Lipídeo A , Vacinas Antimaláricas/genética , Masculino , Merozoítos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fagocitose , Proteínas de Protozoários/genética
3.
Bioanalysis ; 15(15): 861-903, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37584363

RESUMO

The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations on LBA, Biomarkers/CDx and Cytometry. Part 1 (Mass Spectrometry and ICH M10) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 16 and 14 (2023), respectively.


Assuntos
Bioensaio , Relatório de Pesquisa , Citometria de Fluxo/métodos , Ligantes , Biomarcadores/análise , Bioensaio/métodos
4.
Sci Rep ; 9(1): 9022, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227760

RESUMO

Vaccine trials and cohort studies in Plasmodium falciparum endemic areas indicate that naturally-acquired and vaccine-induced antibodies to merozoite surface protein 2 (MSP2) are associated with resistance to malaria. These data indicate that PfMSP2 has significant potential as a component of a multi-antigen malaria vaccine. To overcome challenges encountered with subunit malaria vaccines, we established that the use of highly immunogenic rPfMSP8 as a carrier protein for leading vaccine candidates rPfMSP119 and rPfs25 facilitated antigen production, minimized antigenic competition and enhanced induction of functional antibodies. We applied this strategy to optimize a rPfMSP2 (3D7)-based subunit vaccine by producing unfused rPfMSP2 or chimeric rPfMSP2/8 in Escherichia coli. rPfMSP2 formed fibrils, which induced splenocyte proliferation in an antigen receptor-independent, TLR2-dependent manner. However, fusion to rPfMSP8 prevented rPfMSP2 amyloid-like fibril formation. Immunization of rabbits elicited high-titer anti-PfMSP2 antibodies that recognized rPfMSP2 of the 3D7 and FC27 alleles, as well as native PfMSP2. Competition assays revealed a difference in the specificity of antibodies induced by the two rPfMSP2-based vaccines, with evidence of epitope masking by rPfMSP2-associated fibrils. Rabbit anti-PfMSP2/8 was superior to rPfMSP2-elicited antibody at opsonizing P. falciparum merozoites for phagocytosis. These data establish rPfMSP8 as an effective carrier for a PfMSP2-based subunit malaria vaccine.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Malária Falciparum/imunologia , Proteínas Opsonizantes/imunologia , Proteínas de Protozoários/imunologia , Vacinação/métodos , Animais , Especificidade de Anticorpos/imunologia , Antígenos de Protozoários/química , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/química , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Merozoítos/imunologia , Fagocitose/imunologia , Proteínas de Protozoários/química , Coelhos , Especificidade da Espécie , Células THP-1
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa