Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(10): 17400-17408, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858924

RESUMO

This article presents low-loss mid-infrared waveguides fabricated on a Ge-rich SiGe strain-relaxed buffer grown on an industrial-scale 200 mm wafer, with propagation losses below 0.5 dB/cm for 5-7 µm wavelengths and below 5 dB/cm up to 11 µm. Investigation reveals free-carrier absorption as the primary loss factor for 5-6.5 µm and silicon multiphonon absorption beyond 7 µm wavelength. This result establishes a foundation for a scalable, silicon-compatible mid-infrared platform, enabling the realisation of photonic integrated circuits for various applications in the mid-infrared spectral region, from hazard detection to spectroscopy and military imaging.

2.
Sci Technol Adv Mater ; 15(1): 014601, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877639

RESUMO

Electro-absorption from GeSi heterostructures is receiving growing attention as a high performance optical modulator for short distance optical interconnects. Ge incorporation with Si allows strong modulation mechanism using the Franz-Keldysh effect and the quantum-confined Stark effect from bulk and quantum well structures at telecommunication wavelengths. In this review, we discuss the current state of knowledge and the on-going challenges concerning the development of high performance GeSi electro-absorption modulators. We also provide feasible future prospects concerning this research topic.

3.
Sci Rep ; 13(1): 17467, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838803

RESUMO

Silicon nitride (Si3N4) waveguides become an appealing choice to realize complex photonic integrated circuits for applications in telecom/datacom transceivers, sensing, and quantum information sciences. However, compared to high-index-contrast silicon-on-insulator platform, the index difference between the Si3N4 waveguide core and its claddings is more moderate, which adversely affects the development of vertical grating-coupled optical interfaces. Si3N4 grating couplers suffer from the reduced strength, therefore it is more challenging to radiate all the waveguide power out of the grating within a beam size that is comparable to the mode field diameter of standard optical fibers. In this work, we present, by design and experiments, a library of low-loss and fabrication-tolerant surface grating couplers, operating at 1.55 µm wavelength range and standard SMF-28 fiber. Our designs are fabricated on 400 nm Si3N4 platform using single-etch fabrication and foundry-compatible low-pressure chemical vapor deposition wafers. Experimentally, the peak coupling loss of - 4.4 dB and - 3.9 dB are measured for uniform couplers, while apodized grating couplers yield fiber-chip coupling loss of - 2.9 dB, without the use of bottom mirrors, additional overlays, and multi-layered grating arrangements. Beside the single-hero demonstrations, over 130 grating couplers were realized and tested, showing an excellent agreement with finite difference time domain designs and fabrication-robust performance. Demonstrated grating couplers are promising for Si3N4 photonic chip prototyping by using standard optical fibers, leveraging low-cost and foundry-compatible fabrication technologies, essential for stable and reproducible large-volume device development.

4.
Opt Express ; 20(3): 3219-24, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22330559

RESUMO

We report on high speed operation of a Ge/SiGe multiple quantum well (MQW) electro-absorption modulator in a waveguide configuration. 23 GHz bandwidth is experimentally demonstrated from a 3 µm wide and 90 µm long Ge/SiGe MQW waveguide. The modulator exhibits a high extinction ratio of more than 10 dB over a wide spectral range. Moreover with a swing voltage of 1 V between 3 and 4 V, an extinction ratio as high as 9 dB can be obtained with a corresponding estimated energy consumption of 108 fJ per bit. This demonstrates the potentiality of Ge/SiGe MQWs as a building block of silicon compatible photonic integrated circuits for short distance energy efficient optical interconnections.


Assuntos
Germânio/química , Semicondutores , Silício/química , Ressonância de Plasmônio de Superfície/instrumentação , Telecomunicações/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Teoria Quântica
5.
Opt Lett ; 37(19): 3960-2, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23027245

RESUMO

Room-temperature quantum-confined Stark effect in a Ge/SiGe quantum-well structure is reported at the wavelength of 1.3 µm. The operating wavelength is tuned by the use of strain engineering. Low-energy plasma-enhanced chemical vapor deposition is used to grow 20 periods of strain-compensated quantum wells (8 nm Ge well and 12 nm Si(0.35)Ge(0.65) barrier) on Si(0.21)Ge(0.79) virtual substrate. The fraction of light absorbed per well allows for a strong modulation around 1.3 µm. The half-width at half-maximum of the excitonic peak of only 12 meV allows for a discussion on physical mechanisms limiting the performances of such devices.

6.
Opt Lett ; 36(10): 1794-6, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21593893

RESUMO

We report room-temperature quantum-confined Stark effect in Ge/SiGe multiple quantum wells (MQWs) with light propagating parallel to the plane of the Ge/SiGe MQWs for applications in integrated photonics. Planar waveguides embedded in a p-i-n diode are fabricated in order to investigate the absorption spectra at different reverse bias voltages from optical transmission measurements for both TE and TM polarizations. Polarization dependence of the absorption spectra of the Ge/SiGe MQWs is clearly observed. The planar waveguides exhibit a high extinction ratio and low insertion loss over a wide spectral range for TE polarization.

7.
Opt Lett ; 35(17): 2913-5, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20808367

RESUMO

We investigate the room-temperature quantum-confined Stark effect in Ge/SiGe multiple quantum wells (MQWs) grown by low-energy plasma-enhanced chemical vapor deposition. The active region is embedded in a p-i-n diode, and absorption spectra at different reverse bias voltages are obtained from optical transmission, photocurrent, and differential transmission measurements. The measurements provide accurate values of the fraction of light absorbed per well of the Ge/SiGe MQWs. Both Stark shift and reduction of exciton absorption peak are observed. Differential transmission indicates that there is no thermal contribution to these effects.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa